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ABSTRACT 
 
The System on Chip design industry relies heavily on functional verification to ensure that the designs are 
bug-free. As design engineers are coming up with increasingly dense chips with much functionality, the 
functional verification field has advanced to provide modern verification techniques. In this paper, we 
present verification of a wishbone compliant Serial Peripheral Interface (SPI) Master core using a System 
Verilog based standard verification methodology, the Universal Verification Methodology (UVM). The 
reason for using UVM factory pattern with parameterized classes is to develop a robust and reusable 
verification IP. SPI is a full duplex communication protocol used to interface components most likely in 
embedded systems. We have verified an SPI Master IP core design that is wishbone compliant and 
compatible with SPI protocol and bus and furnished the results of our verification. We have used 
QuestaSim for simulation and analysis of waveforms, Integrated Metrics Center, Cadence for coverage 
analysis. We also propose interesting future directions for this work in developing reliable systems. 
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1. INTRODUCTION 
 
With the ever-increasing complexity of designs, system level verification of large System on 
Chips (SoC’s) has become complex [1]. These design complexities are accompanied with the 
interdependencies of various functionalities, which make the design more susceptible to bugs. 
Efficiently verifying the designs and reducing the time to market without compromising on the 
targets of achieving bug-free designs is a herculean challenge to verification teams. Functional 
verification is a process of ensuring that a design performs the tasks as intended by the overall 
system architecture. With monotonically increasing costs of re-spins and requiring additional 
manpower as well as development time, verification is the most critical phase in chip design 
cycle. It takes nearly 70% of the total design cycle [1]. Design reuse and verification reuse are 
essential in today’s constrained time-to-market requirements. Hence, the need to develop robust 
and reusable verification IP arises. 
 
Simulation-based verification is a standard and popularly used method of functional verification. 
System Verilog (SV), the Hardware Description and Verification Language (HDVL) has massive 
enhancements over Verilog, which provides several features to develop a fully functional 
verification environment with support for artifacts like object oriented programming, coverage 
analysis, constrained randomization and assertion based VIP. A methodological approach for 
verification increases the efficiency and reduces the verification effort. In this paper, we use 
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UVM, a System Verilog based methodology for testing an SPI master core that is wishbone 
compliant. 
 
The paper is organised into the following sections: Section II introduces the key features of SV 
and UVM environment. In Section-III, we introduce the SPI Master IP core for which the UVM 
framework is developed. Section-IV presents our approach towards the development of UVM 
based VIP. Simulation results with snapshots and a critical discussion of the limitations of the 
design are presented in Section-V. A conclusion is drawn in Section-VI. 
 

2. SYSTEM VERILOG AND UVM ENVIRONMENT 
 
Traditional testbenches were Verilog based and were not meant to verify complex SoC designs. 
The verification efforts were carried out by designers themselves by merely applying a sequence 
of critical stimulus elements to the Device Under Test and match the result to the expected 
outcome. As chip size kept decreasing, chip function became more complicated, and verification 
effort dominated the design process. Conventional methodology proved futile in verifying 
complex modern designs. When Verilog was declared an IEEE standard, the Accellera Systems 
Initiative had come up with revised versions of Verilog [2]. To cater modern verification needs, 
many proprietary verification languages were developed. Consequently, System Verilog was 
developed by Accellera, by extending Verilog with many of the features of Superlog and C 
languages. Subsequently, a substantial number of verification capabilities were added to System 
Verilog. System Verilog also borrowed many features from the C language, C++, Vera C and 
VHDL with support for complete verification [2]. 
 
In [2], Peter Flake et al. presented the features of System Verilog while discussing reasons for 
particular language design choices. Not only with inbuilt support for object-oriented 
programming, but also importing features of several domain specific languages, System Verilog 
stands as a popular digital HDVL. Some useful features are- code interface allowing someone 
reusing code to concentrate on the features the code provides, not on how the code is 
implemented, virtual interfaces, coverage driven constrained random verification, assertions, 
clocking blocks, functional coverage constructs [4]. 
 

 
 

Fig. 1. UVM Testbench Architecture 
 
In the evolutionary stages of System Verilog, the choice of verification methodology was strongly 
related to the choice of tool vendor. To achieve vendor independence, Accellera Systems 
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Initiative took up the task of creating an open standard methodology that could be used with all 
major vendors’ tools. The result is the well known Universal Verification Methodology. 
 
UVM is an open-source library which is portable to any HDL simulator that supports System 
Verilog. It provides a rich base class library thus supporting the construction and deployment of 
verification components (VCs) and testbenches, massively reducing the coding effort [5]. 
 
A VC is a ready to use component, which is reusable. VCs share a set of conventions and consist 
of a complete set of elements for stimulating, checking and collecting coverage. The stimulus 
provided to the DUT through a VC verifies protocol implementation and design architecture. Fig. 
1 (Gayathri M 2016 [7]) shows a generic UVM testbench architecture. The top-level module in a 
UVM testbench comprises of a DUT, and a testbench is connected to it. 
 
2.1. UVM Testbench 
 
UVM testbench comprises of sequence item, sequencer, driver, monitor, agent, scoreboard, 
environment, test suite. 
 
2.1.1. Top Testbench 
 
Testbench comprises of instantiations of DUT modules and interfaces that connect DUT with 
testbench. Transaction Level Modeling (TLM) interfaces in UVM are a great resource to 
implement communication function calls for transmitting and receiving transactions among 
modules. 
 
2.1.2. Test 
 
Test component is a class under testbench. Typical tasks performed in this are applying the 
stimulus to DUT by invoking sequences, configuring values in config class. Test class instantiates 
the top level environment. 
 
2.1.3. Environment 
 
Environment (env as illustrated above) is a reusable component class that aggregates scoreboards, 
agents and other UVM verification environments together. 
 
2.1.4. Agent 
 
The Agent as seen in the above illustration aggregates several verification components such as 
sequencer, driver and monitor. Agents can also include components like protocol checkers, TLM 
model, coverage collectors. 
 
2.1.5. Sequence Item 
 
A sequence item is an object modelling the information packet transmitted between two 
components sometimes referred to as a transaction in the UVM hierarchy. It is written extending 
sequence item class. 
 
2.1.6. Sequence 
 
A Sequence is an object that is used to generate a set of sequence items to be sent to the driver. 
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2.1.7. Sequencer 
 
Sequencer takes sequence items from the sequences generated and gives it to the driver. 
Sequencer and driver use TLM interface functions namely seq item export and seq item import to 
connect with one another. 
 
2.1.8. Driver 
 
A Driver is an object which drives the DUT pins based on the sequence items received from the 
sequencer. It converts the sequences into bitwise values and drives the data onto DUT pins. 
 
2.1.9. Monitor 
 
The Monitor takes the DUT bit level values and converts them into sequence items that need to 
be sent to the other UVM components such as the scoreboard and coverage classes. Monitor uses 
analysis port for this purpose, and it performs a broadcast operation. 
 
2.1.10. Scoreboard 
 
The Scoreboard implements checker functionality. The checker matches the response of DUT 
with an expected response. It fetches the expected response from a reference module and receives 
output transactions from the monitor. 
 

A detailed description of all the UVM features can be found in [3]. 
 

 
 

Fig. 2. SPI Master IP Core 
 

3. SPI MASTER CORE 
 
Serial Peripheral Interface is a communication protocol that facilitates full duplex communication 
between a master that is usually a microcontroller unit and a slave that is usually a small 
peripheral device. Communication can happen from master to slave and vice versa. Fig. 2. (S. 
Simon 2004 [6]) represents the SPI Master Core with three parts [6]. The SPI bus is used to send 
and receive data between master and slave that could usually be a microcontroller and a small 
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peripheral unit respectively. When compared to other protocols, the SPI protocol has the 
advantage of relatively high transmission speed, simple to use and uses a small number of signal 
pins. The protocol divides the devices into master and slave for transmitting and receiving the 
data. The protocol uses a master device to generate separate clock and data signal lines, along 
with a chip select line to select the slave device for which the communication has to be 
established. If there is more than one slave device present, the master device must have multiple 
slave select interfaces to control the devices. 
 

 
 

Fig. 3. Clock generator RTL view 
 
There are two data transfer lines. One line responsible for data transfer is Master Out Slave In. 
The other is Master In Slave Out. Serial Clock (SCLK) is the clock synchronization line, and 
Slave Select is analogous to chip select. These are the four signals of an SPI bus interface. The 
configuration of Master Out Slave In (MOSI) line is as an output in a master and as an input in a 
slave. It facilitates one-way data transmission from master to the slave. The configuration of the 
Master In Slave Out (MISO) line is as an input in a master and as an output in a slave. It 
facilitates one-way data transmission from slave to the master. The MISO line remains undriven 
in a high impedance state when a specific slave is not selected. The Slave Select (SS) is an active 
low signal that is used as a chip-select line to select a particular slave. The Serial Clock line is 
used to synchronize data exchange between the MOSI and MISO lines. The required number of 
bit clock cycles are generated by master depending on the number of bytes transacted between 
Master and Slave. 
 
The wishbone compliant master core can be seen as organized into three components, namely 
wishbone interface, clock generator and serial interface [6]. The synthesised RTL view of the 
clock generator is illustrated in Fig. 3. The serial clock(sclk) is generated by scaling the external 
system clock(wbclk) with the desired frequency factor as configured by Clock Divider register. 
The expression of this division is as follows: 
 

fsclk = fwbclk / (DIVIDER + 1) * 2 (1)
 
The serial data transfer module is responsible for interchanging serial MISO data with parallel 
data by enforcing appropriate conversion techniques. The top-level module of the SPI Master IP 
Core has full control over the clock generator and the serial data transfer module. 
 
The SPI master core is our candidate for Design Under Test. We modified an opencores standard 
SPI Master IP Core design to produce a suitable DUT. The DUT is verified in conjunction with 
the SPI slave. The approach we took to verify DUT is to send data from both master and slave 
endpoints. After the transfer is complete, we verify the interchanged data at both ends. Fig. 4 
shows the UVM testbench for the DUT. 
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Fig. 4. UVM Testbench 
 
The top-level module is responsible for connecting the testbench with the DUT. The environment 
contains both the agent and the scoreboard. The agent is created using uvm agent virtual base 
class. In the build phase, the agent builds sequencer, driver and monitor components. We 
enforced randomization on the sequence items. The wishbone bus functional model at the driver 
side transfers transactional level packets into wishbone specific pin level data. 
 

4. DEVELOPMENT OF UVM BASED VIP 
 
The architecture of UVM environment begins with a sequence item. Sequence item is a class 
object usually extended from uvm transaction or uvm sequence item classes. It consists of all the 
required data transfers that can be randomized or constrained to the specified boundary by using 
UVM constructs. Sequences are extended from uvm sequence and generate multiple sequence 
items. The generated sequences are taken to the driver to drive DUT pins. SPI master core driver 
consists of tasks. The first step in the driver is to get the next sequence item. Secondly, we drive 
the transfer of data. Thirdly, we write the packet to UVM analysis port, and we are done with the 
sequence item. The tasks are run simultaneously through a fork...join call. The design of the 
testbench involves the development of a monitor, which observes the communication of the DUT 
with the testbench. It observes the pin level transaction at the outputs of the DUT and reports an 
error if the protocols are violated. The agent connects all these UVM components. The prediction 
of the DUT’s expected output is made in the monitor, and the scoreboard compares the predicted 
response with the DUT’s actual response. The instantiation and connection of agent and 
scoreboard are done in the env class. 
 
All UVM classes contain different simulation phases as enumerated here. 
 
4.1. BUILD PHASE 
 
The build phase instantiates all the UVM components and is executed at the start of the UVM 
testbench simulation. 
 

4.2. CONNECT PHASE 
 
The connect phase makes connections among the subcomponents. Testbench connections are 
made using TLM ports. 
 
4.3. ELABORATION PHASE 
 
Connections are checked in the elaboration phase, address ranges, values and pointers are set up. 
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4.4. SIMULATION PHASE 
 
Initial runtime configurations are set up in this phase, UVM testbench topology is checked for 
correctness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Simulation Waveform of SPI Master Core 

4.5. RUN PHASE 
 
Run phase is the main execution phase where all the simulations are run. This phase starts at time 
0. 
 
4.6. EXTRACT PHASE 
 
This phase extracts data from the DUT and the scoreboard and prepares final statistics. 
 
4.7. REPORT PHASE 
 
The Report phase is used to furnish simulation results for the verification engineer’s perusal. 
 

5. RESULTS AND DISCUSSIONS 
 
Simulations are done and analysed using QuestaSim. Simulation waveforms are shown in Fig. 5 
where we drive the DUT using the Driver component of the VIP. 
 
While [8] also presents a UVM based verification of SPI Master Core, we have achieved an 
improvement over others by adopting constrained random simulation and using an effective set of 
assertions to capture the designer’s intent very well. We propose effective directions for future 
work in designing highly reliable systems. Another recent work on this topic is by Ustoglu et al. 
in [11] but since the paper is in Turkish language, it is very hard to read it due to the language 
gap. In [12], Ni et al. present their analysis on reusability of UVM platform and test cases. They 
presented a reusable verification platform for I2C protocol. The protocol we worked with uses 
SPI for communication. When compared with I2C, SPI supports higher speeds of ommunication. 
Besides this, SPI protocol is inherently full-duplex whereas I2C is half-duplex. We did not catch 
any bugs in the original opencores design, and that is right in this case, as this is a pre-verified 
SPI master core IP. However, when we intentionally introduced a bug into the RTL design, we 
were able to catch this bug using our simulation VIP. We performed the post verification analysis 
in IMC, a coverage analysis tool that returned a coverage of 92.31% 
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Our limitations are as follows: 
 

1)     At any instance of time, only one master can communicate in SPI. 
2)     Hot swapping is not supported by SPI, which refers to dynamically adding modules. 
3)     If at all an error creeps into the protocol, there is no error checking capability like the 

parity bit built into the protocol. 
4) When we operate in a multi-slave model, we would require a separate SS line for each     

slave, which can get cumbersome when the number of slaves is large. 
5) We do not receive an acknowledgement for successful data reception in SPI 

communication protocol. 
 
The data transfer protocol is illustrated in Fig. 6 (S. Simon 2004 [6]). 
 

 
 

Fig. 6. Data Transfer Protocol 
 

6. CONCLUSION 
 
In this paper, we have developed a reusable verification IP for SPI master core that is wishbone 
compliant. We made use of System Verilog and UVM to propose a reusable testbench that is 
comprised of Driver, Monitor, SPI slave, scoreboard, agent, environment, coverage analysis and 
assertions using OOP. Moreover, Constrained Randomization technique is used to achieve wider 
functional coverage. The results from our simulation-based verification prove the effectiveness of 
the proposed VIP. This pre-verified SPI Master core IP can be plugged into SOC as it is. This 
verification component can be reused across the project for verification of other IP 
 
Simulation-based verification is effective for verifying large systems, but does not give a 
guaranteed proof of correctness. On the other hand, formal verification gives us a guaranteed 
proof of correctness by exhaustively covering the state space to unravel corner case bugs but does 
not scale well, at some point verification gets cumbersome due to state space explosion problem. 
 
In future, consider using formal verification as a complementary step to simulation to improve the 
confidence of the verified system. The idea is to inject formal analysis into simulation 
environments. This is referred to by different names, but we prefer to use the name Directed 
Explicit Model Checking [9]. We start with an A* algorithm and define some heuristics (details 
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of the heuristic is out of the scope of this work) to propagate our search in the direction of a 
particular failure situation. Then we employ model checking with this particular state as our 
starting state. Because of this, counterexamples will be shorter and the state space explored will 
be smaller, thereby solving our state space explosion problem largely. In [10] also authors 
propose a Simulation-Guided Formal Analysis approach to bridge the gap between formal 
techniques and simulation-based methods by leveraging the data obtained from simulations. 
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