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ABSTRACT 

Static CMOS logic style is often the choice of designers for synthesizing low power circuits. This style is 

robust in terms of noise integrity however, it offers less speed. Domino logic style, as an alternative is often 

found in critical paths of various large scale high performance circuits. Yet, due to high switching activity 

they are not suitable for synthesis of low power circuits. To achieve both power and speed benefits, we 

propose a method of designing circuit using mixed CMOS logic style, taking advantages of both static and 

Domino logic styles. For a given circuit, we extract the unate and binate components using a unate 

decomposition algorithm. These are optimized such that the resulting circuit is optimum in terms of power, 

area and delay. To do this, a multi-objective genetic algorithm is employed. The optimized unate and binate 

blocks are mapped using Domino and static cell libraries, respectively. Testing the efficacy of our 

approach with ISCAS85 and MCNC89 benchmark circuits showed an improvement of 25% in delay and 

22% in transistor count with 12% more power dissipation compared to circuits with only static CMOS 

logic. Thus, mixed CMOS circuits are promising in high speed and area constraint applications. 
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1. INTRODUCTION 

 
Recent trends show that there is a steep rise in the usage of battery operated handheld gadgets [1], 

[2], [3], [4]. This is posing increasing demands for devices operating at low power and high speed 

[5], [6]. With custom made chips coming into focus, the designers are pushing more and more 

functionalities on a single chip [7], [8], [9]. In fact, designers are now pushing billions of 

transistors in a single chip [10]. This increase the density of the chip and further give rise to 

problems like thermal variations, process variations, packaging, cooling issues etc. [11], [12], 

[13], [14]. This necessitates the synthesis of circuits with low power dissipation, without 

compromise in speed.  

 

Static CMOS logic style is often the choice of designers for designing low power circuits. This is 

because it is simple to fabricate, has good input/output decoupling and with lower switching 

activity. Circuits with this logic style are robust in nature and have good noise margins. Pass 

transistor logic (PTL), another style of static logic family, also finds good application in small 

scale designs. This logic is known for its low area overhead and ease for implementation. A 

number of attempts have been made to synthesize circuits using PTL [15], [16], [17], [18], [19]. 

Though static CMOS is used in low power circuits, it has inherent drawbacks. This style requires 

double the device count compared to other logic styles. The presence of bulky PMOS transistors 

in the charging path makes this logic style slow. Although, PTL offers less area and reduced noise 

margins, it has voltage degradation problem due to threshold voltage offset. As a consequence 
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this logic is unable to provide robust circuits [18]. As an alternative to static CMOS logic, the 

dynamic CMOS logic is known for circuit synthesis [20], [21], [22]. It is popular in high 

performance devices, especially in realizing critical paths for high speed microprocessors [23]. 

This style requires only half the number of transistors compared to static CMOS logic style. This 

logic works on the basis of precharge and evaluation phases [24], [25] under a control of clock. 

Domino logic and NORA logic are two main logic styles that belong to this family. Dynamic 

CMOS logic, however, has some inherent limitations like charge sharing, clock skew etc. [26], 

[27]. Cascading this logic for realizing daily life circuits leads to errors in the output, because of 

intermediate output degradation. Better performance in terms of area and speed of dynamic logic 

are often checked by the factors like reduction in robustness, increase in switching activity and 

hence active power dissipation [23]. Moreover, Domino logic realizes only noninverting logic. 

Hence, the logic functions that are to be realized must be unate in nature. Otherwise, for binate 

function, it needs the duplication for both type of output.  

 

Of late, to exploit advantages of more than one logic styles, designers are using mixed logic style 

to synthesize digital circuits. Static CMOS logic has a clear advantage in terms of power and 

Domino logic has advantage in terms of speed and area. The two logic styles can be combined so 

that the circuits with mixed logic are advantageous with respect to both power and speed. 

However, there are some issues to be addressed in order to realize such a mixed circuit. Domino 

logic is inherently monotone, and can realize only unate functions. Hence it is needed to 

decompose the given circuit into unate and binate components. The unate component can be 

realized using Domino logic and binate component can be realized using static CMOS logic. 

Another problem that can arise is the synchronization between various components. Since the 

outputs of Domino logic go to the inputs of static logic and vice versa, care should be taken that 

there should not be any racing at the interface. This requires a careful timing analysis which 

includes redefining of set-up and hold times, designing of latches etc.  

 

Though works have been reported on decomposing Boolean functions using various techniques, 

major emphasis was never given on improving simultaneously speed and power of the overall 

circuit. All the previous methods mainly focused on decomposing the circuit but nowhere 

emphasis was given on realization using mixed static-domino. Also, a comparative study of 

various techniques is very much needed. In order to address the above issues, in this paper, we 

present mixing of both static and Domino logic style. Our principle is to judiciously mix static 

and domino logic styles to gain in terms of power and speed simultaneously. 

 

The rest of the paper is organized as follows. Some basic concepts related to the current topic are 

presented in Section 2. Section 3 describes our proposed methodology in designing the mixed 

CMOS circuits. The experimental results and comparison with other existing techniques are given 

in Section 4. Finally Section 5 concludes the paper. 

 

2. BASIC CONCEPTS 

 
Proposed methodology for designing of mixed CMOS circuits involves realizing unate functions. 

In this section, we present few basic terminologies which we refer to in our discussion. 

 

State of a function: For a given Boolean function, the input at a given instant forms its state. For 

example, a Boolean function having n input variables has 2n states. 

 

Weight of a state: Weight of the state is the number of ’1’s the state has in its binary 

representation. 
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Unate function: A Boolean function is said to be unate if each of its input variables exist in either 

true or compliment form but not both. A Boolean function which is not unate is said to be binate. 

 
Partially ordered set (POSET): For an n variable Boolean function, POSET gives a weight 

based ordering of all the 2n states. Further, all the state pairs having a Hamming distance 1 are 

connected together. For example, states 4(100) and 5(101) have a Hamming distance 1. 

 

State pair: A state pair is defined as follows. Two states which have a single transition of a 

variable, that is, having a Hamming distance 1, form a state pair. For example states 

10(1010)−14(1110), 5(101) − 7(111), 13(1101) − 15(1111) form state pairs of Hamming 

distance 1. 

 

Type of influence: A state pair having Hamming distance 1 represents the transition of a 

particular variable from 0 → 1 or 1 → 0. It can result in change of the output. Depending on the 

transition in the output 0 → 1, 1 → 0 or no transition, the influence of the state pair is decided as 

positive, negative and neutral. This is called Type of influence (TI). For example output of state 

4(100) is ’1’ and output of state 5(101) is ’0’, then the state pair 4 − 5 has a negative influence. 

 
Variable of influence: For a given state pair the variable which is causing the transition from one 

state to another is called Variable of influence (VI). For example VI of state pair 4(100) − 5(101) 

is x0, considering the input variables as x2, x1, x0 respectively. 

 

Conflict state pair: Two state pairs having same variable of influence but different type of 

influences, become conflict state pair for each other. For example, 3-11 may have positive 

influence and 1-9 may have negative influence and both belong to same variable of influence. 

They form conflict state pairs for each other. 

 

3. PROPOSED METHODOLOGY 

In this section, we present our methodology for synthesizing mixed CMOS circuits. An overview 

of our methodology is shown in Fig. 1. 

 

Our overall approach consists of the following operations. 

 

Suppose, given a circuit Cinit whose Boolean function is represented by f(X). X is the input vector, 

where X = (x1, x2, x3, . . . , xn−1, xn). 

 

Initial Unate Decomposition (IUD): A unate decomposition method, denoted as UD, which 

decomposes Cinit into two different logical set U(X) and B(X). That is, UD(f(X)) → {U(X),B(X)} 

such that U(X) ∪ B(X) = f(X) and U(X) ∩ B(X) = ϕ, where ∩, ∪ are the disjunction and 

conjunction operators of set theory respectively. 

 

Optimizied Unate Decomposition (OUD): An optimization of a given unate-binate 

decomposition of Boolean function is performed, where Opt is the optimization operator and Uopt, 

Bopt  are the logical set that result after optimization. 

 

In other words, Opt(U(X),B(X)) → {Uopt(X),Bopt(X)} is a decomposition optimized with respect to 

some objectives. 
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Figure1. Overview of our methodology 

 

Library based Technology Mapping (LTM): Suppose, Lstat, Ldyn are the static and dynamic 

libraries used for mapping Uopt, Bopt set, respectively. Map is the operator for mapping and if Cfinal 

is the resulting final circuit, then 

Map(Uopt,Bopt,Lstat, Ldyn) → Cfinal 

 

Next, we describe the above mentioned operations in detail with illustration. 

 

2.1. Initial Unate Decomposition (IUD) 

We propose an algorithm which takes a completely defined Boolean function as input and 

decomposes it into unate and binate parts. A flowchart of our algorithm is shown in Fig. 2. The 

notations used in the flowchart are mentioned in the following. 

 

We explain various steps in our algorithm with the help of an example. To start with, we consider 

the following Boolean function as an input. 

 

f(x)= ����� ����� + ����� ����� ����� + �� ����� ��+ ������ �����    (1) 

 

where the number of input variables n = 4. 

 

Step 1: In this step, we extract the onset (OS) states of the Boolean function. These are {0, 1, 4, 5, 

8, 11, 14}. Realizing the OS elements is equivalent to realizing the original Boolean function. 

 

Step 2: Here, we construct a POSET for the extracted OS (see Fig. 3). The considered example 

has states with 5 different weights 0, 1, 2, 3, 4. The elements which belong to the onset are 

represented using grey ovals and the remaining are represented with white ovals. The decimal 

value of the elements is shown adjacent to the ovals.  
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Figure2. Flowchart representation of proposed algorithm 
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Table 1. Influence Table for f = ∑ (0, 1, 4, 5, 8, 11, 14) 

 
Type of 

Influence 

X0 X1 X2 X3 

+ 10-11 

8-9 

9-11 

12-14 

10-14 3-11 

6-14 

- 14-15 0-2 

8-10 

1-3 

5-7 

4-6 

8-12 

11-15 

1-9 

4-12 

5-13 

N 0-1 

6-7 

2-3 

12-13 

4-5 

13-15 0-4 

3-7 

1-5 

9-13 

2-6 

0-8 

2-10 

 

 

Step 3: We categorize each state pair of the POSET based on its VI and TI into an Influence table 

(for example, Influence table for the considered f(x) is shown in Table.1). If we consider the pair 

1−9, the variable which is changing is x3 and the value of the output is changing from high to 

low. Hence, the pair is placed in the row of negative influence and under x3 column. Like this, all 

the possible pairs, 32 in this case, are categorized. 

 

 
 

Figure3. Partially ordered set for the considered example 

 

Step 4: This step checks for any existing unmarked variables. Initially, all the variables of the 

influence table are unmarked. At the beginning of each iteration a particular variable is marked. 
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Step 5-6: We define cardinality of a set as the number of state pairs belonging to a particular VI 

and TI. Initially the unate set (US) and temp set (TS) are empty. To begin with, we choose the 

largest cardinality set of state pairs and include them in our US. The corresponding VI is marked. 

In this case the maximum cardinality set has VI as x1, TI as − and cardinality of 5. The elements 

are 0, 1, 2, 3, 4, 5, 6, 7, 8, 10 and these form the initial US. MV the variable x1. 

 

Step 7: Checking for unateness is done in this step. There will not be any conflict state pairs since 

this is the first set included. Hence the set is unate in itself. 

 

Step 9: Since the set is unate the US is updated to {0,1,2,3,4,5,6,7,8,10}. 

 

Step 10: In this step, we check whether our current US spans any other set present in the 

Influence table. Our current US doesn’t span any other set. Hence, we continue with our iteration. 

 

Repeat Steps 4, 5, 6, 7, 9, 10: Next, we have to choose amongst the remaining UV, a set with 

highest cardinality. With our running example, it is x3 with negative influence, a cardinality of 3 

and state-pairs 1-9, 4-12, 5-13. Its VI is marked and its elements are now added to TS along with 

current US. The current TS is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13}. In this case there are no 

conflict state pairs and hence states 9, 12, 13 are included to the current US. 

 

Repeat Steps 4, 5, 6, 7: We consider variable x2 and mark it. The states 11, 14 get included in our 

TS. 

 

Step 8: Including states 11, 14 to TS which belong to x2 variable, form conflict pairs (3-11, 6-14) 

for the already existing negative influence pairs of x3. This violates the unateness of the current 

US. Hence, the set is dropped. In a similar fashion the sets under variable x0 are also dropped. 

 

Step 11: Since there are no unmarked variables left, we proceed to add states from neutral 

influence set. In our running example, state 15 is added from the neutral influence, giving the 

final unate set. 

 

With reference to our example, we get 14 states in the maximum unateset 

{0,1,2,3,4,5,6,7,8,9,10,12,13,15}. From the final US we choose our OS states. They are 0, 1, 4, 5, 

8. These belong to the unate part U(X) of OS. The remaining two states {11, 14} form the binate 

part B(X) of OS. Hence, all the elements of OS are categorized into either unate or binate set. 

Both the sets together correspond to the realization of Boolean function f(X). Thus we conclude 

our Initial Unate Decomposition (IUD) as follows 

 

                                                         f(X) = U(X) ∪ B(X)                                                             (2) 

 

Where, U(X) = ∑ (0, 1, 4, 5, 8), the unate set and B(X) = ∑ (11, 14), the binate set. After 

performing the IUD for the given circuit, the realization will be as shown in Fig. 4. Next, we 

perform optimization of the obtained sets for overall better performance of the circuit, which is 

discussed in the following sub section.  
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Figure4. Mixed CMOS design after IUD 

 

3.2. Optimization of Unate Decomposition (IUD) 

In this section, first we state the need for optimizing IUD. Next, we state the problem of 

optimizing an IUD, clearly defining the objectives, constraints and design parameters in it. 

Finally, we suggest a multi objective Genetic Algorithm based approach to solve the COPT 

problem. 

 

After obtaining the unate and binate set of a function, it is observed that unate sets are usually 

large compared to their binate counterparts. As a consequence, mixed CMOS realization may 

result in circuits which are heavily biased with Domino logic, which may not be optimum in 

terms of power, area and delay. In fact, we have the flexibility to choose how much portion of a 

unate set is to be realized using Domino logic. The remaining part of the unate set along with 

entire binate set can be realized using static CMOS logic such that final circuit is optimum in 

terms of power, area and delay. Therefore, there should be a judicial choice to achieve the 

optimum realization given an IUD. We call this problem as COPT. We formally define the COPT 

problem in the following. We refer the below mentioned notations in our definition. 

 
Notations used in COPT problem definition 

Boolean function f(x) = {x1, x2, … xn} Static and dynamic libraries         (Lstat; Ldyn) 

Onset of function             OS =  {i1; i2; … iJ} Power, area, delay of static block Pstat;Astat;Dstat 

Number of elements in 

OS            

J Power, area, delay of dynamic 

block                   

Pdyn; Adyn; Ddyn 

Number of Elements in 

U(X)        

I Target values for power, area and 

delay 

 (P0;A0;D0) 

Number of Elements in 

B(X)        

J-I Operators for mapping and 

optimization 

MAP; Opt 

 

For a given Boolean function f(X), {U(X), B(X)} are the two sets which are obtained after IUD. 

Our objective is to move some elements from U(X) to B(X) resulting a new decomposition. We 

call it as optimum unate decomposition (OUD), that is 

 

IUD(U(X),B(X)) → OUD(Uopt(X),Bopt(X))  

 

We consider following three objective functions to judge the optimality of OUD. Suppose, 

{Uk(X),Bk(X)} denote any decomposition. Then fp(Uk(X),Bk(X)) denotes the power requirement to 

realize the logic Uk(X),Bk(X) into static Domino mixed circuit. Similarly, fa (Uk(X),Bk(X)) and fd 

(Uk(X),Bk(X)) denote the estimation of area and delay, respectively to realize mixed static Domino 

circuits. 

 

We define a decomposition Uopt(X), Bopt(X) as the OUD, if it satisfies the following.  

 

Given IUD {U(X), B(X)} of a logic f(X): 
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OUD{Uopt(X),Bopt(X)} = minimize [P = fp(U(X),B(X)), A = fa(U(X),B(X)), D = fd(U(X),B(X)) ] 

 

subject to Uopt(X) ⊆ U(X), B(X) ⊆ Bopt(X), Uopt(X) ∪ Bopt(X)=U(X) ∪ B(X)=OS, and P ≤ P0, A 

≤ A0, D ≤ D0, for some constraints P0, A0 and D0. 

 

Below, we propose a GA based approach to solve the COPT problem. Various steps involved in 

that process are described below. 

 

GA-based approach: We follow a non-dominated sorting genetic algorithm (NSGA-II) [28] to 

solve the COPT problem. A detailed framework of the NSGA-II is shown in Fig. 5. We have 

followed binary encoding to define a chromosome in GA. 

 

Given a Boolean function of n input variables, we encode the corresponding OS states with an n 

bits binary representation. We define a representation for all the states in unate set. A 0 

representation shows that the state to be realized using static logic and 1 representation shows the 

state to be represented using Domino logic. The length of the chromosome is exactly the same as 

the number of states in US of f(X). 

 

Structure of chromosome: The chromosome structure looks as shown in Fig. 5, It is a set of 

representations for the I elements present in the Onset. 

 

 
 

Figure5. Structure of chromosome for unate set having I elements 

 

Since, there are I number of states in the U(X), a valid chromosome has just I number of 1s or 0s 

representations and remaining J −I states belonging to B(X) have 0 representation each. To decide 

a candidate of initial parent population, randomly we choose I binary bits corresponding to I 

states of the unate set. An instance of our genetic algorithm based optimization is shown in 12 

Fig. 6. Each of them can be either 0 or 1. Np number of such candidates are chosen for initial 

parent population (see Fig. 7). On this initial population, we perform a two point crossover 

technique [28]. Later we mutate the population with a probability pm. By doing so, we generate 

Nc number of population which is used in selection of candidates for next generation.  

 

After obtaining both parent and child, we evaluate the fitness values for each candidate I 

belonging to the population. Given a candidate belonging to the population, we can group the 

states which are to be realized using static logic and Domino logic separately. We obtain the 

fi
p
(P1), fi

a
(A1), fi

d
(D1) for a given candidate i as shown in Fig. 6. In the same way, fitness values 

are computed for all the candidates in the combined parent and child population. 
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Figure6. Overview of our GA operation 

 

Using the obtained fitness values we perform a non-dominated sorting of entire parent and child 

population. According to Coello et al. [29], we consider a vector U = (U1, U2, . . . , Uk) dominates 

a vector V = (V1, V2, . . . , Vk), denoted by U ≺ V , iff U is partially less than V , i.e. ∀i ∈ {1, 2, . . . 

, k}, ui ≤ vi ∧ ∃ i ∈ {1, 2, . . . , k} : ui < vi. For our COPT problem we consider the two vectors 

��, ��   as i = {fp
i
, fd

i
, fa

i
 } and j = {fp

j
, fd

j
, fa

j
}, both having 3 objectives. Based on the above definition 

we obtain the non-dominated candidates from the population. 

 

All the, hence obtained candidates are assigned a non domination rank(irank) as stated in [28]. 

After assigning irank, we compute the crowding distance (idistance) for each candidate in a given 

level. This is done by measuring the average distance of two nearest candidates on either side of i 

along that particular non domination level. We use the notation dxy, which represents the 

Euclidian distance between two candidates x and y belonging to the population.  

 

For an individual i the crowding distance is computed as shown below, 

idistance =1/2(|dik| + |dij |) (3) 

 

where j, k are the nearest neighbours to i on either side, along the non domination level. 

 

Like this for all the individuals in the population, their respective crowding distance (idistance) 

are computed. Using these two properties of an individual the crowd comparison is performed. 

If α is the crowd comparison operator, as stated in [28] we define 

 

iαj, if (irank < jrank) 

or if (irank = jrank), and (idistance > jdistance) 
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Figure7. NSGA-II framework to solve COPT problem 

 

which means, if two solutions are belonging to different non-domination ranks, then we select the 

solution with lower rank. If both solutions are having the same rank, we select a solution which is 

in less crowded region i.e. having more idistance. As shown in Fig. 5, we used crowd comparison 

operator [28] to select the solutions towards a uniformly spread-out Pareto-optimal front. 
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As suggested by Deb et al. in [28] we choose,  β  which  defines  the  diversity  of  the  obtained 

Pareto optimal set, as a criteria for terminating our GA. After obtaining the optimal Pareto front 

we compute Nadir point (nadir) for the front, in order to choose the best individual [28]. For 

our COPT problem, the 3 coordinates of Nadir point namely {X′nadir, Y ′nadir,Z′nadir}in the state 

space are expressed as follows  

 

X′nadir = max(fp(X)), Y ′nadir = max(fd(X)),Z′nadir = max(fa(X)) (5) 

 

where, max(fp(X)), max(fd(X)), max(fa(X)), are the maximum values of power, area and delay 

obtained in that particular level. Using this nadir we compute di,nadir for all the candidates of the 

Pareto front. We choose the candidate which has the minimum di,nadir, as the most fitting 

candidate. Using this candidate we obtain the final {Uopt,Bopt}. These sets are used in realizing our 

optimized mixed CMOS circuit. 

 

4. EXPERIMENTS AND EXPERIMENTAL RESULTS 

 
In this section, we present details on various experiments conducted to substantiate the efficacy of 

our proposed approach. We describe the experimental setup, which we have used while 

implementing our proposed method and the results obtained. We also mention the benchmarks 

that we have considered for carrying out the experiments. Finally, we present a comparative study 

of obtained results with those of the existing techniques. 

 

4.1. Experimental Setup 

 
The decomposition algorithm is written in C programming language and compiled using GCC 

compiler. Experiments are performed on Linux platform with an Intel Core2Duo (2.8 GHz) 

processor. The parameters power, area and delay are chosen as metrics for evaluating the 

performances of various approaches. To perform mapping of the .pla files we have developed a 

set of static and Domino cell libraries. While developing libraries, we have included a set of 

standard cells which form building blocks of any circuit. Some of these cells along with their 

respective transistor count are mentioned in Table. 2. The tLH and tHL give the respective rise and 

fall delays obtained from simulations performed using 0.065µm CMOS process, 1.1V, 27
o
C. 

Process variation effects become significant in sub45nm range. Hence they are not addressed in 

our work. Though some standard functions may appear in both the libraries their respective 

parameter values differ. 

 

Berkeley SIS tool, Version 1.3 [30] is used for mapping and various pre-processing of circuits. 

The logic descriptions of unate, binate components along with static and domino libraries are 

used by the SIS tool while performing the mapping. The map -m command is executed for 

mapping the circuit. Since we are performing library based mapping, we used the print delay-m 

library command which includes a library based delay model. The dynamic and leakage power 

for the components are estimated by using power estimate -f command. The tool takes an 

estimate of the activity, Cg, Cd and computes the dynamic power for a given Vdd and f. For the 

particular supply voltage, in a similar fashion leakage power is also estimated by the tool. For 

overall power, area, the sum of individual power, area of the components are considered. For 

overall delay, the one which has more delay amongst static and Domino block is considered.  
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Table 2. List of some of the cells present in the library 
 

Cell Static Cell Library Cell Domino Cell Library 

Transistor 

count  

tLH in ps tHLin ps Transistor 

count  

tLH in ps tHLin ps 

inverter 2 1.12 1.4 inverter - - - 

2-nand 4 2.35 2.02 Domino 

2-and 

6 1.32 1.67 

3-nand 6 2.16 2.94 Domino 

3-and 

7 2.46 3.12 

2-nor 4 1.45 1.92 Domino 

2-or 

6 1.7 1.2 

3-nor 6 2.1 2.8 Domino 

3-or 

7 2.1 1.85 

 

For performing the optimization we used the ’ga optimtool’ available in MATLAB software, 

Version 8.1a. We have written a script file circuit optimum.m which defines the functions that are 

to be optimized. For evaluating power, area and delay for a given member of population SIS tool 

is invoked through the script file. The tool runs for 50 generations as most of the test cases 

converged much before that. We have considered crossover probability (pc) as 0.9. The mutation 

probability(pm) is taken to be 0.15, consistent with the literature on NSGA II [28]. The diversity 

operator β as mentioned in [28] is observed over 5 successive generations. The constant ϵ which 

measures the change in β over successive generations, is chosen to be 0.001. 

 

4.2. Benchmark Circuits 

We aimed to test our approach with benchmark circuits having wide range of input variables. 

Hence, we considered MCNC’89 circuits which start with a 3 input logic (b1.pla) and range up to 

135 input logic (x3.pla). Also, we chose ISCAS’85 benchmark circuits as they add industrial 

flavour to our work. These circuits span from a 33 input and 25 output Error Corrector and 

Translator circuit (C1908.blif) to a 233 input 140 output variable ALU and Control described 

using (C2670.blif). Characteristics of some of the benchmark circuits considered are shown in 

Table. 3. 
Table 3. Considered benchmarks from ISCAS85 and MCNC89 

 
Circuit 

Name  

Circuit Function  Input Lines  

 

Output lines 

b1  --- 3 4 

ex5 --- 8 63 

9sym --- 9 1 

x3 --- 135 99 

C880  ALU and Control 60 25 

C1908 ECAT 33 25 

C2670  ALU and Control 233 140 

C5315 ALU and Select 178 123 

  

4.4. Experimental Results 

The performance of our IUD algorithm with some MCNC89 benchmark circuits is shown in 

Table. 4. The number of states in the Onset (OS), the number of states in the unate set (U) and 

binate set (B) after decomposition are mentioned in columns 3 to 5. The last column mentions the 

CPU runtime required for carrying out the decomposition in each case. The computing time for 

the decomposition algorithm increases rapidly with the increase in number of input variables. 
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Table 4. Performance of IUD 

 
Name of 

the 

Circuit 

I/O OS (state 

count) 

U (state 

count) 

B (state 

count) 

CPU time 

(seconds) 

5xp1 7/10 640 505 135 2 

9sym 9/1 238 173 65 2 

cm151a 12/2 4100 3234 866 5 

alu2 10/6 5120 3953 1167 10 

t481 16/1 7632 5834 1798 85 

table3 14/14 3933 2632 1301 380 

tcnh0 17/16 5312 3691 1621 1634 

 

 For three functions we have observed the respective run times. The circuits 9sym, t481 and tcnh0 

with 9, 16 and 17 input variables required 2, 85 and 1634 seconds, respectively. The possible 

reason for this can be the exponential rise in memory and power requirements of the CPU. It is 

clear from the fact that number of instances we have to analyse for an N variable function is 2N. 

Hence we applied the algorithm directly, only for circuits having input variables less than 19. To 

handle the circuits having input variables above 19 we adopted a standard pre-processing 

technique which uses SIS tool. In case of multi-output circuits, we have considered each output 

separately. 

 

Next, we consider two standard ISCAS benchmark circuits C880.pla and C1908.pla. The power, 

area and delay are normalized with respect to the static CMOS realization. Obtained normalized 

values are shown below in Fig. 8. as function of percentage of unate states realized using Domino 

logic style. 

 

We have computed the power, area, delay values of the mixed CMOS realization at various 

stages. The percentage increase with respect to corresponding static realization is plotted at each 

stage. The value at 0% Domino realization of unate set corresponds to pure static realization. 

Hence, the percentage increase at this point is shown as 0%. As the percentage of Domino 

realization of unate states increases there is an initial increase in the delay followed by gradual 

decline. This can be accounted by the fact that the initial domino nodes may not be in the critical 

path. When their number is increased they significantly affect the critical path and hence reduce 

the delay. Power and area of the realizing all unate states in domino style is 50% and 60% more 

than the corresponding static realization. This can be supported by the fact that Domino logic 

style has higher switching and hence higher dynamic power dissipation. Also in order to realize 

pure Domino, we have to follow two-level procedure which result in huge number of transistors. 

The possible optimum for C880.pla, is achieved when 60% of unate nodes are realized using 

Domino logic (shown with a marker in Fig. 8.a). In a similar fashion, analysis is done for the 

circuit C1908.pla, shown in Fig. 8.b. The optimum, in this case is achieved when 70% of unate 

nodes are realized using Domino logic. 

 

Experimental results on ISCAS85 and MCNC89 benchmark suites using mixed CMOS (IUD) 

and optimized mixed CMOS (OUD) are shown in Table. 5. The power, area and delay values for 

the circuit realization before and after optimizing are mentioned in this table. We can clearly see 

from the table that the optimization we carried out resulted in a significant savings in terms of 

power and area. For the circuit C2670, the savings in power and area after optimization is 8.5% 

and 13%, respectively. However, the optimization process imposed an average penalty of 7% on 

delay when compared to simple mixed CMOS design. Below we mention the performance of 

various other existing approaches.  
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Table 5. Performance of our decomposition algorithm 

 
Name of 

the Circuit 

I/O Mixed CMOS (IUD)  Optimized Mixed CMOS (OUD) 

Power(uW)  Area(tr. 

count) 

delay(ns) Power(uW)  Area(tr. 

count) 

delay(ns) 

b1 3/4 22.3 68 41 18.4 57 46.4 

ex5 8/63 298.5 2912 236.3 269.3 2635 290.3 

9sym 9/1 329.7 650 260 288.3 592 285.4 

x3 135/99 3231.4 2985 170.6 3002.1 2654 185.4 

C880 60/26 2648.3 643 13.8 2483.7 613 16.2 

C1908 33/25 2895.8 650 29.7 2693.4 535 33.5 

C2670 233/140 4485.3 870 21.6 4132.6 759 24.3 

C5315 178/123 12835.3 2592 27.4 10533.7 2314 32.3 

 
Table 6. Comparative study of various approaches 

 

 
 

Comparison of various existing methods is mentioned in Table. 6. Static CMOS realization [30], 

Two-level decomposition [10], Prasad’s [31] and Jacob’s [32] approaches are compared. From 

Table. 6, it can be seen that the Two-level based approach gives the minimum delay amongst the 

existing techniques. This can be accounted from the fact that it employs a pure Domino logic 

style throughout its design. Domino logic are faster than their static counterparts [10]. This 

approach is 22% faster than optimized mixed CMOS, 10% faster than simple mixed CMOS (from 

Table. 5). However, this particular approach requires the maximum number of transistors 

compared to other existing approaches. This is a potential drawback of this approach. 

 

The Jacob’s approach (mentioned in Table. 6), consumed significantly less power and area than 

the Two level approach. This is possible because there are some static blocks in the final design 

using this approach. They account for low power and even give rise to more delay. On the other 

hand, our optimized mixed CMOS approach outperforms this technique both in terms of power 

and delay.  

 

Results of synthesis using Prasad’s approach [31] are mentioned in columns 9 to 12 of Table. 6. 

Our approach has clearly outperformed the Prasad’s approach both in terms of area and delay. 

Our approach has showed 40% reduction in area and 12% reduction in delay as against 1% 

penalty in power dissipation. This is possibly because Prasad’s approach results in the presence of 

trapped inverters within the circuit which can be realized using static CMOS logic style only. 

Performance ratio of various approaches against corresponding static CMOS realization, for an 

ISCAS bench mark C5315.pla, is shown in Fig. 9. 
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(a) C880.pla 

 

 
(b) C1908.pla 

 
Figure8. Percentage increase of power, area and delay using IUD realization over static CMOS realization 

 

 
Figure9. Performance ratio of various approaches with respect to static CMOS realization for C5315.pla 
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5. CONCLUSION 

 
An approach to realize mixed static Domino circuit is proposed in this work. In order to realize a 

circuit using Domino logic, it must be completely unate. However, complete unate circuit is 

impractical. This work proposes an approach to obtain an optimum unate binate circuit. Such a 

circuit can be synthesized to obtain better power, area and delay. Given a circuit, first we perform 

an initial unate decomposition (IUD) and later we optimize it for obtaining power and speed 

efficiency. Also, the proposed approach yields lower transistor count compared to static CMOS 

logic style. Mixed CMOS circuit is comparable with only dynamic and only static realizations 

according to works reported elsewhere. We may conclude that mixed CMOS circuit is suitable for 

low power and high speed applications such as mobile and handheld digital gadgets etc. In this 

work, we only considered circuit decomposition. However, designing of clock which is a highly 

active signal in the circuit, is yet to be addressed. Next research aims to address the problem of 

reducing power dissipation caused by clock signal. 
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