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ABSTRACT 

 
Time and efforts for functional testing of digital logic is big chunk of overall project cycle in VLSI industry. 

Progress of functional testing is measured by functional coverage where test-plan defines what needs to be 

covered, and test-results indicates quality of stimulus. Claiming closer of functional testing requires that 

functional coverage hits 100% of original test-plan. Depending on the complexity of the design, availability 

of resources and budget, various methods are used for functional testing. Software simulations using 

various logic simulators, available from Electronic Design Automation (EDA) companies, is primary 

method for functional testing. The next level in functional testing is pre-silicon verification using Field 

Programmable Gate Array (FPGA) prototype and/or emulation platforms for stress testing the Design 

Under Test (DUT). With all the efforts, the purpose is to gain confidence on maturity of DUT to ensures 

first time silicon success that meets time to market needs of the industry. For any test-environment the 

bottleneck, in achieving verification closer, is controllability and observability that is quality of stimulus to 

unearth issues at early stage and coverage calculation. Software simulation, FPGA prototype, or 

emulation, each method has its own limitations, be it test-time, ease of use, or cost of software, tools and 

hardware-platform. Compared to software simulation, FPGA prototyping and emulation methods pose 

greater challenges in quality stimulus generation and coverage calculation. Many researchers have 

identified the problems of bug-detection / localization, but very few have touched the concept of quality 

stimulus generation that leads to better functional coverage and thereby uncover hidden bugs in FPGA 

prototype verification setup. This paper presents a novel approach to address above-mentioned issues by 

embedding synthesizable active-agent and coverage collector into FPGA prototype. The proposed 

architecture has been experimented for functional and stress testing of Universal Serial Bus (USB) Link 

Training and Status State Machine (LTSSM) logic module as DUT in FPGA prototype. The proposed 

solution is fully synthesizable and hence can be used in both software simulation as well as in prototype 

system. The biggest advantage is plug and play nature of this active-agent component, that allows its 

reusability in any USB3.0 LTSSM digital core. 
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1. INTRODUCTION 
 

In recent times the complexity of the VLSI designs has increased rapidly with advancements in 

nanotechnology and gate capacity from million gates to billion gates in a chip. High-speed serial 

communication interfaces such as USB and PCIe provides high data transfer capabilities which is 

a need of modern era applications. In cycle accurate and time-based software simulations, the 

testing-time becomes bottleneck while running iterative simulations to achieve functional 

coverage and detect bugs in time, and overall it affects project schedule 
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The next level of verification with prototyping and emulation systems provide accelerated 

verification platforms to run time-sensitive scenarios. For high-speed serial protocols, there are 

two time-sensitive test areas; a) link-training and low power phase b) data-transfer phase. 

Verification in FPGA prototyping system greatly help stressing out the DUT with heavy data 

traffic stimulus and reduces the test-time for long and iterative simulations. The DUT can be 

simulated by injecting heavy data-traffic with different types of data, and number of data-packets 

with varying length to uncover more corner scenarios. The data transfer test-scenarios are driven 

from higher-level in the prototyping system, where user has better controllability and 

observability for closed-loop testing and hence proper functional coverage can be realized. 

However, for link-training related test scenarios there is very limited access where generating 

right stimulus and achieving functional coverage is a big challenge. 

 

The USB3.0 LTSSM, many other standard protocols, has timers ranging from 10 µsec to 300 

msec for link-training or low power state transitions. Stress testing and coverage for such huge 

time sensitive scenarios is herculean task in software simulation, and its unreachable in standard 

prototype system. This paper proposes architecture where time-sensitive link-training and low 

power states logic is targeted with an embedded active-agent in prototype system that uses 

advanced error injection. In a proposed architecture, the active agent controls the stimulus and 

coverage collector provides observability for closed-loop functional testing of such time-sensitive 

scenarios. The technique used in this architecture focuses on stress testing time sensitive LTSSM 

transition arcs and mutation coverage where injected error is observed for predictable behaviour 

of DUT. This approach is feasible for many such prototyping systems where lower layers of DUT 

can be stress tested using synthesizable active-agent such as proposed in this paper. 

 

2. BACKGROUND AND MOTIVATION OF RESEARCH 
 

In a typical test-environment of prototyping system, traffic injection to DUT is done in two ways; 

a) through a test-component b) using a standard real device. 

 

For USB designs when the DUT is USB target device, the test-component at other end could be a 

proprietary hardware from Electronic Design Automation (EDA) company, that mimic real USB-

host component. The DUT in such emulated system may run at slower operating clock and sees 

the test-component as protocol compliant device at the other end. Such test-components provide 

greater flexibility in generating desired stimulus. However, these high-end proprietary test-

components are costly, and interface requirements with DUT are complex. Moreover, if multiple 

USB components exist in a system, multiple such test-components would be required to stress test 

the system concurrently. 

 

Prototyping system with a real device against a DUT is comparatively easy to build and cost 

effective. Such test setup also helps early software development and testing with real components. 

The advantage is that all the testing happens in real world and at-speed. The drawback is 

controllability of stimulus as the other end of the DUT is actual device where it behaves as per the 

protocol defined. In such prototyping system heavy data-traffic can be injected with upper layer 

application control. For USB link, when the DUT is USB target device and other end of the link 

is real USB-Host, host side application can inject various types of transfers and data traffic. 

However, there is very minimum control over how the lower layer of the design is stimulated. 

Lower level module for USB-target device is link layer logic with LTSSM. Also, negative testing 

options are very limited. Now, here is where the opportunity lies for improvement in the 

prototyping system that became motivation of our research work.  

 

The architecture presented here provides controllability of stimulus with synthesizable active-

agent and observability with coverage collector for link-layer LTSSM of the USB3.0 target 
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device DUT. The prototype of the proposed architecture is operational and presents promising 

results with better stimulus generation. The scope of improvement and future work is to reduce 

resource overhead in the prototyping system to provide competitive edge to this approach. The 

same approach is feasible for many such prototyping systems where lower layers of design can be 

stress tested using synthesizable active-agent such as proposed in this paper. 

 

3. RELATED WORK 
 

Authors from academia and industry have researched in area of pre-silicon verification, 

synthesizable test-components, controlled stimulus, issue detection, and coverage collection. All 

the work relates to improving effectiveness of testing and its suitability to specific application. 

 

F. Moraes et al. in the paper [1], “A generic FPGA emulation framework” perfectly highlights 

challenges associated with software-simulation based testing and proposes generic emulation 

framework to improve controllability and observability of design under verification (DUV). The 

presented structure is combination of software and hardware components. It uses host-PC for 

higher level control of stimuli and the tests are driven to DUV via standard interfaces like PCIe or 

Ethernet.  

 

S. S. Shankar et al. in paper [2], “Synthesizable Verification IP to Stress Test System On-Chip 

Emulation and Prototyping Platforms”, authors have highlighted the challenges associated with 

pre-silicon verification and proposed synthesizable verification architecture compliant with 

Standard Co-Emulation Modelling Interface (SCE-MI) infrastructure through which the protocol 

specific traffic is injected at industry standard interfaces. This approach is based on combination 

of high-level test sequences and protocol specific transactors implemented with synthesizable 

models. The paper presents the approach with USB2 logic with Transceiver Macrocell Interface 

(UTMI) interface as design under test. This approach highly relies on directed testing and the 

stimulus is controlled from higher layer test-sequences. 

 

H. Krrikyan et al. in paper [3], “Prototyping system for USB3.0 link layer using synthesizable 

assertions and partial reconfiguration”, presents problems related to bug detection/localization 

and coverage calculation. The proposed solution is based on embedding synthesizable assertions 

into prototype and the experiment was done on USB3.0 link layer FPGA prototype. The paper 

focuses on observability aspect of verification with assertion-based testing in prototype system. 

Synthesizable assertions allow its usability in both software-based simulation test-environment 

and FPGA prototype /emulation platforms. The experiment utilizes FPGA partial configuration 

feature for Xilinx architecture-based FPGA and tool set.  

 

O. Amin et al. proposes an architecture in paper [4], “System Verilog Assertions Synthesis Based 

Compiler”, helps assertion-based verification idea for prototyping systems. The non-synthesizable 

code written as SystemVerilog Assertions (SVA) in software-simulation based test-environment 

can be converted to synthesizable code that can be ported on FPGA. Again, this approach focuses 

on observability part of DUT verification and is used to watch how the design performs in testing 

setup. 

 

A. Yehia et al. in paper [5], "Faster coverage closure: Runtime guidance of Constrained Random 

stimuli by collected coverage” proposes closed-loop verification concept to improve the coverage 

and make verification more efficient. This approach is targeted for software simulation based 

functional testing where stimuli based on constrained random verification uses data from 

coverage collector to optimize the testing run time. It shows how collected coverage can 

dynamically guide random stimuli generators during simulation to generate uncovered scenarios 
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and avoid generating redundant ones. Similar concept is applied in our architecture for the 

prototyping system.  

 

4. PROPOSED ARCHITECTURE 
 

Presented in Figure 1. is use case showing active agent placement in overall FPGA prototype 

system. The prototyping system on Xilinx Kintex®-7 FPGA, constitutes USB3.0 Device 

controller as DUT, the application layer of DUT is supported by standard mass storage device 

driver running on local processor with Advance Microcontroller Bus Architecture (AMBA) - 

Advanced eXtensible Interface (AXI) based system-bus. The link layer of DUT connects to 

USB3.0 PHY via intel PHY Interface for PCIe and USB (PIPE). The other side of the USB link is 

standard host with USB3.0 host port that generates stimulus while running real bulk-transfer 

application. Building such prototyping system is easy and cost effective compared to protocol 

specific high-end emulators or test-components. The objective of our prototyping system is to 

address time sensitive stimulus generation and stress test the DUT. Here data intensive traffic is 

injected from standard USB host and the application can inject desired stimulus. To address 

stimulus generation for lower layer logic area, LTSSM in this case, the synthesizable active agent 

plays a role. 

 

The synthesizable active-agent design is based on Universal Serial Bus (USB) specification [6] 

and PIPE [7] specification. The configuration space access of the USB device IP core is accessed 

through AXI-Lite interface that follows AMBA-AXI specification [8]. The active agent intercepts 

the PIPE interface signalling of USB3.0 link layer and injects error to create specific test scenario 

that otherwise wouldn’t have occurred in normal prototype test-environment setup. 
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Figure 1.  Active-agent in prototyping system for USB3 LTSSM  

 

The link Layer interface with PHY is Intel PIPE interface having unidirectional data-flow that 

allows adding pipe-line stages to insert our active-agent, without affecting specification timing 

requirements. The active-agent is placed on the receive path at upstream port (USP) PIPE 

interface where USB3.0 Device IP core connects with standard USB3.0-PHY.  

 

This active agent is a plug-and-play component and work with any USB3.0 controller DUT with 

just knowledge about the core’s LTSSM current state value that is available as part of debug port 

in typical FPGA prototype system. The active-agent maintains scenario coverage information and 

accordingly injects anomaly at available opportunity in an ongoing test. For simplicity This paper 

focuses on specific portion of LTSSM and the same would be extended to cover more scenarios 

for stress testing of complete LTSSM in an automated way. 

 

In traditional simulation-based verification architecture there are passive agents acting as protocol 

checker, scoreboard data collector, or functionality monitors that are vital components in overall 
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closed-loop verification. Also, call-back mechanism is used to inject error in the transfer by 

manipulating the information and thus, creating specific directed scenario. Similarly, active-agent 

manipulates information, within specification boundaries, at standard interface thereby deviating 

from standard state-transition of DUT. It is obvious that this active-agent needs some extra 

information, to be more effective, rather than purely taking the DUT as black-box. This 

information helps find appropriate opportunity to inject variation in the received information from 

other end of the USB-link and execute certain directed scenarios.  

 

Active-agent architecture incorporates most part of decode logic in USB link layer that includes 

descrambler, CRC, LFPS detection, and de-framing. It adds pipe-line stages to the receive 

datapath to cover for decode latency and allow time to inject variation at right time. The active-

agent also implements configuration space with information on masking specific scenario 

injection and collecting coverage statistics. 

 

Major functional blocks are shown in the architectural diagram Figure 2. of active agent. 

 

 
Figure 2.  USB3.0-LTSSM Active Agent Architecture 

 

4.1. DESCRAMBLER 
 

Before the information can be identified to act upon by the agent it must be decoded at the receive 

path of PIPE interface, and the first stage is descrambling. It’s based on free running linear 

feedback shift register (LFSR) and if enabled the logic follows USB3.0 specification with 

polynomial; 

 

 G(x) = x^16 + x^5 + x^4 + x^3 + 1 

 

Control (K codes) symbols are bypassed and the LFSR is reset to FFFF at every COM symbol. If 

the PHY contains this logic, it can be easily bypassed from the agent logic.  

 

4.2. FRAMING DETECTION 
 

After descrambling the decode logic performs detection of framing pattern and special symbols. 

The sliding pattern match mechanism is used to detect symbol position in aligned or unaligned 

packet. Framing detection is performed for Link Commands (LC), Header Packet (HP), Data 

Packet (DPP, END/ENDB), and Ordered Sets (OS). The packets are checked for CRC and after 

anomaly injection the CRC is recalculated to re-validate the packet.  

 

4.3. LFPS DETECT 
 

Low Frequency Periodic Signalling (LFPS) detection is performed as per USB3.0 specification 

and is primarily used for low power mode exit and warm-reset. The details of normative LFPS 
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implementation can be found in the USB specification. The latency increases by few clock cycles 

while the decode logic is active before it acts for scenario injection based on constraints. This 

does not impact the functionality of the DUT neither it violates USB3.0 or PIPE specification. 

 

4.4. CONFIGURATION SPACE 
 

The active agent also has configuration space that is accessible through simple register space 

access interface that is memory mapped in local processor. The configuration spaces access is 

used to fetch coverage statistic and to enable or disable specific scenario injection logic and to 

configure and modify constraints of scenario injection driver. 

 

4.5. ERROR INJECTION AND PIPELINE STAGES 

 
This block is part of pipeline stage and performs error injection in receive path with manipulated 

information. The required information for manipulation and content update is received from other 

modules. Scenario injection logic acts based on the information from coverage statistics that help 

update the constraints of scenario injection logic for uncovered state transitions during future test 

iterations. Coverage constraints applicability is restricted to state-transitions where occurrence of 

transition conditions can be varied in time. Manipulating receive path information is tricky and 

requires extra care while exercising this approach staying within boundaries of USB3.0 

specification. The implementation is simple once the concept is understood and the efforts put in 

developing such active-agent are worth as the results seen are promising for coverage closer on 

prototype system. 

 
Table 1.  Xilinx-Kintex7 FPGA series resource utilization 

 

Resource Slice LUTs Slice Registers RAMB36 

USB-Device 21764 12766 16 

Active agent 

% of DUT 

2840 810 0 

13% 6% 0% 

 

5. VERIFICATION AND RESULTS 
 

As per USB3.0 specification there are total of 20 LTSSM state and sub-states for USP with more 

than 85 possible transition arcs where 20 transitions are associated with ‘directed’ from upper 

layer through warm-reset. From rest of the transition arcs, less than 20 transition arcs are usually 

covered in normal prototype environment. There is scope of error injection, within specification 

boundaries, to stress test the DUT and the active agent plays effective role. All the LTSSM states 

and sub-state transitions are tracked and coverage information is collected at state entry event. 

During the research work specific set of test conditions were targeted for this experiment. 

 

A simple event of cable connect-disconnect can exercise more test-condition and increase the 

DUT coverage. However, performing this connect-disconnect test manually and expecting it to 

occur at specific point in time at all possible opportunities, is practically impossible in typical 

FPGA prototype platform. With active agent this is made possible. USB device can be connected 

or disconnected from host port at any time and cover all reachable scenarios on existing prototype 

platform. At PIPE interface the connect-disconnect event is stimulated using relevant input 

signals as listed in table 2. 
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By overriding inputs signals to DUT at PIPE interface device connect-disconnect event is tested 

for each all LTSSM states and sub-states. The active-agent has helped significantly in uncovering 

multiple corner conditions that did not get caught during normal testing on the prototype system.  

 
Table 2.  PIPE interface signals for active-agent 

 

Signal Direction Description 

RxDataValid Input  Instruct the Link layer DUT logic to ignore the data 

interface for one clock cycle. A value of one indicates the 

upper layer logic will use the data, a value of zero 

indicates it will not use the data.  

RxValid Input  Indicates symbol lock and valid data on RxData and 

RxDataK 

PhyStatus Input  Used to communicate completion of several PHY 

functions including stable PCLKafter Reset# de-assertion, 

power management state transitions, rate change, and 

receiver detection. When this signal transitions during 

entry and exit from any PHY state where PCLK is not 

provided, then the signalling is asynchronous.  

RxElecIdle Input  Indicates receiver detection of an electrical idle. While 

de-asserted with the PHY in P0, P1, P2, or P3, indicates 

detection of LFPS 

RxStatus[2:0] Input  Encodes receiver status and error codes for the received 

data stream when receiving data.  

3'b000 : Received data OK  

3'b001 : 1 skip OS added  

3'b010 : 1 skip OS removed  

3’b011 : Receive detected 

3'b100 : 8b10b decode error  

3'b101 : EB overflow  

3'b110 : EB underflow  

3'b111 : Receiver disparity error 

PowerPresent Input  Indicates the presence of VBUS 

 

Scenario injection is simpler and more effective while exercising negative conditions for state 

transition. Let’s understand this with one of the core state of the ‘LTSSM: Polling’ state and sub-

states. Polling.LFPS is a sub-state designed to establish the PHY’s DC operating point for LFPS 

operation, and to synchronize the operation between the two link partners after exiting from 

Rx.Detect. This is also a sub-state for a port to identify itself based on various Polling.LFPS 

signatures.  

 

Figure 3. Shows polling sub-states of USB LTSSM. Let’s understand how the active agent 

generates desired stimulus and help generate quality stimulus. In normal operation, with standard 

prototype system, the Polling state moves straight forward through Polling.LFPS -> 

Polling.RxEQ -> Polling.Active-> Polling.Configuration-> Polling.Idle-> U0. There are multiple 

other functionally possible test conditions that are not reachable in standard prototype system.  

When the scenario injection is enabled the active agent finds opportunity of injecting specific 

condition when the LTSSM enters Polling.LFPS. So apart from its normal route that is 

Polling.LFPS � Polling.RxEQ, the LTSSM is stress tested for error conditions in Polling.LFPS 

state and for transitions to SS.Disabled or Compliance. There is a provision to enable or disable 

scenario injection by masking condition via configuration space access interface. 
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Figure 3.  USB3.0-LTSSM – Polling sub-states 

 

Table 3. lists multiple functional testing scenarios for Polling.LFPS sub state in UpStream Port 

component. It is evident from the list of possible scenarios that just state transition coverage is not 

sufficient to gain confidence before claiming closer in pre-silicon verification with FPGA 

prototype systems. 

 
Table 3.  Polling.LFPS Test scenarios and Active agent 

 

 
 

The real benefit of active agent is not just covering all the state transition of DUT on FPGA 

prototype, rather its ability to inject error without violating the specification to stress test specific 

state of LTSSM.  
 

Table 4. presents improved results with active-agent generated stimulus for the DUT. 
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Table 4.  Polling.LFPS coverage 

 

Transition arc Test Coverage 

Current State Exit State # Default With Active agent 

Polling.LFPS Polling.RxEQ 1 1 1 

Polling.LFPS Polling.RxEQ 1a 0 1 

Polling.LFPS Polling.RxEQ 1b 0 1 

Polling.LFPS Compliance 2 0 1 

Polling.LFPS SS.Disabled 3 0 1 

 

Irrespective of what method is chosen for offline simulation, pre-silicon verification, or post-

silicon testing, important aspects of any verification idea are controllability, and observability. In 

proposed method, this is covered to some extent with control of scenario injection and coverage 

collector. However major concern with such non-trivial testing methodology for FPGA prototype 

is trouble shooting and bug localization. To manage this concern, a simple debug mechanism was 

created. Explained in brief; local memory was added, with configurable depth, that logs state 

transitions and the contents rollover when the test is run for longer period beyond its storage 

capacity. Interrupt is asserted to local processor for initiating the memory-read when entry to 

Rx.Detect occurs for warm-reset and was not intended as per scenario injection. The content of 

memory gives transaction log that helps understand state transitions. In our experiment we’ve 

debug port from DUT that provides all important error flags due to which the state transitions 

deviate from its expected route. This information helps in bug-localization. 

 

6. CONCLUSION 
 

The stress testing and coverage improvement using proposed architecture is demonstrated in this 

paper with sample experiment. The proposed approach is very efficient in uncovering hidden 

bugs without inviting much in hardware or software infrastructure resources. The experiment was 

done on limited scenarios of LTSSM, however more scenarios would be added in future to 

exercise further stress testing with varying state exit and error injection. This active agent is 

reusable component and can be safely used with any USB3.0 USP DUT. The same methodology 

can be applied to USB3.0 DSP, and for that matter, any standard protocol interface for the 

purpose of stress testing and finding corner scenarios at earliest with less effort on FPGA 

prototype systems. 
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