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ABSTRACT 

 

Automobile manufacturers are controlled by stringent govt. regulations for safety and fuel emissions and 

motivated towards adding more advanced features and sophisticated applications to the existing electronic 

system. Ever increasing customer’s demands for high level of comfort also necessitate providing even more 

sophistication in vehicle electronics system. All these, directly make the vehicle software system more 

complex and computationally more intensive. In turn, this demands very high computational capability of 

the microprocessor used in electronic control unit (ECU). In this regard, multicore processors have 

already been implemented in some of the task rigorous ECUs like, power train, image processing and 

infotainment. To achieve greater performance from these multicore processors, parallelized ECU software 

needs to be efficiently scheduled by the underlaying operating system for execution to utilize all the 

computational cores to the maximum extent possible and meet the real time constraint. In this paper, we 

propose a dynamic task scheduler for multicore engine control ECU that provides maximum  CPU 

utilization, minimized preemption overhead, minimum average waiting time and all the tasks meet their 

real time deadlines while compared to the static priority scheduling suggested by Automotive Open Systems 

Architecture (AUTOSAR). 
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1. INTRODUCTION 

 
Electronic Control Units (ECUs) fulfill the objectives and requirements of a modern automobile 

which is designed to be safer, more comfortable and fuel efficient. Therefore the number of ECUs 

has been increased continuously over the years. Advanced functionalities demand higher 

computational capabilities from ECUs. Multicore processors have emerged to be the current 

processing unit not only for high-end servers but also for embedded control systems [10, 11]. 

Multicore processor features with parallel processing, compact chip size and lower power 

consumption. Performance is improved, the amount of processes per core is reduced and better 

reliability of the on-chip communication is assured by the multicore implementation. In the 

current scenario, OEMs are moving towards multicore to exploit parallelism, to accommodate 

more functions on one ECU and distribute them across the computational cores [1, 3]. In effect, 

some of the task intensive ECUs catering to telematics, infotainment and power train are already 

upgraded with multicore processors. Performance optimization of such multicore ECUs can be 
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achieved by utilizing parallelism effectively for which, numerous runnables should be efficiently 

scheduled for each core [3,4]. The operating system should have an efficient scheduling 

mechanism to schedule the tasks without corrupting the shared data and without leaving any CPU 

core idle at any running instant [5]. Without an optimal schedule, there can be considerable 

variations in average task response times and logical correctness of the results [6]. Such 

anomalies can cause instabilities in the physical system leading to performance degradation and 

even safety hazards. In this paper, a hybrid dynamic scheduler is proposed for the most task 

intensive engine control ECU.  

2. CASE STUDY - ENGINE CONTROL UNIT 

In this work, engine control unit is chosen as the target ECU for task scheduling, as it has 

maximum number tasks to be executed both periodic and event driven and it has already been 

implemented with multicore. Engine control unit is usually connected to a large cluster of sensors 

like, intake air temperature sensor, engine coolant temperature sensor, intake manifold absolute 

pressure (MAP) sensor, mass air flow sensor, throttle position sensor, crankshaft speed sensor, 

camshaft sensor and knock sensor. It is connected to various actuators like idle speed motor, 

electronic throttle body, fuel pressure regulator and fuel injector and delivery control. Basically 

those are stepper motors and solenoids directly connected to the ECU [7]. For each sensor, there  

has to be a task to receive the sensory signal after being conditioned, a task to process it as 

required according to the control algorithm and another task to send appropriate signal to the 

intended actuator. Each task has a large number of threads to be executed sequentially with data 

dependency. Independent threads are executed in parallel by multiple cores.  For each engine 

ECU functionality like, air charge management, engine cooling management, battery 

management, air fuel management or on-board diagnostics, a large number of inputs to be 

received, parameters and local variables to be managed and many outputs are expected to be 

delivered. Because of high level of interaction between the control functions, the shared data are 

required to be protected efficiently [4, 6]. Three different task schedulers used are, synchronous 

scheduler, asynchronous scheduler and background scheduler [7]. Synchronous scheduler is used 

for tasks that need to be executed at certain crank teeth. Asynchronous scheduler also called the 

time-base scheduler is executed just after the power up scheduler initialization. Background tasks 

run, when the CPU is idle basically they are busy-wait loops [12, 13]. Besides that, various 

interrupt service routines are executed to respond to hardware events. Right from the engine start 

till stop of the vehicle, engine ECU runs with its software of several 1000 lines of code.   

3. AUTOSAR ON MULTICORE SCHEDULING 

According to AUTOSAR 4.0, there are certain limitations on multicore software implementation.  

• The scheduling algorithms strictly assign tasks statically to cores to ensure deterministic 

response for the real time critical tasks.  

• The resource algorithm is not supported across cores. Resources can be shared between 

tasks that are allocated to the same core but not among tasks/ISRs which are bound to 

different cores.  

OSEK counter and auto started alarms can be used to implement task activation mechanism. The 

task synchronization issue is addressed by implementing schedule table. The Autosar schedule 
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table  shown in Figure.1. has certain defined set of expiry points. Each expiry point has certain 

tasks to be activated, settings to be done for some events and offset from the start of the  schedule 

table [8]. OSEK counter drives the iteration over these expiry points on the schedule table. So one 

tick on the counter corresponds to one tick on the schedule table. Constraints apply to the delays 

between  adjacent expiry points and the delay to the logical end of the schedule table. According 

to Autosar, the hard real time safety critical tasks are scheduled statically to computational cores 

as per the fixed priority assigned. In this static priority scheduling approach, the tasks have to be 

partitioned well with the order of criticality and an appropriate priority assignment scheme has to 

be adopted to assign priorities prior to run time, which is always a tedious job. The computational 

cores are sometimes underutilized and the lower priority tasks often miss their deadline though 

not the most safety critical ones. In this paper, a global dynamic priority approach has been 

explored.  

            

 

Figure.1. Schedule table for AUTOSAR ECU 

 

4. THE PROPOSED SCHEDULER MODEL 

 

Figure.2. Scheduler model 
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The scheduler model shown in above Fig.2. has a combination of both global and partitioned 

queue architecture. All the tasks arrive at the global queue, where the slack is calculated for each 

and priorities are assigned dynamically. The task with least slack gets highest priority. Then the 

three tasks pass on to three partitioned queues to utilize all the available cores. When a new task 

arrives at the partitioned queue in the presence of previous task, a comparison happens between 

their slack and tasks are arranged in ascending order of their slack in the queue with an effort to 

meet the deadlines. In this simulation setup, a task set of 10 number of tasks are considered for an 

asynchronous or timebase scheduler. The task attributes for the ith task are: {releasing instant ri, 

WCET wi  and period pi }, where WCET is the worst case execution time. Precedence constraint 

is imposed on some of the tasks based on dependency. A tri-core processor implementation is 

considered for these tasks to be scheduled for. The scheduled tasks are released for execution by 

the dispatcher task which is characterized by a dispatching table of definite duration. 

5. SCHEDULING PROBLEM 

The scheduling problems are categorized by notation (α|β|γ) proposed by Graham and Blazewicz  

[14,15]. This notation consists of three parts. The first part ‘α’ describes the processor 

environment, the second part ‘β’ describes the task characteristics and constraints of the 

scheduling problem and the last part ‘γ’ denotes the optimality criterion. In this simulation set up, 

for a three processor environment, α=3. Since all the tasks are release time constrained and they 

are periodic, period is the implied deadline for each instance and precedence constraint is also 

imposed on some of the tasks, β=|release time, precedence & deadline constraint| and γ= Cmax, 

the maximum completion time to achieve an optimal schedule.  

6. WORKING OF THE PROPOSED MINIMUM SLACK FIRST ALGORITHM 

 
At a new arriving instant at global queue,  

 

• Calculate the slack of each task arrived .Where, Slack= Period-WCET. 

• Sort the tasks in increasing order of their slack i,e S1< S2 <S3…….Sn. 

• Assign priorities to these tasks dynamically by giving highest priority to the task with least 

slack. 

• If precedence constraint imposed on the task, Pass the task to a partitioned queue preferably 

to the one where its precedence task has been allocated. 

• If no precedence constraint, pass that task to a local queue based on early availability of that 

CPU core. 

• If :  

� the no. of tasks arrived at the global queue at a particular instant is > the no. of CPU 

cores, 

o Compare the total WCET of all the tasks at each partitioned queue. 

o Assign the first task in the remaining list at global queue to the core that has least WCET. 

• Else:  

� wait for the next new arriving instant. 

At the local partitioned queue, 

• If: new task arrives in the presence of previous task, 

o If the precedence task of the new arrival is the last task waiting in the queue,   no 

comparison required.   
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o Else 

� Compare the slack of the new task with the WCET of the previous task. 

� If: S new arrival < WCET previous task + Remaining WCET running task & Sprevious task> WCETnew 

arrival , 

• Swap the waiting position of  these tasks in the queue. 

� Else if : Snew arrival < WCETprevious task + Remaining WCETrunning task & Sprevious task< 

WCETnew arrival , 

• Get the tasknew to migrate to another local queue whose CPU core is expected to 

be available early, getting information from the global queue. 

7. TASK ATTRIBUTES TABLE 

Table.1. Task attributes table 

 

The task attributes table given in above table. 1 has release time Ri, worst case execution time 

WCET, period and static priorities assigned for each of the ten tasks considered [2, 9]. These are 

the parameters used for static priority scheduling. In addition to these parameters, the precedence 

constraints are considered for dynamic priority scheduling. The slack is the calculated parameter 

based on which dynamic priorities are assigned. For example, at 0
th
  instant, four number of tasks 

i,e T1, T3, T5 and T7 are released. So there could be only four levels of priorities that can be 

assigned. These priorities are assigned at the global queue to dispatch the tasks to the local 

partitioned queues based on their corresponding core’s early availabilities. The first instance of all 

the tasks according to minimum slack based dynamic scheduling is shown in the last column of 

the attributes table. 

 

8. SEQUENCER TABLE AS PER STATIC PRIORITY 

 

Figure.2. Sequencer table 
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Fig.2 shows a sequencer table for the tasks to be executed in three computational cores in an 

expected sequence as it is given. At every single unit of time the scheduler has to take the 

decision in favor of three highest priority tasks among the ready list of tasks arrived as well as 

tasks with remaining execution time. In the priority list, the smallest number indicates highest 

priority for the most frequent task.  

 

Figure. 3. Simulation result 

9. IMPLEMENTATION OF DYNAMIC SCHEDULER AND RESULTS 

                        

Figure. 4. Simulation result 

The simulation results are shown in the above fig. 3 and fig. 4. These result graphs are  Gantt 

charts of ten number of tasks being scheduled for three computational cores. Fig. 3  shows the 

Gantt chart results of the simulation of static priority scheduling. In this simulation, few 

noticeable features are there. Tasks T6, T9 and T10 being assigned with least priorities, are not 
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getting scheduled and have missed their deadlines even for the first instance. T3 has migrated 

from core3 to core2 to complete its WCET after being preempted by T2. Based on the parameter 

attributes and constraints imposed on the tasks, both the static and the dynamic algorithms have 

run through the global and partitioned queues one after the other. Fig. 4 shows the Gantt chart 

results of the simulation of dynamic priority based minimum slack first scheduling. At every 

arrival instant at the global queue, slack for each task is calculated and dynamic priorities are 

assigned. For this dynamic priority scheduling, precedence constraints have been imposed on 

certain tasks. Tasks with the precedence constraints are mostly collocated at a CPU core. At every 

arrival instant at the partitioned queue, the slack of the new task is compared with the total WCET 

of previous tasks and the currently running task. Either the tasks are sorted in ascending order of 

their slack and scheduled for execution or tasks have been preempted and migrated to other 

available core in case there is a probability of missing the deadlines. In the result Gantt chart, T6 

has migrated from core2 to core3. All the tasks have satisfied their precedence constraints and all 

have met with their deadlines. None of the CPU cores is idle at any point of time. So 100% CPU 

utilization is achieved within the simulation duration.  To minimize the preemption overhead, the 

tasks are allowed to continue their execution unless there is a probability of missing the deadline.  

Table 2 given below shows the number of periodic instances of each of the 10 tasks within the 

simulation duration for both the static and dynamic scheduling and Table 3 shows the comparison 

of performance parameters based on the results out of both static and dynamic scheduling run for 

the given task set. 

Table 2: Tasks with no of instances 

Scheduling Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Static 3 3 2 4 4 0 2 1 0 0 

Dynamic 2 2 2 2 2 1 2 1 1 1 

Table 3: parameter comparison 

 

10. CONCLUSION 

 
In this paper, a dynamic task scheduling algorithm has been proposed for multicore Engine 

control ECU of Automotive electronic system. Engine control ECU being a safety critical, hard 

real time system and highly task intensive, the stringent requirement is, all the  tasks have to meet 

their deadlines. Fixed static priority and partitioned task scheduling for multicore ECUs have 

been suggested by AUTOSAR. While adhering to it, there is always a challenge in assigning 

priorities to the tasks and high level of difficulty in partitioning the tasks by which certain CPU 

cores remain under utilized [3, 8]. In this work, a model taskset with appropriate time attributes 

has been tested  both with static priority scheduling and the proposed dynamic priority algorithm, 

where slack is the utilizing parameter. The performance parameters are compared for the results 

of both the algorithms. It is observed that, in static priority scheduling, CPUs are highly utilized 
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by higher priority tasks only and  the lowest priority tasks are consistently missing their deadlines 

while in dynamic priority case, there is a significant improvement in terms of missing deadlines 

and there is a fair allocation across all priorities. Average response time, number of pre-emption 

and migration have been improved considerably. Since slack is considered to assign dynamic 

priorities and to calculate the relative deadlines, unless there is a probability of missing the 

deadline, the task does not get preempted or migrated to other core. So the context switching 

overhead is also reduced.    
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