
International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

DOI : 10.5121/vlsic.2016.7202 21

COMPARATIVE DESIGN OF REGULAR

STRUCTURED MODIFIED BOOTH MULTIPLIER

Ram RackshaTripathi and S.G.Prakash

Department of Electronics & communication, University of Allahabad-211002

ABSTRACT

Multiplication is a crucial function and plays a vital role for practically any DSP system. Several DSP

algorithms require different types of multiplications, specifically modified booth multiplication algorithm.

In this paper, a simple approach is proposed for generating last partial product row for reducing extra

sign (negative bit) bit to achieve more regular structure. As compared to the conventional multipliers these

proposed modified Booth’s multipliers can achieve improved reduction in area 5.9%, power 3.2%, and

delay 0.5% for 8 x 8 multipliers. We can also observe that achievable improvement for 16 x 16 multiplier

in area, power, delay are 4.0%, 2.3%, 0.3% respectively. These multipliers are implemented using verilog

HDL and synthesized by using synopsis design compiler with an Artisan TSMC 90nm Technology

KEYWORDS

Digital Multiplier, Modified booth Multiplier (MBE), Power and Delay

1. INTRODUCTION

Expansive digital signal processing (DSP) capabilities are a major feature of a large number of

System-on-Chip (SoC) designs mainly organize in embedded systems. DSP applications in SoCs

range from audio or video processing to wireless communication or adaptive control systems and

often make up a considerable part of the system’s hardware resources and power consumption.

Consequently, various different architecture concepts for their implementation exist, ranging

from application-specific components to embedded reconFigureurable [1] hardware or digital

signal processors. Each solution represents a specific trade-off between chip area, power

consumption, performance, and design effort, currently the most important parameters in SoC

design. Starting from our experience with processor data path extensions for wireless sensor

network nodes, in this work we investigate the opportunities of reconFigureurable DSP

components, which can be reused for different DSP tasks in a SoC. To enhance the processing

performance and reducing the power dissipation of systems, designing of multipliers have most

challenging task in multimedia and digital signal processing (DSP) applications. Multiplication

and multiplication-accumulation (MAC) are very common mathematical operations in many

digital signal processing (DSP) applications. For designing of parallel type multipliers there are

three common steps to follow: the first one is generating the partial products. Second one is

reducing the number of partial product rows. For example, Wallace tree [5]-[6] or Dadda tree.

And the third one is adding the remaining two rows of partial products by using a carry propagate

adder(e.g., carry lookahead adder) to obtain the final product.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

The conventional MBE algorithm generates n/2+1 partial product rows rather than n/2 due to the

extra partial product bit at the least significant bit position of each partial product row for

negative encoding, leading to an irregular partial product array and a complex reduction tree.

Booth encoding is a technique that leads to smaller, faster multiplication circuits, by recoding the

numbers that are multiplied. It is the standard technique used in chip design, and

significant improvements over the "long multiplication" technique. The widely used Booth

algorithm is the radix-4 based modified Booth algorithm proposed by McSorley where it reduces

the partial products into half. As the number of partial product

required for the compression module, the height of the Wallace tree is also reduced.

Figure 1. Modified Booth recoding pattern

In Figure.1.Modified Booth algorithm’s basic idea is that the bits

Ziand Zi - 1 , while
,
Yi-2 serves as reference bit. In a separate step,

Zi - 3with, Yi-4 serving as reference bit. This signifies that the modified Booth’s encoding partitions

input Y into a group of 3-bits with 1

1, 0, -1 and -2. Encoding on the each group reduces the number of partial products by factor of 2.

Operations on the encoded digits performed with multiplier input

However, it is important to note that there are two unavoidable consequences of using MBE: sign

extension prevention and negative encoding. The combination of these two unavoidable

consequences results in the formation of one additional partial product row. So that,

of the extra partial product row requires more hardware, and time.

Table 1 : Partial Product Selections and Operations

To overcome the above consequences, the authors in [2] added the least significant bit of each

partial product row with the neg

i0 and a carry ci . Note that both

Figure 2 depicts the 8 x 8 MBE partial product array generated by the approach proposed in [2].

Since ci is at the left one bit position of

However , the approach does not remove the additional partial product row.

Recoded digit

0

+1
+2

-1

-2

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

The conventional MBE algorithm generates n/2+1 partial product rows rather than n/2 due to the

extra partial product bit at the least significant bit position of each partial product row for

g to an irregular partial product array and a complex reduction tree.

Booth encoding is a technique that leads to smaller, faster multiplication circuits, by recoding the

numbers that are multiplied. It is the standard technique used in chip design, and

significant improvements over the "long multiplication" technique. The widely used Booth

4 based modified Booth algorithm proposed by McSorley where it reduces

the partial products into half. As the number of partial products reduces the number of CSAs

required for the compression module, the height of the Wallace tree is also reduced.

Figure 1. Modified Booth recoding pattern

In Figure.1.Modified Booth algorithm’s basic idea is that the bits Yiand Yi-1 are recoded into

serves as reference bit. In a separate step, Yi-2 and Yi-3 recoded into

serving as reference bit. This signifies that the modified Booth’s encoding partitions

bits with 1-bit overlap and generates the following five signed digits, 2,

2. Encoding on the each group reduces the number of partial products by factor of 2.

Operations on the encoded digits performed with multiplier input X is illustrated in Table 1.

is important to note that there are two unavoidable consequences of using MBE: sign

extension prevention and negative encoding. The combination of these two unavoidable

consequences results in the formation of one additional partial product row. So that,

of the extra partial product row requires more hardware, and time.

Table 1 : Partial Product Selections and Operations

To overcome the above consequences, the authors in [2] added the least significant bit of each

neg bit of corresponding row to obtained a new least significant bit

. Note that both i0and ci are generated no later than other partial product bits.

Figure 2 depicts the 8 x 8 MBE partial product array generated by the approach proposed in [2].

is at the left one bit position of negi, the required additions in the reduction tree

However , the approach does not remove the additional partial product row.

Booth’s operation on X Y2 i -1 Y2 i Y2 i+1

Add 0 to PP {0 0 0, 1 1 1}

Add X to PP {0 0 1, 0 1 0}
Shift X left & add to PP {0 1 1}

Add 2’s complementary X to PP { 1 0 1, 1 1 0}

2’s complementary X & shift-add {1 0 0}

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

22

The conventional MBE algorithm generates n/2+1 partial product rows rather than n/2 due to the

extra partial product bit at the least significant bit position of each partial product row for

g to an irregular partial product array and a complex reduction tree.

Booth encoding is a technique that leads to smaller, faster multiplication circuits, by recoding the

numbers that are multiplied. It is the standard technique used in chip design, and provides

significant improvements over the "long multiplication" technique. The widely used Booth

4 based modified Booth algorithm proposed by McSorley where it reduces

s reduces the number of CSAs

are recoded into

recoded into Zi-2 and

serving as reference bit. This signifies that the modified Booth’s encoding partitions

and generates the following five signed digits, 2,

2. Encoding on the each group reduces the number of partial products by factor of 2.

Table 1.

is important to note that there are two unavoidable consequences of using MBE: sign

extension prevention and negative encoding. The combination of these two unavoidable

consequences results in the formation of one additional partial product row. So that, accumulation

To overcome the above consequences, the authors in [2] added the least significant bit of each

bit of corresponding row to obtained a new least significant bit

are generated no later than other partial product bits.

Figure 2 depicts the 8 x 8 MBE partial product array generated by the approach proposed in [2].

the required additions in the reduction tree reduced.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

23

Figure 2. Proposed MBE partial product array in [2] for 8 x 8 multiplication

The conventional method (complement a binary number and add 1 to the complemented

number) will not work properly because the propagation delay of the carry linearly

increases with the word size and it would be much greater than the delay to generate the

partial products. Therefore, he proposed an extension of the well-known algorithm where all

the bits after the rightmost “1” in the word are complemented but all the other bits are

unchanged. The two’s complement of a binary number 0010102 is 1101102. For this number,

the rightmost “1” happens in bit position 1. Therefore, values in bit positions 2 to 5 can

simply be complemented, while values in bit positions 0 and 1 are kept unchanged.

Therefore, two’s complementation now comes down to finding the conversion signals that

are used for selectively complementing some of the input bit.

If the conversion signal at any position is “0”, then the value is kept unchanged and, if the

conversion signal is “1”, then the value is complemented. The conversion signals after the

rightmost “1” are always 1. They are 0 otherwise. Once a lower order bit has been found to be

a “1,” the conversion signals for the higher order bits to the left of that bit position should

all be “1.”

However, this searching for the rightmost “1” could be as time consuming as rippling a

carry through to the MSB since the previous bits information must be transferred to the MSB

Therefore, they find a method to expedite this detection of the rightmost “1.”

As we will see, this search for the rightmost “1” can be achieved in logarithmic time using a

binary search tree-like structure. They first find the conversion signals for a 2-bit group by

grouping two consecutive bits (the grouping always starts from the LSB) from the input and

finding the conversion signals in each group, as shown in Figure.3. Then, they find the

conversion signals for a 4-bit group (formed by two consecutive 2-bit groups). Then, they

find the conversion signals for a 8-bit group (formed by two consecutive 4-bit groups). This

divide-and-conquer approach is pursued until the whole input has been covered.

Figure 3 Proposed partial products after removing the last neg.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

However, the approach must additionally develop and design the 2’s complement logic. It

possibly enlarges the area and delay of the partial product generator and less

contributed by removing the extra row

To remove the extra partial product row the authors in [1] extends the methods proposed in [2] and

[3]. To remove the extra partial product row pp

i=n/2-1 with the partial product bit

can be incorporated into the sign extension bits of pp

written as

��� � ���

�� �
����

And the carry bit is incorporating into the sign extension bits of first partial product row. The

maximal value of these sign extension bits are 100 so the addition of carry bit to sign ext

bits will never produce an overflow.

2. PROPOSED WORK

For recording of MBE, We need at least three signal to represent the digit set {

2X}. Many different ways have been developed. But the proposed selector circuit in[15] is not

efficient to design the multiplier because it can not satisfy all the encoding conditions. For that

purpose we redesign the selector circuit. The Booth encoder and selector circuits for the

implementation of proposed MBE multiplier are shown in Figure. 4,

To have a more regular least significant part of each partial product row , the authors in [2] added

the least significant bit i0 with

carry i. However, the approach does not remove the additional partial product row. i.e. , n/2+1

row still present. To remove this extra row, we are using the advantages of [3]. For generating a

2’s complement of a number generally we have two method

bit of a binary number and add ‘1’ to the least significant bit. And the second method is that

search for a right most binary ‘1’ and all the bits after right most ‘1’ in the word are

complemented but all the other b

Figure 4. Proposed MBE selector circuit

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

However, the approach must additionally develop and design the 2’s complement logic. It

possibly enlarges the area and delay of the partial product generator and lessens the benefit

contributed by removing the extra row.

To remove the extra partial product row the authors in [1] extends the methods proposed in [2] and

[3]. To remove the extra partial product row ppn/2 due to c3 in Figure 2, they combine the c

1 with the partial product bit pi1 to produce a new partial product bit i1 and a new carry

can be incorporated into the sign extension bits of pp0. The logic expressions of i1 and

����. ∈ �����. �� � ������∈�. ����� � ���

 � ��� . ������� � ���. ���� � ���. ���� � �������

And the carry bit is incorporating into the sign extension bits of first partial product row. The

maximal value of these sign extension bits are 100 so the addition of carry bit to sign ext

bits will never produce an overflow.

For recording of MBE, We need at least three signal to represent the digit set {-2X,

2X}. Many different ways have been developed. But the proposed selector circuit in[15] is not

efficient to design the multiplier because it can not satisfy all the encoding conditions. For that

purpose we redesign the selector circuit. The Booth encoder and selector circuits for the

implementation of proposed MBE multiplier are shown in Figure. 4, Figure. 5 respectively.

To have a more regular least significant part of each partial product row , the authors in [2] added

i in advance and obtained a new least significant bit

. However, the approach does not remove the additional partial product row. i.e. , n/2+1

row still present. To remove this extra row, we are using the advantages of [3]. For generating a

2’s complement of a number generally we have two methods. The first method is converting each

bit of a binary number and add ‘1’ to the least significant bit. And the second method is that

search for a right most binary ‘1’ and all the bits after right most ‘1’ in the word are

complemented but all the other bits are unchanged.

Figure 4. Proposed MBE selector circuit

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

24

However, the approach must additionally develop and design the 2’s complement logic. It

ens the benefit

To remove the extra partial product row the authors in [1] extends the methods proposed in [2] and

in Figure 2, they combine the ci for

and a new carry i

and i can be

�

And the carry bit is incorporating into the sign extension bits of first partial product row. The

maximal value of these sign extension bits are 100 so the addition of carry bit to sign extension

2X, -1X, 0, 1X,

2X}. Many different ways have been developed. But the proposed selector circuit in[15] is not

efficient to design the multiplier because it can not satisfy all the encoding conditions. For that

purpose we redesign the selector circuit. The Booth encoder and selector circuits for the

Figure. 5 respectively.

To have a more regular least significant part of each partial product row , the authors in [2] added

in advance and obtained a new least significant bit i0 and a

. However, the approach does not remove the additional partial product row. i.e. , n/2+1

row still present. To remove this extra row, we are using the advantages of [3]. For generating a

s. The first method is converting each

bit of a binary number and add ‘1’ to the least significant bit. And the second method is that

search for a right most binary ‘1’ and all the bits after right most ‘1’ in the word are

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

Figure 5. MBE encoder proposed in [15]

In this brief, for our proposed MBE multiplier, we combine the two methods for generating the

last partial product row. For the generation of the first two least significant bits of last partial

product row, we are using second method i.e. , searching for

significant bits and replace the bits according the Table 2. The corresponding circuits to generate

i1, for the proposed multiplier are depicted in Figure 6, Figure 7.

Figure 6. Proposed circuit to generate

Figure 7. Proposed circuit to generate

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

Figure 5. MBE encoder proposed in [15]

In this brief, for our proposed MBE multiplier, we combine the two methods for generating the

last partial product row. For the generation of the first two least significant bits of last partial

product row, we are using second method i.e. , searching for right most ‘1’ in the two least

significant bits and replace the bits according the Table 2. The corresponding circuits to generate

for the proposed multiplier are depicted in Figure 6, Figure 7.

Figure 6. Proposed circuit to generate i1

Figure 7. Proposed circuit to generate εi

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

25

In this brief, for our proposed MBE multiplier, we combine the two methods for generating the

last partial product row. For the generation of the first two least significant bits of last partial

right most ‘1’ in the two least

significant bits and replace the bits according the Table 2. The corresponding circuits to generate

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

Table. 2. Proposed MBE multiplier truth table for generation of partial product bits

Where εi is the carry bit and =n/2

is equal to the weight of sign extension bit

sign extension bits of first partial product row. So that the carry bit do not propagate up to the 2n

bit position. Since the maximal valu

is 100 so that the addition of these bits with

conversion of sign extension bits proposed in [1] is shown in Table 3 and corresponding

given in Figure 8.

Table 3.Truth table for new sign extension bits

0

 1 0 0 0

 1 0 0 1

 0 1 1 0

 0 1 1 1

Figure 8. Circuit to generate b

3. SIMULATION RESULTS

The simulation results for different numbers of

regular partial product array is shown in Figure. 9, 10, 11 and 12 below.

bit proposed multipliers for generating regular partial product array.

The partial products of multiplier

MBE algorithm [7]–[9]. The latter has widely been adopted in parallel multipliers since it can

reduce the number of partial product rows to be added by half, thus reducing the size and

enhancing the speed of the reduction tree. However, the conventional MBE algorithm generates

n/2 + 1 partial product rows rather than

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

Table. 2. Proposed MBE multiplier truth table for generation of partial product bits

negi di1 di0 Pi1 Pi0 εi

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 0 0 0

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 0 1 1

=n/2-1. If any carry is generated, since the weight of ε

is equal to the weight of sign extension bit 0 at bit position n, εi can be incorporated with the

sign extension bits of first partial product row. So that the carry bit do not propagate up to the 2n

bit position. Since the maximal value of sign extension bits 0s0s0 in the first partial product row

is 100 so that the addition of these bits with εi will never produce an overflow. The total

conversion of sign extension bits proposed in [1] is shown in Table 3 and corresponding

Table 3.Truth table for new sign extension bits

 S0 S0εi b2 b1 b0

1 0 0 0

1 0 0 1

0 1 1 0

0 1 1 1

1 0 0

1 0 1

0 1 1

1 0 0

Figure 8. Circuit to generate b2b1b0 proposed in [1]

ESULTS AND DISCUSSION

The simulation results for different numbers of bits for proposed modified Booth’s multipliers for

regular partial product array is shown in Figure. 9, 10, 11 and 12 below. Simulation results for 8

bit proposed multipliers for generating regular partial product array.

The partial products of multipliers are generally generated by using two-input AND gates or a

[9]. The latter has widely been adopted in parallel multipliers since it can

reduce the number of partial product rows to be added by half, thus reducing the size and

he speed of the reduction tree. However, the conventional MBE algorithm generates

2 + 1 partial product rows rather than n/2 due to the extra partial product bit (negative

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

26

i1 i0

1. If any carry is generated, since the weight of εi is 2
n,

which

can be incorporated with the

sign extension bits of first partial product row. So that the carry bit do not propagate up to the 2n
th

in the first partial product row

will never produce an overflow. The total

conversion of sign extension bits proposed in [1] is shown in Table 3 and corresponding circuit is

bits for proposed modified Booth’s multipliers for

Simulation results for 8-

input AND gates or a

[9]. The latter has widely been adopted in parallel multipliers since it can

reduce the number of partial product rows to be added by half, thus reducing the size and

he speed of the reduction tree. However, the conventional MBE algorithm generates

negative bit) at the

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

27

least significant bit position of each partial product row for negative encoding, leading to an

irregular partial product array and a complex reduction tree. Some approaches [1]-[3] have been

proposed to generate more regular partial product arrays, for the MBE multipliers. The authors in

[3] added the least significant bit of each partial product row with negative bit in advance, but the

method does not remove the additional partial product row. In the proposed work in [2] the

authors proposed a method to directly generates the two’s complements of a negative row, but it

requires extra hardware. In [1] author almost overcome the above problems by extending the

methods proposed in [2] and [3]. The carry bit generated at the last partial product row in [3] is

incorporating into the sign extension bits of first partial product row. But the proposed circuits

were not satisfying all the conditions. So we redesigned the circuits by a simple method for

reduction of last negative bit.

Figure 9. Simultion results for proposed8 x 8 multiplier PPA generation

Figure10. Simultion results for proposed16 x 16 multiplier PPA generation

Figure 11. Simultion results for proposed32 x 32 multiplier PPA generation

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

28

Figure 12. Simultion results for proposed 64 x 64 multiplier PPA generation

For comparison, we have implemented the multiplier proposed in [1]. For the implementation of

the other partial product except for a few of partial product bits that are generated by different

schemes to regularize the partial product array, the other partial product bits are generated using

the proposed MBE selector circuits for all the multipliers. These multipliers are modelled in

verilog HDL and synthesized by using synopsys design compiler with Artisan TSMC 90nm

technology.

Table 4 : Experimental Results of Generation of Partial Product Bits

Input

(n-bit)

Area

(µm2)

Power

(mw)

Delay

(ns)

Ref_1 8 1046 0.306 0.68

16 3550 1.176 0.72

32 14029 4.328 0.86

64 60918 19.007 5.62

Proposed 8 947 0.295 0.64

16 3259 1.0796 0.71

32 3988 4.254 0.84

64 58275 19.007 5.61

The implementation results in Table 5 demonstrated that the improved reduction in area 5.9%,

power 3.2%, and the delay is 0.5% as compared to proposed multiplier in [1] for8 x 8 multiplier.

We can also observe that achievable improvement for 16 x 16 multipliers in area, power, and

delay are 4.0%, 2.3%, and 0.3% respectively. For the comparison purpose for the generation of

partial products for higher order bits we implemented up to 64 x 64 bit multiplier. As shown in

Table 4. It shows that for higher order multipliers the percentage improvement with respect to the

area, delay, and power is respectable.

Table 5 : Synthesis Report of Proposed Multiplier

Input

(n-bit)

Area

(µm2)

Power

(mw)

Delay

(ns)

Ref_1 8 2868 1.186 3.80

16 10264 5.923 5.34

Proposed 8 2696 1.148 3.78

16 10325 5.785 5.32

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

29

4. CONCLUSION

Multiplication is a frequently encountered operation, especially in signal processing applications.

So the development of a multiplier is vital for applications in portable mobile devices such as

personal multimedia players, cellular phones, digital cam coders and digital cameras. Many

designs have been proposed for Booth encoder and selector logic using CMOS over the past

decades. But those designs when implemented in CMOS resulted in higher transistor count. In

our research, Booth encoder and selector logic occupies one third of the entire multiplier

architecture. So careful optimization of these logic parts will result in a considerable reduction of

hardware.

We proposed new circuits for removing the extra partial product array because of negative

compensation bit for negative coding. The results obtained here are compared to proposed results

in [1]. It shows that proposed multipliers are well regularly structured and complexity of the

design is reduced. Also observed that the reduction in area, power, delay are 5.9%, 3.2%, 0.5%

respectively for 8 x 8 multipliers and it is 4.0%, 2.3%, 0.3% for 16 x 16 bit multipliers. Apart

from above we also presented the new circuit for MBE selector.

REFERENCES

[1] S. R. Kuang, J. P. Wang, C.Y. Guo, “Modified Booth multipliers with a regular partial product

array,” IEEE Trans.CircuitsSyst.II , vol. 56, pp.404 – 408, May 2009.

[2] W. C. Yeh and C.-W. Jen, “High-speed Booth encoded parallel multiplier design,” IEEE Trans.

Comput., vol. 49, no. 7, pp. 692–701, Jul. 2000.

[3] J.-Y. Kang and J.-L. Gaudiot, “A simple high-speed multiplier design,” IEEE Trans. Comput., vol.

55, no. 10, pp. 1253–1258, Oct. 2006.

[4] C. S. Wallace, “A suggestion for parallel multipliers,” IEEE Trans. Electron. Comput., vol. EC-13,

no. 1, pp. 14–17, Feb. 1964.

[5] O. Hasan and S. Kort, “Automated formal synthesis of Wallace tree multipliers,” in Proc. 50th

Midwest Symp. Circuits Syst., pp. 293–296, 2007.

[6] J. Fadavi-Ardekani, “M × N Booth encoded multiplier generator using optimized Wallace trees,”

IEEE Trans. Very Large Scale Integr. (VLSI)Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

[7] F. Elguibaly, “A fast parallel multiplier-accumulator using the modified Booth algorithm,” IEEE

Trans. Circuits Syst. II, vol. 47, no. 9, pp. 902–908, Sep. 2000.

[8] K. Choi and M. Song, “Design of a high performance 32 × 32-bit multiplier with a novel sign select

Booth encoder,” in Proc. IEEE Int. Symp.Circuits Syst., vol. 2, pp. 701–704, 2001.

[9] Y. E. Kim, J. O. Yoon, K. J. Cho, J. G. Chung, S. I. Cho, and S. S. Choi, “Efficient design of

modified Booth multipliers for predetermined coefficients,” in Proc. IEEE Int. Symp. Circuits Syst.,

pp. 2717–2720, 2006.

[10] O. Salomon, J.-M. Green, and H. Klar, “General algorithms for a simplified addition of 2’s

complement numbers,” IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 839–844, Jul. 1995.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.7, No.2, April 2016

30

[11] E. de Angel and E. E. Swartzlander, Jr., “Low power parallel multipliers,” in Workshop VLSI Signal

Process. IX, pp. 199–208, 1996.

[12] A. A. Farooqui and V. G. Oklobdzija, “General data–path organization of a MAC unit for VLSI

implementation of DSP processors,” in Proc. IEEEInt. Symp. Circuits Syst., vol. 2, pp. 260–263,

1998.

[13] S.-F. Hsiao, M.-R. Jiang, and J.-S. Yeh, “Design of high-speed low-power 3–2 counter and 4–2

compressor for fast multipliers,” Electron. Lett., vol. 34, no. 4, pp. 341–343, Feb. 1998.

[14] C.-H. Chang, J. Gu, and M. Zhang, “Ultra low-voltage low-power CMOS 4–2 and 5–2 compressors

for fast arithmetic circuits,” IEEE Trans. CircuitsSyst. I, Reg. Papers, vol. 51, no. 10, pp. 1985–1997,

Oct. 2004.

[15] Z. Huang and M. D. Ercegovac, “High-performance low-power left-to-right array multiplier design,”

IEEE Trans. Comput., vol. 54, no. 3, pp. 272–283, Mar. 2005.

[16] CIC Referenced Flow for Cell-based IC Design, 2008, Taiwan: Chip Implementation Center, CIC.

Document no. CIC-DSD-RD-08-01.

[17] G.Goto et al., “A4.1ns compact 54 X54-b Multiplier Utilizing Sign-select Booth Encoders,” IEEE J.

Solid-state Circuits.,vol. 32, no. 11, pp. 1,676-1,682, Nov. 1997.

[18] P. F. STELLING, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal Circuits for parallel

Multipliers,” IEEE Trans. Computers., vol. 47, no. 3, pp. 273-285, Mar. 1998.

[19] J. Cavanagh, “Digital Design and Verilog-HDL Fundamentals”, CRC Press Taylor and Francis Group

2008.

[20] C. Senthilpari, A. K. Singh, K. Diwakar, “Design of a low power, high Performance, 8 × 8 bit

multiplier using a Shannon-based adder cell”, Microelectronics Journal, Vol. 39, Issue 5, pp.812-821,

May 2008.

[21] William Stallings, “Cryptography and Network Security Principles and Practices”, Fourth Edition,

Prentice Hall, 2005.

[22] Shu Lin, Daniel J. Costello, “Error Control Coding: Fundamentals and Applications”, Prentice Hall,

1983.

[23] Jean-Pierre Deschamps, Gery Jean Antoine Bioul, Gustavo D. Sutter, “Synthesis of Arithmetic

Circuits- FPGA, ASIC, and Embedded Systems”, A John Wiley & Sons, Inc., 2006.

[24] www.xilinx.com/

[25] https: //solvnet.synopsys.com

