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ABSTRACT 
 

The latest innovation technology in computing devices has given a rise of compact, speedy and economical 

products which also embeds cryptography hardware on-chip. This device generally holds secret key and 

confidential information, more attention has been given to attacks on hardware which guards such secure 

information. The attacker may leak secret information from symmetric crypto-hardware (AES, DES etc.) 

using side-channel analysis, fault injection or exploiting existing test infrastructure. This paper examines 

various DFT based attack implementation method applied to cryptographic hardware. The paper contains 

an extensive analysis of attacks based on various parameters. The countermeasures are classified and 

analyzed in details. 
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1. INTRODUCTION 
 

Nowadays, the computing hardware becomes small, cheap and fast due to emerging of new 

fabrication technology and increased design complexity. Hence, Crypto-hardware can now easily 

be integrated in everything from smart cards to pay TVs to smart handset to prepaid cards. The 

research in cryptography focuses on mathematical complexity of crypto algorithms, ciphers and 

protocols. Since main purpose of cryptography is to make secure communication with 

confidentiality, the security of such cryptography hardware is essential. Hence an attack on 

hardware which actually performs cryptographic algorithm is getting attention. Countermeasures 

to such attacks are being developed and analyzed. The paper describes practical implementation 

attacks especially based on test infrastructure on cryptographic hardware, which focuses on 

embedded system and portable devices. Also, the detail understating of the countermeasures 

against test attack is reviewed. The paper is organized in following sections. The basics of 

Encryption decryption and security attacks are described in section 2. Section 3 describes 

different hardware attacks on crypto hardware. Countermeasures against attack based on test 

infrastructure are presented in Section 4. Finally, the concluding remarks are presented in Section 

5.  
 

2. CIPHER PROCESS AND SECURITY ATTACKS 
 

2.1 ENCRYPTION-DECRYPTION 
 

The encryption and decryption process performed by crypto algorithm is illustrated in figure 1. 

 

Figure 1. Basic Encryption/Decryption Process 
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As shown in figure 1, the plaintext or input text/message is converted into unintelligible form 

called cipher text during encryption process. Cipher text is again converted back into original 

form called plaintext during decryption process. 
 

A cryptographic algorithm that uses the same key to encrypt and decrypt data is called 

symmetrical key algorithm (K1=K2). In Asymmetric cryptography algorithm, secret key can be 

divided into two parts, a public key and a private key. Either of the keys can be used to encrypt a 

message, the opposite key is used for decryption (K1 ≠ K2) [1]. 
 

2.2. SECURITY ATTACKS 
 

The information embedded into crypto-devices is often secret like keys and confidential 

information, so attack applied on sensitive information or on the device that holds it may result in 

private information loss, fake access and financial thievery.  
 

Because of easy availability of crypto-devices, the internal structure of hardware with 

implementation details can be analyzed and learnt by malicious user. Implementation knowledge 

can be used to perform attack on device without breaking mathematics of algorithm. That is to 

say, the attacker can still be able to retrieve secrete sensitive data from internal implementation 

although highly secure algorithm is implemented. Even though the confidential key is not 

retrieved by attacker, there are still chances of disrupting hardware or denial of service attack 

which results in failures in secure system. 
 

Numerous attacks are reported in literature. Security system can be attacked for the benefit of 

attacker which is in terms of side-channel analysis, fault injection or exploiting existing test 

infrastructure. For example, Data Encryption Standard (DES) [2], Advance Encryption Standards 

(AES) [3], stream ciphers [4], RSA [5] and Elliptic Curve Cryptosystems (ECC) [6] can be 

attacked. 
 

3. IMPLEMENTATION ATTACKS ON CRYPTO-HARDWARE 
 

Numbers of possible hardware attacks are described in [7-25]. Based on the implementation 

methods, we have categorized this all methods in three different categories of hardware attack on 

crypto-hardware system as shown in fig.2: 1. Side channel attacks, 2. fault attacks and 3. Test-

infrastructure based attacks. 
 

 
Figure 2.  Classification of Attacks on Secure Hardware 

 

The main focus of attacker is to retrieve secret key from crypto-hardware as mentioned in 

literature even though traditionally having multiple goals in mind. In next section, 

countermeasure against attacks based on test infrastructure will be examined. All mentioned 

attacks are practically implementable (also called Implementation attack), resulted in 

compromising the mostly used crypto-device. 
 

3.1. SIDE CHANNEL ATTACKS 
 

Side channel attacks generally are generally performed based on information gained from the non-

primary interface of the physical implementation of a crypto system like timing, power and EM 

leaks. Based on these parameters, we have further classified the side channel attacks as below. 
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3.1.1. TIMING INFORMATION-BASED ATTACKS 
 

The side-channel attack, exhibits that computing time discloses the crucial information regarding 

secret keys [7], [8]. The assumption made here is that how cryptographic algorithm implemented 

in hardware is in the knowledge of an adversary, and this attack totally relies on particular 

implementation. The variable run time cryptosystem can be exploited by attacker. For instance, 

modular algorithm RSA (m=c ˆ d mod n , where attacker wants to find private key d), where only 

single bit key is used determine the only square operation if key bit is reset or else multiply-square 

operation if key bit is set. This can be used to disclose information regarding secret key. An 

adversary can begin the procedure by predicating first key bit as zero or one, and observing which 

assumption gives the highest match between actual and guessed computing time. This procedure is 

repeated till all the key bits are predicted. Hence, the entire key search space is reduced. This 

attack is termed as computationally quite easy. 
 

3.1.2. POWER ANALYSIS-BASED ATTACKS 
 

There are two power kind of power analysis technique mentioned in literature: Simple Power 

Analysis (SPA) and Differential Power Analysis (DPA).Both of them physically measures current 

consumes per unit time. For example, a modular exponentiation algorithm of RSA (m=c ˆ d mod n, 

where attacker wants to find private key d), which performs square operation if key bit is zero and 

multiply operation if key bit is 1. As shown in fig. 3, the square and multiply operation are clearly 

visible from current traces of the device. Along with SPA attacker can also include other attack if 

required to retriever private key. A Differential Power Analysis (DPA) [9] that requires the 

knowledge of the algorithm but not its physical implementation. It is easy and cheap to perform. 

The basic idea is to correlate the power consumed by the device and the encryption data including 

the key. More advanced attack is DPA which is used to reveal multiple key bits at a time, and 

hence time to retrieve entire key will be reduced. The numbers of power samples are collected for 

thousands of iterations of cryptographic process with the help of high speed ADC (analog to 

digital converters) and DSO. Key bits are assumed based on collected power samples. Respective 

input bits are estimated from pre-assumed key bits. If this hypothesis is correct, then corresponding 

bits at next stage is going to be assumed. The case when assumption goes wrong, it is observed 

that 50% of test scenarios are appeared to similar with hypothesis. After retrieving one part of key, 

attack may perform brute force attack for the remaining key bits to retrieve entire key. 
 

 
Figure 3.  SPA traces of square-multiply operation of RSA [9]  

 

3.1.3. ELECTROMAGNETIC ANALYSIS-BASED ATTACKS 
 

These attacks are based on EM signals that are generated due to flow of current in devices [10], 

[11]. There are two types of Electromagnetic Analysis: Simple Electromagnetic Analysis 

(SEMA) and Differential Electro-Magnetic Analysis (DEMA). However, power analysis attack 

and electromagnetic analysis attack have certain dissimilarities. Power analysis only uses power 

consumption of circuit while EM analysis mainly focuses on placing antenna.  
 

Generally, the EM attacks can be performed by attacker available from remote places. For 

example, Amplitude demodulators are required to carry out the attack which is quite far from 

circuit. EM attacks are not always perfect as they might be degraded due to being affected by 

environment noise and measurement errors. 
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3.2. FAULT ATTACKS 
 

The basic idea behind this attack is to inject faults in a chip because the occurrence of fault may be 

exploited. State-of-art fault injection techniques with their properties are discussed here.  
 

3.2.1. UNDER-POWERING AND POWER SPIKES 
 

A very low-cost solution for fault injection method is to play around with the power supply of 

chip. Under-powering is a method to excite the faulty behavior. The beauty of this attack that 

faults invoked by this technique will occur throughout the computations and attacker can easily 

remove incorrect outcomes produced by non-desirable faults. 
 

Second method is to induce high variations in power supply which in turn results in erroneous 

computation. Not only misinterpretation/skipping of an instruction but also memory related faulted 

can be resulted by high power supply spikes. For example, the memory location can be read at the 

time of power supply spike by microprocessor, it may result in erroneous data read from memory 

bus. The main motive of an attacker using this technique is to change program counter or a loop 

bound [12], [13], [14]. In both the fault injection technique are simple in hardware implementation 

but in need of an adversary to direct control over the supply rails of the chip. 
 

3.2.2. CLOCK GLITCHES 
 

The clock signal attack is only possible the chip which is powered by external clock. The external 

clock circuit can be disturbed by different clock, i.e. a signal that has many pulses having short 

time period. As shown in figure 4, the glitch in clock signal can be injected with much shorter 

time period, Tg, than the normal clock period TCLK. With this method, processor can be made to 

execute upcoming instruction earlier than the normal time which causes invalid data to be stored 

on memory address [12], [15]. Using this method to induce faults, attacker must have access to 

clock line. (E.g. smartcard). Clock glitches can be invoked by hardware equipment called low end 

FPGA board [16], [14]. 
 

 
Figure 4.  A glitch in the clock signal 

 

3.2.3. TEMPERATURE ATTACKS 
 

The functionality of hardware device is proper in typical temperature range. When subjected to 

very high/low temperature may invoke faults [17], [18], [19]. This technique is used to tamper 

data saved in memory, but segment of data cannot be focused. 
 

3.2.4. OPTICAL ATTACKS 
 

Optical faults are typically introduced by a strong light source like photo flash or laser beam [20] 

to a bare chip. Laser exposure make semiconductor device to conduct or switch. With the help of 

focused ion beam (FIB), one bit saved in memory can be flipped. Top side or bottom side of IC 

can be attacked as shown in fig. 5. 
 

As metal layers are always on front side, it is hard to reach at transistors located at front side. The 

other method is to reach the transistor through a specific wavelength laser light from back side by 

adequate penetration in substrate. 

 

Nowadays, the laser spot is constantly shrinking which again is limited by a wavelength of 

photons.  
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Figure 5.  The effect of focused laser beam [21] 

 

A smaller spot size 6×1.4µm can be achieved by a diode-based laser [21]. Furthermore, precise 

timing for exposure of laser is adapted by triggering mechanism of laser station, which in turn 

causes multiple faults in very short duration of time i.e. multi-glitching. 
 

3.2.5. ELECTROMAGNETIC (EM) FAULT INJECTION 
 

Inducing electromagnetic field to a chip can cause malfunctioning to the memory data. 

Electromagnetic field causes eddy current to flow on chip surface which will result in one-bit 

fault in memory [22]. A simple method to induce EM fault is to use gas lighter [23]. All presented 

fault injection techniques works on same principle: by changing physical property of chip, they 

make transistor to switch improperly. But, they differ in fault injecting property. The first three 

techniques don’t aim to a specific segment of the chip. At the same time, they are not in need of 

costly equipment to execute fault injection. On the contrary, EM and optical fault injection 

techniques focus on a restricted part of the device with requirement of highly expensive setup. 
 

3.3. TEST-INFRASTRUCTURE ATTACK 
 

Testing of ICs is necessary to determine manufacturing defects in circuit and thus guarantee 

products quality. Nevertheless, design itself nowadays is DFT (Design for Testability-Test 

infrastructure) enabled in order to easy test effort and increase testability by improving fault 

coverage and diagnostic facility. The below section describes how existing test infrastructure is 

exploited for the benefit of attacker.  
 

3.3.1. SCAN-BASED ATTACK  
 

One of the widely used DFT techniques is to insert Scan-chain on chip, which permits to shift test 

patterns in and shift response out of the chip. However, Scan-based testing nowadays most 

common, it will impose a great security risk for crypt-chips. An attacker may use scan chain data 

to observe internal nodes of crypto-chips and exploit it to retrieve secret key. [2 - 6]  
 

For instance, consider the AES algorithm implemented on hardware. The fig. 6 shows the AES 

algorithm along with scan-chain connected to round register (which stores internal states after each 

round operation).  
 

AES algorithm can produce secure cipher text after 10 rounds if key size is 128-bit. The round 

register is a part of entire scan-chain on chip of SoC and round register flops position is 

deterministic. Attacker can run a cipher in normal mode with pre-determined plain text. The 

attacker can easily switch a cipher to test mode after one round. The intermediate state of a cipher 

can be observed by shifting out round register content. Furthermore, attacker can again run the 

same procedure with another plaintext having 1-bit difference. With the help of two different 

round register output, attacker will be able to retrieve key [24], [25]. 
 

The attack is also applicable on other symmetric ciphers like RSA, DES, and ECC. It can simply 

be applied using 1-bit different plaintext without knowledge of physical implementation of 

algorithm. Thus, it is also called differential attack. The next section deals with countermeasures 

against this attack in detail. 
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Figure 6. AES cipher and scan-chain [25] 

 

4. COUNTERMEASURES AGAINST SCAN-BASED ATTACK ON CRYPTO-

HARDWARE 
 

In this section, state-of-art countermeasures against scan-based attack on crypto-hardware are 

discussed in brief. As shown in fig. 7, countermeasure can be applied during Frontend (pre-

layout) or back-end design (layout) stages 
 

4.1. BACK-END DESIGN APPROACHES 
 

The countermeasures that are implemented through extra hardware and can be easily integrated 

during back-end design of crypto-chips are presented in this section. 
 

4.1.1. BUILT-IN SELF-TEST (BIST) 
 

Self-test procedure can be implemented by using iterative method involved in encryption process. 

[26] Encryption hardware is given its own output and after certain round, the output gets 

compared with signature. This method requires extra hardware for Test-pattern generator, 

response compactor and a ROM for golden signature storage on-chip. Technique can be 

implemented at layout level as BIST infrastructure can be included while making physical design 

layout. If BIST is a part of crypto-chip IP Core, it is suitable for testing and security purpose in 

standalone mode. Although, it is not suitable when crypto IP core is integrated with other blocks 

to form complete system. 
 

4.1.2. ON-CHIP TEST COMPARISON 
 

The method allows transferring of expected response into the chip along with scan-in test vector 

using the pin (that would have been scan-out pin in standard scheme) from external tester. [27] 

Instead of shifting it out, actual captured response is going to be compared against expected one 

pair-wise on-chip. After comparison only one-bit pass/fail is sent outside. Extra hardware needed 

on chip for comparing bit stream of actual response along with expected one. Technique can be 

applied at layout level as extra comparator on-chip needs to be fabricated. It is Suitable for 

crypto-chip IP core if core is designed along with mismatch comparator. No secret leaks out as an 

adversary may get notification of passing or failing using single bit for individual test pattern. 

This method allows diagnosis for modeled faults only. At the same time diagnosis time becomes 

very large.  
 

 

4.2. FRONT-END DESIGN APPROACHES 
 

Another category of countermeasures that are integrated during RTL/Behavioural description of 

crypto-chip are discussed here. 
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4.2.1. INSERTING INVERTERS IN SCAN-PATH  
 

In this method, the entire scan-chain of chip is partitioned in several sub-chains and values of 

certain scan cells are complemented with the help of NOT gates inserted in the scan paths [28]. 

The placement of inverters is only identified by testing engineer or design engineer. This 

technique can be applied at behavioral level as only inverters need to be inserted in during scan-

chain creation. Hardware required as extra inverters need to be fabricated along with scan FFs. 

Not suitable for IP Core based design as internal structure is hidden in third-party IP Cores. We 

may have to change DFT architecture of whole SoC. As sub-chains are inserted in arbitrary 

manner, it is hard for an adversary to get intermediate result of cipher. Exact response can only be 

retrieved by tester or designer. The flipped result will only be seen by an adversary. A method 

cannot resist differential attack on crypto-hardware as complementation effect will be nullified on 

the output difference. 
 

4.2.2. MASKING (ROUND REGISTER OR COMPACTOR OUTPUT) 
 

There are two masking method published in literature. First, mask round register output and then 

unmask it for upcoming operation. Input plaintext and key will generate mask value. During test-

mode, scan cells capture the mask output of the chip. Designer can unmask and retrieve actual 

response. Extra hardware required as masking function has to be EX-ORed before round register 

and after round register (for unmasking). The method can be applied at RTL description of 

crypto-chip. For standalone AES IP core, it is only suitable if already masking function is built-in 

the core. But if AES IP core is integrated with other block of system, it’s not suitable. 
 

 
Figure 7.  Classification of countermeasures against scan-based attack on crypto-hardware 

 

Second method mask response compactor output by using (Extended LFSR) eLFSR. In test 

mode, the scan out compacted response is getting EX-ORed with eLFSR 128- pseudorandom bit 

stream. This method does not allow an adversary to recover starting status of LFSR. This also can 

be integrated during RTL description of crypto-chip. It is suitable for crypto IP core as only extra 

eLFSR required which may not change flow of encryption /description of crypto-chip. In both the 

method, attack will unable to retrieve actual scan-out response. Due to the area overhead and 

longer critical path, the performance of chip will be degraded. [24] 
 

4.2.3. NOISE INJECTION IN SCAN OUTPUT 
 

The method provides two level security: LFSR (linear feedback shift register) and TRNG (True 

Random Number Generator). In this method, only 50% of scan cell bits becoming noisy but 

remaining bits are not modified. Area reduction is only possible by selecting compact size LFSR 

because a TRNG conceal some bits of LFSR output. An approach can be included during RTL 

description of crypto-chip. Extra hardware requires implementing this approach for LFSR and 

TRNG and other combinational logic. However, area overhead reduces compared to previous 
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masking method. The disadvantage is to perform masking in every clock cycle to make attack 

unsuccessful. That means success rate is on how speedily masking is performed. [29]. 
 

4.2.4. SPY FLIP-FLOP 
 

In this method, the extra flops (spy flops) are inserted in scan-chain. The current status of these 

flops is used to check scan path integrity. In functional mode, the input of spy flops is set to fixed 

value (s-a-1 or s-a-0). The output only varies when scan-chain is activated. Any unwanted 

transition from normal mode to test mode is detected. Hence, attacker cannot apply differential 

analysis after first iteration of cipher. The spy flops are designed at front-end level with few 

synthesis constraints. It is also suitable for crypto IP core if already spy flops are built-in the core 

description. The method can be adapted to automated design flow and IP reuse technology. 

However, the technique will make scan-path longer, with increase in test-time and test data 

volume. Hence, tester memory is also increased. [30] 
 

4.2.5. SECURE TEST ACCESS MECHANISM  
 

The security of crypto chips depends on small key stored in few registers while testability 

depends on how data and control signals are travelling to primary output through internal node. It 

is called secure-scan DFT method. Secure scan-DFT architecture has two modes of operation: 1.) 

Secure mode (Functional Mode) 2.) Insecure mode (Test Mode). When in insecure mode, the 

crypto chip can be switched between shift mode and normal mode same as traditional scan-based 

DFT. While in secure mode, it can only be in normal mode. Switching from secure to insecure 

mode is only done through power-off reset i.e. the round registers (Scan-flops) data will be reset 

by turning off power supply. The registers in secure mode hold secret key information and the 

content are not scanned out until being reset. While in insecure mode, fake test key is applicable. 

The method can be applied in RTL description of crypto chip. To hold secret key related 

information extra set of registers needs to be inserted. Test session starting needs to be changed 

and hence test controller modification must be required. This method is suitable for standalone 

crypto core. [3] 
 

5. CONCLUSIONS 
 

Encryption and decryption process for crypto-chips are covered in this paper. Although being one 

of the most popular DFT method, scan insertion in crypto devices, opens a backdoor for security 

threat. Secret key can be retrieved by performing attack on side-channels, injection faults in 

devices or exploiting existing test-infrastructure. Survey of state-of-art countermeasures against 

scan-based attack is presented. Area overhead and increase in test time are driving performance 

parameters to find out countermeasure that balance between security and testability of hardware. 
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