
International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

DOI : 10.5121/vlsic.2013.4504                     53 

 

DESIGN AND IMPLEMENTATION OF COMPLEX 

FLOATING POINT PROCESSOR USING FPGA 

 
Murali Krishna Pavuluri

1
 and T.S.R. Krishna Prasad

2
 and Ch.Rambabu

3 

 

1
Embedded Systems, Gudlavalleru Engineering College, Gudlavalleru 

2
Associate professor, Department of E.C.E, Gudlavalleru Engineering College 

3
Assistant professor, Department of E.C.E, Gudlavalleru Engineering College 

 

 

ABSTRACT 

 
This paper presents complete processor hardware with three arithmetic units. The first arithmetic unit can 

perform 32-bit integer arithmetic operations. The second unit can perform arithmetic operations such as 

addition, subtraction, multiplication, division, and square root on 32-bit floating point numbers. The third 

unit can perform arithmetic operations such as addition, subtraction, multiplication on complex numbers. 

The specific advancement in this processor is the new architecture introduced for complex arithmetic unit. 

In general complex floating point arithmetic hardware consists of floating to fixed and fixed to floating 

conversions. But using such hardware will lead to compromise between accuracy and number of bits used 

to represent the fixed point equivalent of floating point numbers. The proposed architecture avoids that 

compromise and it is implemented with less number of look-up tables to save around 5500 logic gates. The 

complex numbers are represented using a subset of IEEE754 standard floating point format, 16-bits for 

real part and 16-bits for imaginary part. The floating point arithmetic unit works on 32-bit IEEE754 single 

precision numbers. The instruction set is specially designed to support integer, floating point and complex 

floating point arithmetic operations. The on-chip RAM is 8kBytes and is extendable up to 64kBytes. As the 

processor is designed to implement on FPGA, the embedded block RAMs are utilized as RAM. 

 

KEYWORDS 

 
Processor hardware, Complex floating point arithmetic hardware, look-up tables, IEEE754 standard 

floating point format, Single precision, Instruction set, On-chip RAM, and Embedded block RAM.   

 

1. INTRODUCTION 

 
The present day processor design technology is becoming very adaptive. Wide verities of 

architectures with optimized instruction sets are readily available. The present work proposes 

such a flexible architecture with an optimized instruction set. The architecture includes an 

efficient complex floating point arithmetic unit in order to perform the computations on the 

complex numbers with high degree of the accuracy. This processor can also be used as a co-

processor to share the work load on the main processor in the applications where intensive 

computations are needed. Generally floating point representation is used in digital signal 

processing applications. However most of the times fixed point DSP processors can satisfy the 

requirements. One will choose the floating point architectures if they require high precision and 

dynamic range. Several significant factors need to be considered while selecting DSP architecture 

[1]. The proposed architecture can be called as hybrid architecture since it consists of floating 

point arithmetic units like DSP processors, but it does not consist of any instruction level 

parallelism, and any specialized or dedicated hardware units, and also does not consists of 

hardware looping mechanism. But it has load and store architecture similar to most of the DSPs. 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

54 

The floating point arithmetic unit present in the processor can compute addition, subtraction, 

multiplication, division, as well as square root of the numbers that are represented in IEEE754 

standard single precision floating point format [2]. The complex floating point arithmetic unit 

present in the processor can compute the addition, subtraction, multiplication on the complex 

numbers that are represented in a subset of IEEE754 standard format with 16-bits (1-sign bit, 5-

exponent bits, 10-mantissa bits) for real part and 16-bits for imaginary part (1-sign bit, 5-

exponent bits, 10-mantissa bits) [3]. This is a completely new architecture when compared with 

the one proposed in [3], and it also requires a less number of look-up tables. 

 

Complex number arithmetic is very common and important requirement in almost all DSP 

algorithms and hence most of the modern DSP processors are coming with complex number 

arithmetic modules. However DSP processors uses fixed to floating and floating to fixed 

conversions which will support a less dynamic range and less precision in order to compromise 

with the number of bits used to represent a fixed point equivalent of floating point counterpart 

while floating to fixed conversion. If a less number of bits are used to represent fixed- point 

equivalent of floating point numbers, obviously there will be a compromise for accuracy. To 

avoid that compromise and to achieve less number of look-up tables, it is better to choose the 

proposed architecture which can directly perform arithmetic operations on the complex numbers 

that are represented using 16-bit subset of IEEE floating point format. Some works also tried to 

perform complex arithmetic using resource sharing and pipelining concepts, by using a single 

floating point adder and floating point multiplier for processing of both real and imaginary parts 

to implement a typical DSP benchmark like scalable FIR filter [4]. 

 

Several architectures have been developed for IEEE floating point arithmetic, which were 

concentrated to reduce latency [5], Examples of complex domain floating point DSP processors 

are described in [6], [7] and [8]. The complex domain VLIW DSP core with microprocessor 

interface was presented in [6]. But the main theme of this work is implementing an efficient 

processor that can process integer and floating point numbers, as well as complex numbers also. 

Most of the design issues are having close similarities with the DSP processor design issues. 

 

Paper Overview: The paper can be organized as follows: 

 

Section 2 describes the critical design issues in the processor design and it also describes the Top 

level functional block diagram and the major modules present in it. Section 3 describes the 

Simulation results of various modules and synthesis report. Section 4 concludes the work and 

finally section 5 gives various possible future extensions of the work. 

 

2. PROCESSOR DESIGN ISSUES AND IMPLEMENTATION 

 
Common modules to construct any processor are data path and control path. The hardware that 

performs arithmetic and logic operations on data will come under data path. The hardware that 

controls the sequence of actions to be performed by data path, by issuing some control signals 

will come under control path. Several methods are in use to design control path. Some of the well 

known methods are using FSMs or using micro-coded programming. The functional block 

diagram of complex floating point processor is shown in Fig.1. Selecting the instruction set is the 

key design issue that will decide the interconnections among all modules [9] [10]. Selecting the 

op-code length will also be the critical factor. The present work uses 32-bit op-codes. Choosing 

the appropriate size of on-chip memories will improve the memory accessing speed but one must 

keep area constraints in mind. However FPGA vendors are providing optimized embedded 

memories that can be used very easily. The present processor consisting of 8KB on-chip RAM 

and is extendable up to 64KB. This facilitates the use of the processor for fast and real time 

needs. The register bank consists of 32 registers each of 32-bit wide and the two operands can be 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

55 

fetched simultaneously. The bus multiplexer manages the data flow between register bank and 

arithmetic units, by multiplexing the buses which intern controlled by controller. The single 

precision floating point arithmetic unit is designed based on conventional algorithms similar to 

other floating point processors. The complex floating point arithmetic unit, which is major 

contribution of this work, uses a new architecture and is described in the following sub-sections. 

 

 

 
 

Figure.1 Block diagram of complex floating point processor 

 

2.1. Data Path 
 

Data path consists of integer arithmetic unit and a single precision floating point arithmetic unit 

and complex floating point arithmetic unit. Several design issues need to be considered while 

designing complex arithmetic unit. Complex numbers addition results another complex number 

and is performed by the hardware whose architecture is shown in Fig.2. The pre-normalization for 

addition/ subtraction unit, checks the presence of NaNs (not a numbers) in the inputs and aligns 

the exponents of the operands given to the add/sub unit which performs addition/ subtraction on 

fraction parts depending on the sign bits of the operands and actual operation that is intended to 

perform. Finally the post-normalization unit checks whether the result is a valid IEEE floating 

point number or not. If the result is near to a valid floating point number then it is rounded 

according to the rounding mode selected. Addition is explained in this section with an example. 

 

( )

( )

( )

( )

: 0 10001 0000000000 4   

: 0 10010 0000000000 8   

: 0 10001 1000000000 6   

: 0 10000 1100000000 3.5   

a in decimal

b in decimal

c in decimal

d in decimal

=

=

=

=
 

 

The result of addition of the complex numbers is shown below and the simulation results for the 

same example are presented in Section 3. 

 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

56 

 

 
 

Figure.2 Complex floating point addition architecture 

 

An example for complex number multiplication is given below and the simulation results are 

shown in section 3. 
 

The result of multiplication is given below. 

 

 

The functionality of pre-normalization for multiplication is to check for NaNs (not a numbers) in 

the inputs and adding the required exponents. To perform the product of real parts (a*c), the pre-

normalization unit adds the exponents of a and c and then subtracts the bias value 15. The 

multiplication unit then multiplies the mantissa or fraction parts of the two operands. The result of 

multiplication of fractions will be of 22-bit. Hence the post-normalization unit will truncate it and 

then rounds the result according to the rounding mode chosen, and finally packs the sign, 

exponent, mantissa bits of the result of multiplication of operands a and c. A similar procedure 

will be followed to evaluate the products (b*c), (a*d), (b*d). The products are then given to 

floating point addition /subtraction unit that is shown in Fig.2. The architecture proposed for 

complex multiplication is shown in Fig.3. 

( ) ( )  0 10010 0100000000 0 10010 01110000 0 10 11.50X Y jj j = ++ = +

( )

( )

( )

( )

: 0 10001 1000000000    

: 0 10001 0100000000    

 : 0 10010 0100000000   

6

5

10  

: 0 10001 0010000000    4.5

a in decimal

b in decimal

c in decimal

d in decimal

=

=

=

=

( ) ( )  0 10100 0010110000 0 10101 00110100 0 37.5 770X Y j jj = ++ = +



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

57 

 
Figure.3 Complex floating point multiplication architecture 

 

2.2. Control Path Design 

 
Control path of a processor consists of a decoder which takes the op-codes from memory and 

decodes them and generates the necessary control signals that will enable the corresponding 

modules of data path to perform the required action. The addressing modes will specify the 

sources of operands on which the operation is to be performed. The sources of operands for ALUs 

are also selected by the decoder. There may be multiple decoders in the processors that support 

instruction level parallelism like VLIW architectures. Some additional hardware will also be used 

to avoid dependencies in such architectures. Op-code mapping is one of the major challenges 

after the instruction set selection. These two tasks will decide the performance and efficient 

utilization of the hardware. Efficient compiler design task will entirely depends on careful 

selection of instruction set and bench marking and op-code mapping steps. The proposed 

architecture supports two level pipelining.  

 

The width of the program counter is 32-bit. The decoder itself will generate the necessary control 

signals to load the program counter with appropriate value. The control unit takes the 32-bit op-

code from the memory which we call fetching of the instruction. The op-code is then decoded for 

generating various control signals to various modules. If the operands are present in registers and 

the result is to be stored in the register then the control unit generates source register index, target 

register index, destination register indexes to select the respective registers from the register bank. 

Consider an example, if the instruction being fetched is CFADD rd,rs,rt which is to perform 

complex floating point addition between the complex data present in source and target registers 

and places the result of addition in destination register. The 32-bit op-code corresponding to 

complex floating point addition is “000000 rs,rt,rd 00000 001010”. Where rs,rt,rd are the 5-bit 

indexes of respective registers in the register file. Fig.5 shows the simulation result for such 

example. When the decoder receives this op-code, it fetches the operands and enables the 

complex floating point arithmetic unit by specifying the operation to be performed by it. The 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

58 

signal alu3_func[2:0] specifies the operation to be performed by the complex floating point 

arithmetic unit. If it is “000” means addition is performed on the available complex operands. 

 

2.3. Register Bank 

 
The Xilinx embedded dual port memories are used as register bank. The register bank consists of 

32 registers and each of 32-bit wide. The decoder generates the read/write addresses according to 

the op-code. The register bank consists of two read ports and one write port in order to read the 

two operands simultaneously and write the result of operation in the specified destination register. 

Some registers in the bank are reserved for special purpose they can’t be used for general 

purpose. 

 

2.4. On-chip RAM 

 
The size of on-chip RAM is 8KB and can be extendable up to 64KB by simply setting the generic 

parameter named as block_count. Xilix Embedded block RAMs of 2kB each are used to construct 

total of 64KB memory. The block RAMs can be instantiated using ‘RAMB16_S9’ and each block 

RAM is initialized with zeros. 

 

2.5. Single Precision Floating Point Arithmetic Unit 

 
The single precision floating point arithmetic unit can perform addition, subtraction, 

multiplication, division and square root operations on the given 32-bit floating point operands 

based on the control signals given by the decoder and presents the result again in IEEE single 

 

 

 
 

Figure.4 single precision floating point arithmetic unit 

 

precision floating point format. In case any exceptions like inexact, overflow, underflow, divide-

by-zero, infinity, zero, QNaN, SNaN occurs the corresponding signals will be raised. The values 

of Not a Number (NaNs), zero, infinity are defined in VHDL package. For example the value of 

Quite Not a Number (QNaN) is defined as "1111111110000000000000000000000" without sign 

bit. Similarly infinity (INF) is defined as "1111111100000000000000000000000". The single 

precision floating point unit is designed based on conventional floating point algorithms. The pre 

normalization for addition/subtraction and pre normalization for multiplication units performs the 

same work as in the case of complex floating point arithmetic unit except the length of the 

operands is 32-bit each, and the operands are real numbers. All the rounding modes defined in 

IEEE754 standard can be performed by this module. 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

59 

3. SIMULATION AND SYNTHESIS REPORT ANALYSIS 
 
This section describes the simulation results of the major modules of the design like decoder and 

complex floating point arithmetic units. It also analyzes the synthesis report summary of complex 

floating point arithmetic unit which is the major contribution of work. 

 

3.1. Decoder Simulation Result Analysis 

 
A 32-bit op-code is given as input to the decoder. The op-code includes the information of 

addressing mode, source register index (5-bit), target register index (5-bit), and destination 

register index (5-bit) in case of register addressing mode, and the operation to be performed. The 

decoder decodes this information and generates control signals to enable the corresponding 

modules. The signals alu1_func, alu2_func, alu3_func specifies the operation to be performed by 

the three arithmetic units present in the processor. Fig.5 shows the decoder simulation results for 

complex floating point addition. 

 

 
 

Figure.5 Decoder simulation results 

 

3.2. Complex Addition Simulation Result Analysis 

 
The signal fpu_op_i specifies the operation to be performed on the given complex numbers 

whether addition or subtraction or multiplication, which is connected to the decoder. The complex 

numbers are given in 16-bit floating point format as explained in section 2. The outputs of this 

module consist of real and imaginary parts which are in 16-bit floating point format, and the 

exception signals. Fig.6 shows the complex floating point addition results of complex floating 

point arithmetic unit. 

 

 
 

Figure.6 Complex floating point addition simulation result 

 

 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

60 

3.3. Complex Multiplication Simulation Result Analysis 

 
The summary of synthesis report for complex floating point arithmetic unit is given in TABLE1 

and Fig.7 shows the multiplication results of complex floating point arithmetic unit. 

 
 

Figure.7 Complex floating point multiplication simulation result 

 

 
TABLE-1 Synthesis report summary of complex floating point arithmetic unit 

 

 
 

The synthesis report summary table shows that the number of 4-input LUTs required to 

implement the complex floating point arithmetic unit with proposed architecture are 5164, where 

as the existing architecture (using floating to fixed and fixed to floating conversions) proposed in 

[3] requires gate count of 36545 (sum of gate counts of 32-bit floating point adder, multiplier) to 

implement as ASIC.  But one 4-input LUT is equivalent to 6-gates, so the gate count of proposed 

architecture is approximately 30984. It is obvious that around 5500 gates were saved with the 

proposed architecture without compromising at dynamic range and precision. 

 

4. CONCLUSION 

 
This work presents a complete processor hardware that includes three arithmetic units. It can 

process integer data and 32-bit floating point data as well as complex data that is represented 

using subset of IEEE 754 floating point format. The architecture of complex floating point 

arithmetic unit presented here is a completely new architecture that will avoid the compromise of 

using limited number of bits to represent fixed point equivalent of floating point numbers and 

there by limited dynamic range. The processor presented here can be used in real time 

applications and also can be used as a co-processor along with a main processor. 

 

5. FUTURE WORK 
 
There are many possibilities to extend this work. Some of the ways are mentioned in this section. 

An efficient compiler can be developed for this processor. This processor can be used as a co-

processor in the implementation of several DSP bench mark algorithms which need complex 

computations. Some additional modules can be included to still enhance the advanced features 

and to develop the complete system on same platform. The ILP (instruction level parallelism) or 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.5, October 2013 

61 

VLIW architecture or SIMD or superscalar concepts can be introduced for the same data path 

modules. The same architecture can be implemented for the complex numbers that are 

represented using other subsets of IEEE floating point formats or entirely new floating point 

formats. One can also concentrate on common VLSI optimization parameters like area, power 

consumption, speed. 

 

ACKNOWLEDGEMENTS 
 

The authors would like to thank the anonymous reviewers for their constructive comments and 

suggestions. 

 

REFERENCES 
 

[1] C. Inacio and D. Ombres, “The DSP decision: Fixed point or floating?,”  IEEE Spectrum, vol. 33, no. 

9, pp. 72–74, Sep. 1996. 

[2] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, Aug. 29, 2008, pp. 1–58. 

[3] Nadav Cohen and Shlomo Weiss,” Complex Floating Point—A Novel Data Word Representation for 

DSP Processors” IEEE transactions on circuits and systems—I, VOL. 59, no. 10,pp.2252-2262 

oct2012. 

[4] Allison L. Walters, “A Scaleable FIR Filter Implementation Using 32-bit Floating-Point Complex 

Arithmetic on a FPGA Based Custom Computing Platform,” M.S. thesis, Dept. Electrical. Eng., 

Virginia,1998. 

[5] A.Beaumont-Smith,N.Burgess,S.Lefrere,andC.C.Lim,“Reduced latency IEEE floating-point standard 

adder architectures,” inProc. IEEE Symp. Comput. Arithmetic, 1999, pp. 35–42. 

[6] P. S. Paolucci, “Complex Domain Floating Point VLIW DSP With Data/Program Bus Multiplexer 

and Microprocessor Interface,” U.S. Patent 7 437 540, Oct. 14, 2008. 

[7] S. Katayanagi, “Complex Vector Operation Processor With Pipeline Processing Function and System 

Using the Same,” U.S. Patent 20030009502, Jan. 9, 2003. 

[8] R. G. Cox, M. W. Yeager, and L. L. Flake, “Single Chip Complex Floating Point Numeric 

Processor,” U.S. Patent 4996661, Feb. 26, 1991.  
[9] Dake Liu “Embedded DSP Processor Design” application specific instruction set processors, 

ELSEVIER. 

[10] Mazen A. R. Saghir “Application Specific Instruction-set architectures for embedded DSP 

Applications” Ph.D thesis, Dept., of electrical and computer engineering, university of Toronto, 

canada. 

[11] Author: Jidan Al-eryani, “Floating point unit”  http://opencores.org/ 

[12] Auther: Rhoads,steve, “plasma-most MIPS I (TM): opcodes:: overview”, http://opencores.org/ 

 

 

Authors  
 
Murali Krishna Pavuluri1 is M.Tech student from Gudlavalleru engineering college, 

Andhra pradesh. He has completed B.Tech from Sasi institute of technology and 

engineering.

 

 

 

 
T.S.R Krishna Prasad2 is Associate professor in E.C.E department of Gudlavalleru 

Engineering College. He has about 10 years of teaching experience and presented papers in 

several international and national conferences and published papers in international 

journals.  


