
International Journal of Artificial Intelligence and Applications (IJAIA), Vol.8, No.5, September 2017

Manifold learning via Multi-Penalty Regularization

Abhishake Rastogi

Department of Mathematics

Indian Institute of Technology Delhi

New Delhi 110016, India

abhishekrastogi2012@gmail.com

Abstract

Manifold regularization is an approach which exploits the geometry of the marginal distri-

bution. The main goal of this paper is to analyze the convergence issues of such regularization

algorithms in learning theory. We propose a more general multi-penalty framework and es-

tablish the optimal convergence rates under the general smoothness assumption. We study a

theoretical analysis of the performance of the multi-penalty regularization over the reproduc-

ing kernel Hilbert space. We discuss the error estimates of the regularization schemes under

some prior assumptions for the joint probability measure on the sample space. We analyze the

convergence rates of learning algorithms measured in the norm in reproducing kernel Hilbert

space and in the norm in Hilbert space of square-integrable functions. The convergence issues

for the learning algorithms are discussed in probabilistic sense by exponential tail inequalities.

In order to optimize the regularization functional, one of the crucial issue is to select regular-

ization parameters to ensure good performance of the solution. We propose a new parameter

choice rule “the penalty balancing principle” based on augmented Tikhonov regularization for

the choice of regularization parameters. The superiority of multi-penalty regularization over

single-penalty regularization is shown using the academic example and moon data set.

Keywords: Learning theory, Multi-penalty regularization, General source condition, Optimal

rates, Penalty balancing principle.
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1 Introduction

Let X be a compact metric space and Y ⊂ R with the joint probability measure ρ on Z = X×Y .

Suppose z = {(xi, yi)}mi=1 ∈ Zm be a observation set drawn from the unknown probability measure

ρ. The learning problem [1, 2, 3, 4] aims to approximate a function fz based on z such that

fz(x) ≈ y. The goodness of the estimator can be measured by the generalization error of a

function f which can be defined as

E(f) := Eρ(f) =

∫
Z

V (f(x), y)dρ(x, y), (1)
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where V : Y × Y → R is the loss function. The minimizer of E(f) for the square loss function

V (f(x), y) = (f(x)− y)2Y is given by

fρ(x) :=

∫
Y

ydρ(y|x), (2)

where fρ is called the regression function. It is clear from the following proposition:

E(f) =

∫
X

(f(x)− fρ(x))2dρX(x) + σ2
ρ,

where σ2
ρ =

∫
X

∫
Y

(y − fρ(x))2dρ(y|x)dρX(x). The regression function fρ belongs to the space of

square integrable functions provided that∫
Z

y2 dρ(x, y) <∞. (3)

Therefore our objective becomes to estimate the regression function fρ.

Single-penalty regularization is widely considered to infer the estimator from given set of ran-

dom samples [5, 6, 7, 8, 9, 10]. Smale et al. [9, 11, 12] provided the foundations of theoretical

analysis of square-loss regularization scheme under Hölder’s source condition. Caponnetto et al. [6]

improved the error estimates to optimal convergence rates for regularized least-square algorithm

using the polynomial decay condition of eigenvalues of the integral operator. But sometimes,

one may require to add more penalties to incorporate more features in the regularized solution.

Multi-penalty regularization is studied by various authors for both inverse problems and learning

algorithms [13, 14, 15, 16, 17, 18, 19, 20]. Belkin et al. [13] discussed the problem of manifold

regularization which controls the complexity of the function in ambient space as well as geometry

of the probability space:

f∗ = argmin
f∈HK

 1

m

m∑
i=1

(f(xi)− yi)2 + λA||f ||2HK + λI

n∑
i,j=1

(f(xi)− f(xj))
2ωij

 , (4)

where {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m}
⋃
{xi ∈ X : m < i ≤ n} is given set of labeled and unlabeled

data, λA and λI are non-negative regularization parameters, ωij ’s are non-negative weights, HK
is reproducing kernel Hilbert space and || · ||HK is its norm.

Further, the manifold regularization algorithm is developed and widely considered in the vector-

valued framework to analyze the multi-task learning problem [21, 22, 23, 24] (Also see references

therein). So it motivates us to theoretically analyze this problem. The convergence issues of the

multi-penalty regularizer are discussed under general source condition in [25] but the convergence

rates are not optimal. Here we are able to achieve the optimal minimax convergence rates using

the polynomial decay condition of eigenvalues of the integral operator.

In order to optimize regularization functional, one of the crucial problem is the parameter

choice strategy. Various prior and posterior parameter choice rules are proposed for single-penalty

regularization [26, 27, 28, 29, 30] (also see references therein). Many regularization parameter se-

lection approaches are discussed for multi-penalized ill-posed inverse problems such as discrepancy

principle [15, 31], quasi-optimality principle [18, 32], balanced-discrepancy principle [33], heuristic

L-curve [34], noise structure based parameter choice rules [35, 36, 37], some approaches which

require reduction to single-penalty regularization [38]. Due to growing interest in multi-penalty
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regularization in learning, multi-parameter choice rules are discussed in learning theory frame-

work such as discrepancy principle [15, 16], balanced-discrepancy principle [25], parameter choice

strategy based on generalized cross validation score [19]. Here we discuss the penalty balancing

principle (PB-principle) to choose the regularization parameters in our learning theory framework

which is considered for multi-penalty regularization in ill-posed problems [33].

1.1 Mathematical Preliminaries and Notations

Definition 1.1. Let X be a non-empty set and H be a Hilbert space of real-valued functions on

X. If the pointwise evaluation map Fx : H → R, defined by

Fx(f) = f(x) ∀f ∈ H,

is continuous for every x ∈ X. Then H is called reproducing kernel Hilbert space.

For each reproducing kernel Hilbert space H there exists a mercer kernel K : X ×X → R such

that for Kx : X → R, defined as Kx(y) = K(x, y), the span of the set {Kx : x ∈ X} is dense in

H. Moreover, there is one to one correspondence between mercer kernels and reproducing kernel

Hilbert spaces [39]. So we denote the reproducing kernel Hilbert space H by HK corresponding to

a mercer kernel K and its norm by || · ||K .

Definition 1.2. The sampling operator Sx : HK → Rm associated with a discrete subset x =

{xi}mi=1 is defined by

Sx(f) = (f(x))x∈x.

Denote S∗x : Rm → HK as the adjoint of Sx. Then for c ∈ Rm,

〈f, S∗xc〉K = 〈Sxf, c〉m =
1

m

m∑
i=1

cif(xi) = 〈f, 1

m

m∑
i=1

ciKxi〉K , ∀f ∈ HK .

Then its adjoint is given by

S∗xc =
1

m

m∑
i=1

ciKxi , ∀c = (c1, · · · , cm) ∈ Rm.

From the following assertion we observe that Sx is a bounded operator:

||Sxf ||2m =
1

m

{
m∑
i=1

〈f,Kxi〉2K

}
≤ 1

m

{
m∑
i=1

||f ||2K ||Kxi ||2K

}
≤ κ2||f ||2K ,

which implies ||Sx|| ≤ κ, where κ :=
√

sup
x∈X

K(x, x).

For each (xi, yi) ∈ Z, yi = fρ(xi) + ηxi , where the probability distribution of ηxi has mean 0

and variance σ2
xi . Denote σ2 := 1

m

m∑
i=1

σ2
xi <∞.

Learning Scheme. The optimization functional (4) can be expressed as

f∗ = argmin
f∈HK

{
||Sxf − y||2m + λA||f ||2K + λI ||(S∗x′LSx′)1/2f ||2K

}
, (5)
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where x′ = {xi ∈ X : 1 ≤ i ≤ n}, ||y||2m = 1
m

∑m
i=1 y

2
i , L = D −W with W = (ωij) is a weight

matrix with non-negative entries and D is a diagonal matrix with Dii =
n∑
j=1

ωij .

Here we consider a more general regularized learning scheme based on two penalties:

fz,λ := argmin
f∈HK

{
||Sxf − y||2m + λ1||f ||2K + λ2||Bf ||2K

}
, (6)

where B : HK → HK is a bounded operator and λ1, λ2 are non-negative parameters.

Theorem 1.1. If S∗xSx + λ1I + λ2B
∗B is invertible, then the optimization functional (6) has

unique minimizer:

fz,λ = ∆SS
∗
xy, where ∆S := (S∗xSx + λ1I + λ2B

∗B)−1.

Proof. we know that for f ∈ HK ,

||Sxf − y||2m + λ1||f ||2K + λ2||Bf ||2K=〈(S∗xSx + λ1I + λ2B
∗B)f, f〉K − 2〈S∗xy, f〉K + ||y||2m.

Taking the functional derivative for f ∈ HK , we see that any minimizer fz,λ of (6) satisfies

(S∗xSx + λ1I + λ2B
∗B)fz,λ = S∗xy.

This proves Theorem 1.1.

Define fx,λ as the minimizer of the optimization problem:

fx,λ := argmin
f∈HK

{
1

m

m∑
i=1

(f(xi)− fρ(xi))2 + λ1||f ||2K + λ2||Bf ||2K

}
(7)

which gives

fx,λ = ∆SS
∗
xSxfρ. (8)

The data-free version of the considered regularization scheme (6) is

fλ := argmin
f∈HK

{
||f − fρ||2ρ + λ1||f ||2K + λ2||Bf ||2K

}
, (9)

where the norm || · ||ρ := || · ||L 2
ρX

. Then we get the expression of fλ,

fλ = (LK + λ1I + λ2B
∗B)−1LKfρ (10)

and

fλ1
:= argmin

f∈HK

{
||f − fρ||2ρ + λ1||f ||2K

}
. (11)

which implies

fλ1
= (LK + λ1I)−1LKfρ, (12)

where the integral operator LK : L 2
ρX → L 2

ρX is a self-adjoint, non-negative, compact operator,

defined as

LK(f)(x) :=

∫
X

K(x, t)f(t)dρX(t), x ∈ X.
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The integral operator LK can also be defined as a self-adjoint operator on HK . We use the same

notation LK for both the operators.

Using the singular value decomposition LK =
∞∑
i=1

ti〈·, ei〉Kei for orthonormal system {ei} in

HK and sequence of singular numbers κ2 ≥ t1 ≥ t2 ≥ . . . ≥ 0, we define

φ(LK) =

∞∑
i=1

φ(ti)〈·, ei〉Kei,

where φ is a continuous increasing index function defined on the interval [0, κ2] with the assumption

φ(0) = 0.

We require some prior assumptions on the probability measure ρ to achieve the uniform con-

vergence rates for learning algorithms.

Assumption 1. (Source condition) Suppose

Ωφ,R := {f ∈ HK : f = φ(LK)g and ||g||K ≤ R} ,

Then the condition fρ ∈ Ωφ,R is usually referred as general source condition [40].

Assumption 2. (Polynomial decay condition) We assume the eigenvalues tn’s of the integral

operator LK follows the polynomial decay: For fixed positive constants α, β and b > 1,

αn−b ≤ tn ≤ βn−b ∀n ∈ N.

Following the notion of Bauer et al. [5] and Caponnetto et al. [6], we consider the class of

probability measures Pφ which satisfies the source condition and the probability measure class Pφ,b
satisfying the source condition and polynomial decay condition.

The effective dimension N (λ1) can be estimated from Proposition 3 [6] under the polynomial

decay condition as follows,

N (λ1) := Tr
(
(LK + λ1I)−1LK

)
≤ βb

b− 1
λ
−1/b
1 , for b > 1. (13)

where Tr(A) :=
∞∑
k=1

〈Aek, ek〉 for some orthonormal basis {ek}∞k=1.

Shuai Lu et al. [41] and Blanchard et al. [42] considered the logarithm decay condition of the

effective dimension N (λ1),

Assumption 3. (logarithmic decay) Assume that there exists some positive constant c > 0

such that

N (λ1) ≤ c log

(
1

λ1

)
,∀λ1 > 0. (14)

2 Convergence Analysis

In this section, we discuss the convergence issues of multi-penalty regularization scheme on

reproducing kernel Hilbert space under the considered smoothness priors in learning theory frame-

work. We address the convergence rates of the multi-penalty regularizer by estimating the sample

error fz,λ − fλ and approximation error fλ − fρ in interpolation norm. In Theorem 2.1, the up-

per convergence rates of multi-penalty regularized solution fz,λ are derived from the estimates of
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Proposition 2.2, 2.3 for the class of probability measure Pφ,b, respectively. We discuss the error

estimates under the general source condition and the parameter choice rule based on the index

function φ and sample size m. Under the polynomial decay condition, in Theorem 2.2 we obtain

the optimal minimax convergence rates in terms of index function φ, the parameter b and the

number of samples m. In particular under Hölder’s source condition, we present the convergence

rates under the logarithm decay condition on effective dimension in Corollary 2.2.

Proposition 2.1. Let z be i.i.d. samples drawn according to the probability measure ρ with the

hypothesis |yi| ≤ M for each (xi, yi) ∈ Z. Then for 0 ≤ s ≤ 1
2 and for every 0 < δ < 1 with prob.

1− δ,

||LsK(fz,λ − fx,λ)||K ≤ 2λ
s− 1

2
1

{
Ξ

(
1 + 2

√
log

(
2

δ

))
+

4κM

3m
√
λ1

log

(
2

δ

)}
,

where Nxi(λ1) = Tr
(
(LK + λ1I)−1KxiK

∗
xi

)
and Ξ = 1

m

√∑m
i=1 σ

2
xiNxi(λ1) for the variance σ2

xi

of the probability distribution of ηxi = yi − fρ(xi).

Proof. The expression fz,λ − fx,λ can be written as ∆SS
∗
x(y − Sxfρ). Then we find that

||LsK(fz,λ − fx,λ)||K ≤ I1||LsK(LK + λ1I)−1/2|| ||(LK + λ1I)1/2∆S(LK + λ1I)1/2||

≤ I1I2||LsK(LK + λ1I)−1/2||, (15)

where I1 = ||(LK+λ1I)−1/2S∗x(y−Sxfρ)||K and I2 = ||(LK+λ1I)1/2(S∗xSx+λ1I)−1(LK+λ1I)1/2||.
For sufficiently large sample size m, the following inequality holds:

8κ2√
m

log

(
2

δ

)
≤ λ1 (16)

Then from Theorem 2 [43] we have with confidence 1− δ,

I3 = ||(LK + λ1I)−1/2(LK − S∗xSx)(LK + λ1I)−1/2|| ≤ ||S∗xSx − LK ||
λ1

≤ 4κ2√
mλ1

log

(
2

δ

)
≤ 1

2
.

Then the Neumann series gives

I2 = ||{I − (LK + λ1I)−1/2(LK − S∗xSx)(LK + λ1I)−1/2}−1|| (17)

= ||
∞∑
i=0

{(LK + λ1I)−1/2(LK − S∗xSx)(LK + λ1I)−1/2}i|| ≤
∞∑
i=0

Ii3 =
1

1− I3
≤ 2.

Now we have,

||LsK(LK + λ1I)−1/2|| ≤ sup
0<t≤κ2

ts

(t+ λ1)1/2
≤ λs−1/21 for 0 ≤ s ≤ 1

2
. (18)

To estimate the error bound for ||(LK +λ1I)−1/2S∗x(y−Sxfρ)||K using the McDiarmid inequality

(Lemma 2 [12]), define the function F : Rm → R as

F(y) = ||(LK + λ1I)−1/2S∗x(y − Sxfρ)||K
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=
1

m

∣∣∣∣∣
∣∣∣∣∣(LK + λ1I)−1/2

m∑
i=1

(yi − fρ(xi))Kxi

∣∣∣∣∣
∣∣∣∣∣
K

.

So F2(y) = 1
m2

m∑
i,j=1

(yi − fρ(xi))(yj − fρ(xj))〈(LK + λ1I)−1Kxi ,Kxj 〉K .

The independence of the samples together with Ey(yi − fρ(xi)) = 0, Ey(yi − fρ(xi))2 = σ2
xi

implies

Ey(F2) =
1

m2

m∑
i=1

σ2
xiNxi(λ1) ≤ Ξ2,

where Nxi(λ1) = Tr
(
(LK + λ1I)−1KxiK

∗
xi

)
and Ξ = 1

m

√∑m
i=1 σ

2
xiNxi(λ1). Since Ey(F) ≤√

Ey(F2). It implies Ey(F) ≤ Ξ.

Let yi = (y1, . . . , yi−1, y
′
i, yi+1, . . . , ym), where y′i is another sample at xi. We have

|F(y)−F(yi)| ≤ ||(LK + λ1I)−1/2S∗x(y − yi)||K

=
1

m
||(yi − y′i)(LK + λ1I)−1/2Kxi ||K ≤

2κM

m
√
λ1
.

This can be taken as B in Lemma 2(2) [12]. Now

Eyi
(
|F(y)− Eyi(F(y))|2

)
≤ 1

m2

∫
Y

(∫
Y

|yi − y′i| ||(LK + λ1I)−1/2Kxi ||Kdρ(y′i|xi)
)2

dρ(yi|xi)

≤ 1

m2

∫
Y

∫
Y

(yi − y′i)
2Nxi(λ1)dρ(y′i|xi)dρ(yi|xi)

≤ 2

m2
σ2
xiNxi(λ1)

which implies
m∑
i=1

σ2
i (F) ≤ 2Ξ2.

In view of Lemma 2(2) [12] for every ε > 0,

Prob
y∈Ym

{F(y)− Ey(F(y)) ≥ ε} ≤ exp

{
− ε2

4(Ξ2 + εκM/3m
√
λ1)

}
= δ. (let)

In terms of δ, probability inequality becomes

Prob
y∈Ym

{
F(y) ≤ Ξ

(
1 + 2

√
log

(
1

δ

))
+

4κM

3m
√
λ1

log

(
1

δ

)}
≤ 1− δ.

Incorporating this inequality with (17), (18) in (15), we get the desired result.

Proposition 2.2. Let z be i.i.d. samples drawn according to the probability measure ρ with the

hypothesis |yi| ≤ M for each (xi, yi) ∈ Z. Suppose fρ ∈ Ωφ,R. Then for 0 ≤ s ≤ 1
2 and for every

0 < δ < 1 with prob. 1− δ,

||LsK(fz,λ − fλ)||K ≤ 2λ
s− 1

2
1√
m

{
3M
√
N (λ1) +

4κ√
λ1
||fλ − fρ||ρ +

√
λ1
6
||fλ − fρ||K

+
7κM√
mλ1

}
log

(
4

δ

)
.
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Proof. We can express fx,λ − fλ = ∆S(S∗xSx − LK)(fρ − fλ), which implies

||LsK(fx,λ − fλ)||K ≤ I4

∣∣∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

(fρ(xi)− fλ(xi))Kxi − LK(fρ − fλ)

∣∣∣∣∣
∣∣∣∣∣
K

.

where I4 = ||LsK∆S ||. Using Lemma 3 [12] for the function fρ − fλ, we get with confidence 1− δ,

||LsK(fx,λ − fλ)||K≤I4

(
4κ||fλ − fρ||∞

3m
log

(
1

δ

)
+
κ||fλ − fρ||ρ√

m

(
1 +

√
8log

(
1

δ

)))
. (19)

For sufficiently large sample (16), from Theorem 2 [43] we get

||(LK − S∗xSx)(LK + λ1I)−1|| ≤ ||S
∗
xSx − LK ||

λ1
≤ 4κ2√

mλ1
log

(
2

δ

)
≤ 1

2

with confidence 1− δ, which implies

||(LK + λ1I)(S∗xSx + λ1I)−1|| = ||{I − (LK − S∗xSx)(LK + λ1I)−1}−1|| ≤ 2. (20)

We have, ||LsK(LK + λ1I)−1|| ≤ sup
0<t≤κ2

ts

(t+ λ1)
≤ λs−11 for 0 ≤ s ≤ 1. (21)

Now equation (20) and (21) implies the following inequality,

I4≤||LsK(S∗xSx + λ1I)−1||≤||LsK(LK + λ1I)−1|| ||(LK + λ1I)(S∗xSx + λ1I)−1||≤2λs−11 . (22)

Let ξ(x) = σ2
xNx(λ1) be the random variable. Then it satisfies |ξ| ≤ 4κ2M2/λ1, Ex(ξ) ≤M2N (λ1)

and σ2(ξ) ≤ 4κ2M4N (λ1)/λ1. Using the Bernstein inequality we get

Prob
x∈Xm

{
m∑
i=1

(
σ2
xiNxi(λ1)−M2N (λ1)

)
> t

}
≤ exp

(
− t2/2

4mκ2M4N (λ1)
λ1

+ 4κ2M2t
3λ1

)

which implies

Prob
x∈Xm

{
Ξ ≤

√
M2N (λ1)

m
+

√
8κ2M2

3m2λ1
log

(
1

δ

)}
≥ 1− δ. (23)

We get the required error estimate by combining the estimates of Proposition 2.1 with inequalities

(19), (22), (23).

Proposition 2.3. Suppose fρ ∈ Ωφ,R. Then under the assumption that φ(t) and t1−s/φ(t) are

nondecreasing functions, we have

||LsK(fλ − fρ)||K ≤ λs1
(
Rφ(λ1) + λ2λ

−3/2
1 M ||B∗B||

)
. (24)

Proof. To realize the above error estimates, we decomposes fλ − fρ into fλ − fλ1 + fλ1 − fρ. The

first term can be expressed as

fλ − fλ1
= −λ2(LK + λ1I + λ2B

∗B)−1B∗Bfλ1
.
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Then we get

||LsK(fλ − fλ1)||K ≤ λ2||LsK(LK + λ1I)−1|| ||B∗B|| ||fλ1 ||K (25)

≤ λ2λ
s−1
1 ||B∗B|| ||fλ1 ||K ≤ λ2λ

s−3/2
1 M ||B∗B||.

||LsK(fλ1
− fρ)|| ≤ R||rλ1

(LK)LsKφ(LK)|| ≤ Rλs1φ(λ1), (26)

where rλ1
(t) = 1− (t+ λ1)−1t.

Combining these error bounds, we achieve the required estimate.

Theorem 2.1. Let z be i.i.d. samples drawn according to probability measure Pφ,b. Suppose

φ(t) and t1−s/φ(t) are nondecreasing functions. Then under parameter choice λ1 ∈ (0, 1], λ1 =

Ψ−1(m−1/2), λ2 = (Ψ−1(m−1/2))3/2φ(Ψ−1(m−1/2)) where Ψ(t) = t
1
2+

1
2bφ(t), for 0 ≤ s ≤ 1

2 and

for all 0 < δ < 1, the following error estimates holds with confidence 1− δ,

Prob
z∈Zm

{
||LsK(fz,λ − fρ)||K ≤ C(Ψ−1(m−1/2))sφ(Ψ−1(m−1/2)) log

(
4

δ

)}
≥ 1− δ,

where C = 14κM + (2 + 8κ)(R+M ||B∗B||) + 6M
√
βb/(b− 1) and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Prob
z∈Zm

{
||LsK(fz,λ − fρ)||K > τ(Ψ−1(m−1/2))sφ(Ψ−1(m−1/2))

}
=0.

Proof. Let Ψ(t) = t
1
2+

1
2bφ(t). Then Ψ(t) = y follows,

lim
t→0

Ψ(t)√
t

= lim
y→0

y√
Ψ−1(y)

= 0.

Under the parameter choice λ1 = Ψ−1(m−1/2) we have lim
m→∞

mλ1 =∞. Therefore for sufficiently

large m,

1

mλ1
=
λ

1
2b
1 φ(λ1)√
mλ1

≤ λ
1
2b
1 φ(λ1).

Under the fact λ1 ≤ 1 from Proposition 2.2, 2.3 and eqn. (13) follows that with confidence 1− δ,

||LsK(fz,λ − fρ)||K ≤ C(Ψ−1(m−1/2))sφ(Ψ−1(m−1/2)) log

(
4

δ

)
, (27)

where C = 14κM + (2 + 8κ)(R+M ||B∗B||) + 6M
√
βb/(b− 1).

Now defining τ := C log
(
4
δ

)
gives δ = δτ = 4e−τ/C . The estimate (27) can be reexpressed as

Prob
z∈Zm

{||LsK(fz,λ − fρ)||K > τ(Ψ−1(m−1/2))sφ(Ψ−1(m−1/2))} ≤ δτ . (28)

Theorem 2.2. Let z be i.i.d. samples drawn according to the probability measure ρ ∈ Pφ,b. Then

under the parameter choice λ0 ∈ (0, 1], λ0 = Ψ−1(m−1/2), λj = (Ψ−1(m−1/2))3/2φ(Ψ−1(m−1/2))

for 1 ≤ j ≤ p, where Ψ(t) = t
1
2+

1
2bφ(t), for all 0 < η < 1, the following error estimates hold with

confidence 1− η,
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(i) If φ(t) and t/φ(t) are nondecreasing functions. Then we have,

Prob
z∈Zm

{
||fz,λ − fH||H ≤ C̄φ(Ψ−1(m−1/2)) log

(
4

η

)}
≥ 1− η

and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Prob
z∈Zm

{
||fz,λ − fH||H > τφ(Ψ−1(m−1/2))

}
= 0,

where C̄ = 2R+ 4κM + 2M ||B∗B||L(H) + 4κΣ.

(ii) If φ(t) and
√
t/φ(t) are nondecreasing functions. Then we have,

Prob
z∈Zm

{
||fz,λ − fH||ρ ≤ C̄(Ψ−1(m−1/2))1/2φ(Ψ−1(m−1/2)) log

(
4

η

)}
≥ 1− η

and

lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Prob
z∈Zm

{
||fz,λ − fH||ρ > τ(Ψ−1(m−1/2))1/2φ(Ψ−1(m−1/2))

}
= 0.

Corollary 2.1. Under the same assumptions of Theorem 2.1 for Hölder’s source condition fρ ∈
Ωφ,R, φ(t) = tr, for 0 ≤ s ≤ 1

2 and for all 0 < δ < 1, with confidence 1 − δ, for the parameter

choice λ1 = m−
b

2br+b+1 and λ2 = m−
2br+3b

4br+2b+2 we have the following convergence rates:

||LsK(fz,λ − fρ)||K ≤ Cm−
b(r+s)

2br+b+1 log

(
4

δ

)
for 0 ≤ r ≤ 1− s.

Remark 2.1. For Hölder source condition fH ∈ Ωφ,R, φ(t) = tr with the parameter choice

λ0 ∈ (0, 1], λ0 = m−
b

2br+b+1 and for 1 ≤ j ≤ p, λj = m−
2br+3b

4br+2b+2 , we obtain the optimal minimax

convergence rates O(m−
br

2br+b+1 ) for 0 ≤ r ≤ 1 and O(m−
2br+b

4br+2b+2 ) for 0 ≤ r ≤ 1
2 in RKHS-norm

and L 2
ρX -norm, respectively.

Corollary 2.2. Under the logarithm decay condition of effective dimension N (λ1), for Hölder’s

source condition fρ ∈ Ωφ,R, φ(t) = tr, for 0 ≤ s ≤ 1
2 and for all 0 < δ < 1, with confidence

1 − δ, for the parameter choice λ1 =
(

logm
m

) 1
2r+1

and λ2 =
(

logm
m

) 2r+3
4r+2

we have the following

convergence rates:

||LsK(fz,λ − fρ)||K ≤ C
(

logm

m

) s+r
2r+1

log

(
4

δ

)
for 0 ≤ r ≤ 1− s.

Remark 2.2. The upper convergence rates of the regularized solution is estimated in the in-

terpolation norm for the parameter s ∈ [0, 12 ]. In particular, we obtain the error estimates in

|| · ||HK -norm for s = 0 and in || · ||L 2
ρX

-norm for s = 1
2 . We present the error estimates of

multi-penalty regularizer over the regularity class Pφ,b in Theorem 2.1 and Corollary 2.1. We can

also obtain the convergence rates of the estimator fz,λ under the source condition without the

polynomial decay of the eigenvalues of the integral operator LK by substituting N (λ1) ≤ κ2

λ1
. In

addition, for B = (S∗x′LSx′)1/2 we obtain the error estimates of the manifold regularization scheme

(30) considered in [13].

Remark 2.3. The parameter choice is said to be optimal, if the minimax lower rates coincide with

the upper convergence rates for some λ = λ(m). For the parameter choice λ1 = Ψ−1(m−1/2) and
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λ2 = (Ψ−1(m−1/2))3/2φ(Ψ−1(m−1/2)), Theorem 2.2 share the upper convergence rates with the

lower convergence rates of Theorem 3.11, 3.12 [44]. Therefore the choice of parameters is optimal.

Remark 2.4. The results can be easily generalized to n-penalty regularization in vector-valued

framework. For simplicity, we discuss two-parameter regularization scheme in scalar-valued func-

tion setting.

Remark 2.5. We can also address the convergence issues of binary classification problem [45]

using our error estimates as similar to discussed in Section 3.3 [5] and Section 5 [9].

The proposed choice of parameters in Theorem 2.1 is based on the regularity parameters which

are generally not known in practice. In the proceeding section, we discuss the parameter choice

rules based on samples.

3 Parameter Choice Rules

Most regularized learning algorithms depend on the tuning parameter, whose appropriate choice

is crucial to ensure good performance of the regularized solution. Many parameter choice strategies

are discussed for single-penalty regularization schemes for both ill-posed problems and the learning

algorithms [27, 28] (also see references therein). Various parameter choice rules are studied for

multi-penalty regularization schemes [15, 18, 19, 25, 31, 32, 33, 36, 46]. Ito el al. [33] studied

a balancing principle for choosing regularization parameters based on the augmented Tikhonov

regularization approach for ill posed inverse problems. In learning theory framework, we are

discussing the fixed point algorithm based on the penalty balancing principle considered in [33].

The Bayesian inference approach provides a mechanism for selecting the regularization parame-

ters through hierarchical modeling. Various authors successfully applied this approach in different

problems. Thompson et al. [47] applied this for selecting parameters for image restoration. Jin et

al. [48] considered the approach for ill-posed Cauchy problem of steady-state heat conduction.

The posterior probability density function (PPDF) for the functional (5) is given by

P (f, σ2, µ, z) ∝

(
1

σ2

)n/2
exp

(
− 1

2σ2
||Sxf − y||2m

)
µ
n1/2
1 exp

(
−µ1

2
||f ||2K

)
µ
n2/2
2

· exp
(
−µ2

2
||Bf ||2K

)
µα

′−1
1 e−β

′µ1µα
′−1

2 e−β
′µ2

(
1

σ2

)α′
o−1

e−β
′
o(

1
σ2

).

where (α′, β′) are parameter pairs for µ = (µ1, µ2), (α′o, β
′
o) are parameter pair for inverse variance

1
σ2 . In the Bayesian inference approach, we select parameter set (f, σ2, µ) which maximizes the

PPDF. By taking the negative logarithm and simplifying, the problem can be reformulated as

J (f, τ, µ) = τ ||Sxf − y||2m + µ1||f ||2K + µ2||Bf ||2K
+β(µ1 + µ2)− α(logµ1 + logµ2) + βoτ − αologτ,

where τ = 1/σ2, β = 2β′, α = n1 + 2α′ − 2, βo = 2β′o, αo = n2 + 2α′o − 2. We assume that

the scalars τ and µi’s have Gamma distributions with known parameter pairs. The functional is

pronounced as augmented Tikhonov regularization.

For non-informative prior βo = β = 0, the optimality of a-Tikhonov functional can be reduced to
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fz,λ = arg min

f∈HK

{
||Sxf − y||2m + λ1||f ||2K + λ2||Bf ||2K

}
µ1 = α

||fz,λ||2K
, µ2 = α

||Bfz,λ||2K
τ = αo

||Sxfz,λ−y||2m

where λ1 = µ1

τ , λ2 = µ2

τ , γ = αo
α , this can be reformulated as fz,λ = arg min

f∈HK

{
||Sxf − y||2m + λ1||f ||2K + λ2||Bf ||2K

}
λ1 = 1

γ
||Sxfz,λ−y||2m
||fz,λ||2K

, λ2 = 1
γ
||Sxfz,λ−y||2m
||Bfz,λ||2K

which implies

λ1||fz,λ||2K = λ2||Bfz,λ||2K .

It selects the regularization parameter λ in the functional (6) by balancing the penalty with

the fidelity. Therefore the term “Penalty balancing principle” follows. Now we describe the fixed

point algorithm based on PB-principle.

Algorithm 1 Parameter choice rule “Penalty-balancing Principle”

1. For an initial value λ = (λ01, λ
0
2), start with k = 0.

2. Calculate fz,λk and update λ by

λk+1
1 =

||Sxfz,λk − y||2m + λk2 ||Bfz,λk ||2K
(1 + γ)||fz,λk ||2K

,

λk+1
2 =

||Sxfz,λk − y||2m + λk1 ||fz,λk ||2K
(1 + γ)||Bfz,λk ||2K

.

3. If stopping criteria ||λk+1 − λk|| < ε satisfied then stop otherwise set k = k + 1 and GOTO
(2).

4 Numerical Realization

In this section, the performance of single-penalty regularization versus multi-penalty regular-

ization is demonstrated using the academic example and two moon data set. For single-penalty

regularization, parameters are chosen according to the quasi-optimality principle while for two-

parameter regularization according to PB-principle.

We consider the well-known academic example [28, 16, 49] to test the multi-penalty regulariza-

tion under PB-principle parameter choice rule,

fρ(x) =
1

10

{
x+ 2

(
e−8(

4π
3 −x)

2

− e−8(π2−x)
2

− e−8( 3π
2 −x)

2
)}

, x ∈ [0, 2π], (29)

which belongs to reproducing kernel Hilbert space HK corresponding to the kernel K(x, y) =

xy+exp (−8(x− y)2). We generate noisy data 100 times in the form y = fρ(x)+δξ corresponding

to the inputs x = {xi}mi=1 = { π10 (i − 1)}mi=1, where ξ follows the uniform distribution over [−1, 1]

with δ = 0.02.

88



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.8, No.5, September 2017

We consider the following multi-penalty functional proposed in the manifold regularization

[13, 15],

argmin
f∈HK

{
1

m

m∑
i=1

(f(xi)− yi)2 + λ1||f ||2K + λ2||(S∗x′LSx′)1/2f ||2K

}
, (30)

where x′ = {xi ∈ X : 1 ≤ i ≤ n} and L = D − W with W = (ωij) is a weight matrix with

non-negative entries and D is a diagonal matrix with Dii =
n∑
j=1

ωij .

In our experiment, we illustrate the error estimates of single-penalty regularizers f = fz,λ1
,

f = fz,λ2
and multi-penalty regularizer f = fz,λ using the relative error measure

||f−fρ||
||f || for the

academic example in sup norm, HK-norm and || · ||m-empirical norm in Fig. 1 (a), (b) & (c)

respectively.

Figure 1: Figures show the relative errors of different estimators for the academic example in ||·||K-
norm (a), || · ||m-empirical norm (b) and infinity norm (c) corresponding to 100 test problems with
the noise δ = 0.02 for all estimators.

Now we compare the performance of multi-penalty regularization over single-penalty regular-

ization method using the well-known two moon data set (Fig. 2) in the context of manifold

learning. The data set contains 200 examples with k labeled example for each class. We perform

experiments 500 times by taking l = 2k = 2, 6, 10, 20 labeled points randomly. We solve the man-

ifold regularization problem (30) for the mercer kernel K(xi, xj) = exp(−γ||xi − xj ||2) with the

exponential weights ωij = exp(−||xi − xj ||2/4b), for some b, γ > 0. We choose initial parame-

ters λ1 = 1 × 10−14, λ2 = 4.5 × 10−3, the kernel parameter γ = 3.5 and the weight parameter

b = 3.125× 10−3 in all experiments. The performance of single-penalty (λ2 = 0) and the proposed

multi-penalty regularizer (30) is presented in Fig. 2, Table 1.

Based on the considered examples, we observe that the proposed multi-penalty regularization

with the penalty balancing principle parameter choice outperforms the single-penalty regularizers.
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(a) (b)

Figure 2: The figures show the decision surfaces generated with two labeled samples (red star) by
single-penalty regularizer (a) based on the quasi-optimality principle and manifold regularizer (b)
based on PB-principle.

Single-penalty Regularizer Multi-penalty Regularizer

(SP %) (WC) Parameters (SP %) (WC) Parameters
m = 2 76.984 89 λ1 = 1.2× 10−14 100 0 λ1 = 1.1103× 10−14

λ2 = 5.9874× 10−4

m = 6 88.249 112 λ1 = 1.2× 10−14 100 0 λ1 = 9.8784× 10−15

λ2 = 5.7020× 10−4

m = 10 93.725 77 λ1 = 1.2× 10−14 100 0 λ1 = 1.0504× 10−14

λ2 = 7.3798× 10−4

m = 20 98.100 40 λ1 = 1.2× 10−14 100 0 λ1 = 1.0782× 10−14

λ2 = 7.0076× 10−4

Table 1: Statistical performance interpretation of single-penalty (λ2 = 0) and multi-penalty regu-
larizers of the functional

Symbols: labeled points (m); successfully predicted (SP); maximum of wrongly classified points
(WC)

5 Conclusion

In summary, we achieved the optimal minimax rates of multi-penalized regression problem un-

der the general source condition with the decay conditions of effective dimension. In particular,

the convergence analysis of multi-penalty regularization provide the error estimates of manifold

regularization problem. We can also address the convergence issues of binary classification problem

using our error estimates. Here we discussed the penalty balancing principle based on augmented

Tikhonov regularization for the choice of regularization parameters. Many other parameter choice

rules are proposed to obtain the regularized solution of multi-parameter regularization schemes.

The next problem of interest can be the rigorous analysis of different parameter choice rules of

multi-penalty regularization schemes. Finally, the superiority of multi-penalty regularization over

single-penalty regularization is shown using the academic example and moon data set.
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[40] P. Mathé and S. V. Pereverzev, “Geometry of linear ill-posed problems in variable Hilbert

scales,” Inverse problems, vol. 19, no. 3, pp. 789–803, 2003.
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