
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

DOI : 10.5121/ijdkp.2015.5207 83

CONTENT BASED INDEXING OF MUSIC
OBJECTS USING APPROXIMATE SEQUENTIAL

PATTERNS

D.Vikram
1

and Dr.M.Shashi
2

1
SRF(CSIR) and

2
Professor

Department of Computer Science and Systems Engineering

Andhra University, Visakhapatnam, India

ABSTRACT

The music objects are classified into Monophonic and Polyphonic. In Monophonic there is only one track

which is the main melody that leads the song. In Polyphonic objects, there are several tracks that

accompany the main melody. Each track is a sequence of notes played simultaneously with other tracks.

But, the main melody captures the essence of the music and plays vital role in MIR. The MIR involves

representation of main melody as a sequence of notes played, extraction of repeating patterns from it and

matching of query sequence with frequent repeating sequential patterns constituting the music object.

Repeating patterns are subsequences of notes played time and again in a main melody with possible

variations in the notes to a tolerable extent. Similarly, the query sequence meant for retrieving a music

object may not contain the repeating patterns of the main melody in its exact form. Hence, extraction of

approximate patterns is essential for a MIR system. This paper proposes a novel method of finding

approximate repeating patterns for the purpose of MIR. The effectiveness of methodology is tested and

found satisfactory on real world data namely ‘Raga Surabhi’ an Indian Carnatic Music portal.

KEYWORDS

MIR, MIDI, Query by Humming, Repeating Patterns.

1. INTRODUCTION

Sequence of data objects maintains an order among its constituents and hence they are found to

be suitable to represent data such as DNA sequences, stock market data streams, time series

weather/climatic conditions at one or more locations, audio signals, video signals etc. Sequential

pattern mining is a specialized field of data mining which focuses on extracting sequential

patterns from sequence data repositories. Sequential pattern mining [1] has separate set of

techniques to extract repeating pattern from long sequences and frequent sequential patterns from

a large collection of shorter sequences of fixed or variable length constituting a sequence data

base. This paper focuses on repeating pattern extraction from a single long sequence representing

a monophonic music object.

The music objects are represented in three formats:

1. Conventional Music Notation (CMN) ([2],[12]) represents music objects with symbols and

time signature and it does not support automated processing as it is only human readable but not

machine readable.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

84

2. Audio file format represents general songs which can be played by CD players and iPods.

These files are available in original format as .wav file and in compressed format as .mp3 file.

3. Musical Instrument Digital Interface (MIDI) file format provides event messages about the

pitch and intensity, control signals for parameters such as volume, vibrato and panning, cues and

clock signals to set the tempo[5]. See Fig.[1] for representation of music files in three formats

Fig.[1] Representation of music files

The music objects represented in audio and MIDI formats are machine processable and hence

becomes amicable for automated retrieval. A song or a piece of music with suitable

accompaniment are generally represented as a polyphonic music object [Fig.2a] containing

separate tracks for various accompaniment in addition to main melody, as a MIDI file. The main

melody [4] contains most of the information pertaining to the music object and hence demands

special focus while processing music objects in the context of music information retrieval. The

main melody [Fig.2b] is extracted by separating [6] the track representing it from originally

polyphonic music object to create a monophonic music object.

The theme of a song is inherently captured by the track representing main melody as it provides

data regarding the sequence of notes played at various time stamps along with velocity etc. In the

context of music information retrieval in response to Query by Humming (QBH) [7] the note

sequence representing the main melody is totally ordered. In other words the notes are strictly

ordered because at every time stamp no more than one note is played excluding the

accompaniments.

Fig. [2a] MIDI file with multiple tracks as polyphony

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

85

Fig. [2b] MIDI file with separated track as monophony as main melody

This research work aims at extracting features of monophonic music objects for the purpose of

indexing them in support of Music Information Retrieval [14]. Specifically, the authors have

developed a frame work for representing the main melody of a monophonic music object as a

long sequence of notes along with the time stamps and applied sequential mining techniques for

extracting repeating patterns allowing tolerance for minor alterations in the notes played which is

essential for dealing with real world applications. Sequential patterns with tolerance are referred

to as approximate sequential patterns which contain one or more exactly repeating patterns that

are joinable as they co-occur close to one another frequently. Hence, mining exactly repeating

patterns provides seeds for formation of lengthier approximate sequential patterns with tolerance.

Table [1]: Musical notes for a given string

2. METHODOLOGY

This project on feature extraction from monophonic music objects is implemented in three

phases:

1. Representation of the main melody track as a note sequence

[6]

2. Finding maximal exactly repeating patterns in linear time [8]

3. Extracting approximate sequential patterns with tolerance [8]

2.1 Representation of main melody as a note sequence:

Monophonic [3] music objects containing the main melody is available as a sequence of MIDI

note numbers. Each MIDI note number has a two dimensional symbolic name representing the

name of the note and its octave for example MIDI note number 45 is named/referred to as A2 as

they represents note A in octave 2. Similarly, the name of the MIDI note number 96 is C7

representing note C in octave 7. Though there are 128 MIDI note numbers the human perception

is limited to a sub range of these 128 distinct notes.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

86

 Table [2]: Mapping of alphabets with MIDI note number and musical notes for given range

For the purpose of indexing songs/music objects, no song spans over more than three octaves and

hence it is possible and convenient to represent each MIDI note number by a single symbol of
each English alphabet [A-Z…a-z] which can represent more than four octaves. Specifically, each

of the musical notes starting from A2 (45) to C7 (96) are represented using single symbol starting

from A to z for simplicity as listed in Table [2]. Accordingly a music sequence “ D3 A#2 A#2 C3

G#3 D3 A#2 A#2 D3 C3 ” with MIDI note numbers “50 46 46 48 56 50 46 46 50 48” is

represented as “F B B D L F B B F D” to transform it into a string Table [1].

Thus any musical note sequence that is totally ordered can be represented as a string of alphabets.

Hence, the data structures and algorithms developed for string processing are directly applicable

to music sequences represented as strings.

2.2 Finding maximal exactly repeating patterns

Once a music object or a song is represented as a sequence of alphabet in the form of a string, the

process of locating maximal exactly repeating sub sequences at different positions of the long

sequence proceeds in the second phase.

The [fig. 3] depicts the suffix tree for string F B B D L F B B F D. For any non-leaf node ‘v’ the

number of leaf nodes in the sub-tree routed at ‘v’ gives the frequency as well as indexes of the

string formed by the concatenation of edge labels along the path to ‘v’ referred to as path label of

‘v’.

The suffix tree shown in [Fig. 3] contains a non-leaf node whose path label is ‘F’ as it contains 3

leaf nodes in its sub tree. Its frequency is 3 and the indexes of suffixes are 1, 6 and 9 representing

F B B D L F B B F D, FBBFD, FD respectively. Similarly ‘BB’ has 2 leafs and ‘FBB’ has 2 leafs

representing their frequency and location of occurrence in the string S.

Wiener et.al.[9] proposed an efficient algorithm for constructing a suffix tree whose time as well

as space complexity is O(n). This research work adapts Wieners algorithm for extracting maximal

exactly repeating patterns from a musical note sequence represented as a string. Every non-leaf
node of the suffix tree with more than a threshold number θ of leaf nodes in its sub tree identifies

a maximal exactly repeating pattern defined by its path label.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

87

Fig.[3] The suffix tree construction for given string

Suffix tree is an efficient non-linear data structure that supports efficient implementations of

many string operations including extraction of exactly repeating maximal substrings from a long

sequence/string ([10], [15]). A suffix tree representing a string of length n is a rooted directed tree

with exactly n leaves numbered 1 to n representing the location/index of the suffix represented by

label of the path ending at the leaf node. Every internal node except for the root node has two or

more branches labeled with non empty suffixes with distinct starting character.

A repeating pattern ‘P’ of length ‘n’ has a nearly 2
n
 sub pattern which also repeats with the

repeating pattern ‘P’. A maximal repeating pattern is a lengthiest subsequence that repeats in a

string frequently and none of its extensions in either direction has equal frequency with it[16].

Considering a frequency threshold of 2, ‘F’ as well as ‘FBB’ are considered maximal repeating

patterns individually as their frequency is different. While ‘FB’ is a subsequence of ‘FBB’ which

is not considered as maximal repeating pattern as its frequency being same as that of ‘FBB’.

The following algorithm is applied to identify and locate repeated occurrences of maximal

repeating patterns in the string. Each repeating pattern ‘i’ has a strand defined by an ordered pair

<pati, sup-seti> where, pati is the pattern that repeats and sup-seti is a list of indexes of the

subsequences supporting the pati.

2.2.1 Algorithm for finding exact repeating patterns and their strands:

Input:

 Music note sequence represented as string S, minimum frequency threshold θ and minimum

length threshold lmin.

Output: Strands of exact repeating patterns <pati, sup-seti>

 sup-seti is a set of locations of repeated occurrences of pati in S

1. construct suffix tree for the string S

2. traverse the tree from root

i=0

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

88

at every non-leaf node ‘v’

 if the path length (v) > lmin

 if leaf node count(v) > θ

 (i=i+1, pati = prefix(v)

 then store the indexes of

 leafs into sup-seti)

The above algorithm gains its efficiency as it uses suffix tree which is a compressed form of trie.

The height of suffix tree is much less than the worst case possible height of a trie which is equal

to the length of the string.

2.3 Extracting approximate sequential patterns with tolerance:

Phase2 discovers exact repeating patterns that are significant based on user specified length and

frequency thresholds. An approximate sequential pattern is a combination of maximal repeating

patterns that occur close to one another. Specifically an Approximate sequential Pattern (AP) can

be expressed as a series of Exact repeating Patterns (EP) separated by allowable gap, Gi which is

the number of differing characters occurring in between EPi and EPi+1 in the subsequences that

support both EPi and EPi+1.

For example, approximate pattern P= < ‘AB’, 1, ‘BCE’, 2, ‘DA’ > is a series of three exact

patterns; ‘AB’ followed by ‘BCE’ with a gap of one mismatching characters. The subsequences

‘…ABCBCEEFDA…’ as well as ‘ABABCEABA’ contain the pattern P and hence support it.

The length of an approximate pattern is the sum of the lengths of exact patterns and gaps

constituting it. The length of the pattern P is 10. The ratio of the number of mismatching

characters to the length of approximate pattern should be less than tolerance threshold specified

by user. The tolerance threshold is limited in the range of 0 to 0.4; while ‘0’ tolerance imposes

stringent matching, ‘0.4’ tolerance allows very liberal matching.

The strand of a pattern represents the subsequences supporting the pattern in the form of list of

indexes. The strands of multiple exact patterns (constituting an approximate pattern) are carefully

merged to form strands of approximate patterns.

Two strands can be merged to form a strand of a lengthier approximate pattern if they contain
indexes close to one another on either side within a specified gap. Suppose there are two strands

namely strandj with a pattern Pj of length lj and strandk with a pattern Pk of length lk. Inorder to be

mergeable an index i in strandj should have a corresponding index m in strandk with in a distance

of dj where dj is equal to dj=(1+2δ)*lj where δ is error threshold[17]. If Pk occurs after Pj the

merged pattern is <Pj, gap, Pk> otherwise, it is <Pk, gap, Pj>. The following algorithm gives

details of merging smaller patterns to form larger approximate patterns and maintaining their

strands.

Step1 finds the allowable gap between two patterns based on their lengths and error tolerance δ.

Step2 discusses the process of merging patterns and strands in the forward direction while step3

discusses the process of merging patterns and strands in the backward direction. Step 4

increments j to repeat first three steps for extending each strandj on both sides. The final step

screens away infrequent strands based on index counting. The resulting strands may in turn be

merged with other strands and the process continues until no new strands can be merged.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

89

2.3.1 Algorithm for finding Approximate Patterns:

Input: Original sequence S, list of t strands of exact repeating patterns strand[], min frequency

threshold θ, error threshold δ.

Output: Strands of approximate patterns

Process:

1. for each j=1 to t

for each strandj with pattern Pj find lj =len(Pj),

dj =(1+2 δ)* lj

2. Search forward:

` for k=j+1 to t

for each index i in strandj

for each index m in strandk

if (i+lj) ≤ m ≤ (i+dj);

{

gap = m-(i+lj)

create new strand with pattern = <Pj, gap, Pk>

 insert i into the list of indexes of the new strand

repeat
 i = next index in the strandj

 m = next index in the strandk

 if (m-(i+lj)= gap);

{

 append i to the list indexes

 of new strand

 i= next indexes in strandj

}

m= next index in strandk

}

until null.

3. Search backward:

 if (j=1), goto step4;

 for k=j-1 down to 1

 for each index i in strandj

 for each index n in strandk

 if((i-lk) > n ≥ (i-dj));

 {

 lk=len (Pk)

 gap=(i-(n+lk))

 insert new pattern = <Pk, gap, Pj>

 insert n into the list of indexes of new strand

 repeat

 i = next index in the Pj strand

 n= next index in k
th

strand

 if (i-(n+lk)= gap);

 {

 append n to the list of indexes of
 new strand

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

90

 i = next index in strandj

 }

 n=next index in strandk

 }

until null

4. j=j+1

5. count the indexes of each strand and return those with at least θ frequency.

3. EXPERIMENTATION AND RESULTS

Raga Surabhi provides a collection of 185 songs belonging to various ragas of Carnatic music in

mp3 format. Each song is represented as a note sequence during the preprocessing steps by

converting wave files into strings. The length of the songs varies extensively resulting in a range

of 238 to 6144 long sequences/strings. The sum of the lengths of all note sequences is
2,28,542.We implemented [2.2.1] and[2.3.1] algorithms and found the number of repeating

patterns with user specified minimum length of patterns {2,3,4,5} and frequency θ={2,3,4,5} and

error threshold as gaps δ={0.1,0.2,0.3,0.4} as shown in Tables [4,5 and 6] and their graphs in

[Fig. 4, and 5]. See annexure [1] for detailed results.

Example1:

The features identified from the song ‘Arabhimanam’ are shown in Table.[3a]

Table [3a]: Song ‘Arabhimanam’ with input length 1906, min len= 2, min freq θ= 2 and error threshold

δ=0.3

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

91

Table [3b] some features of the song “Arabhimanam”

The experiments were done in the following steps

1. Songs collected from Raga Surabhi [11] which is available in .mp3 audio file format.

2. The .mp3 files were converted into .wav audio file format.

3. The .wav files were converted into .mid (MIDI) file format

4. Notes belonging to octaves beyond the selected range are removed as they do not
represent main melody and note sequence of each song (within the selected range) is

represented as a string of characters and stored as separate file

The above data preparation steps creates a folder of 185 files each consisting of a string

representing a song. The memory requirement reduces to a great extent as we apply the data

preparation steps as shown in the Table 3b below.

Table [3c]: Memory size for 185 songs in various audio file formats

The number of patterns as well as execution time decreases with an increase in minimum support

in the form of minimum number of repetitions of a pattern/frequency. The number of repeating

patterns increases with increase in error threshold. But the variation is not as significant as in the
case of variation of minimum number of repetitions and minimum pattern length. However the

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

92

variation of number of patterns with minimum length is not as sensitive as that of variation in

minimum frequency is shown in Fig. [4 and 5] and input lengths for all songs are shown in Fig

[6].

It is also observed that the execution time decreases with decrease in number of patterns

irrespective the constraints imposed in terms of min length, min frequency and error threshold as

shown in Table [4].
Table [4]

Table 5: Error threshold δ=0.1

Table [5a]

Table [5b]

Table [5c]

Table [5d]

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

93

Fig.[4] Variation in length of repeating patterns

Table 6: Error threshold δ =0.2

Table [6a]

Table [6b]

Table [6c]

Table [6d]

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

94

Fig. [5] Variation of frequency (θ = min no of repetitions)

Fig. [6] Input lengths versus songs

4. CONCLUSION

The ability to extract approximate sequential patterns from music objects is essential for building

an effective/robust Music Information Retrieval System. In this paper, we have developed a

frame work that identifies approximate repeating patterns in a given musical sequence as string.

We have adapted an algorithm, which finds approximate patterns in a DNA sequence, in our

paper. Our algorithm is based on the notion of aggregating a pattern’s support set into strands, to

achieve efficient computation and compact representation. By combining a suffix-tree-based

initial strand mining and iterative strand growth, we adopt a local search optimization technique

to reduce time complexity.

5. FUTURE WORK

The proposed approach converts the music objects into strings in the most compressed form

requiring minimum memory space. Feature extraction in terms of approximate sequential patterns

helps in development of effective Content Based Music Information Retrieval Systems which is

equally applicable to any type of music.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

95

ACKNOWLEDGEMENTS

This work was supported by the Council of Scientific & Industrial Research (CSIR) and Andhra

University, Visakhapatnam, Andhra Pradesh, India.

REFERENCES

[1] Mahdi Esmaeili, Fazekas Gabor “Finding Sequential Patterns from Large Sequence Data” IJCSI

International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010.

[2] Kyle Adams (Indiana University) “On the Metrical Techniques of Flow in Rap Music” A journal on

Criticism, Commentary, Research, and Scholarship. Music Theory online ISSN 1067-3040.

[3] D.Vikram, M.Shashi, B.SatyaSaiVani, V.NagaLakshmi “Music Databases and Data Mining

Approaches” Page: 220-227The 2010 International Conference on Data Mining DMIN 2010, July 12-

15, 2010 Losvegas Nevada, USA.

[4] Giovanni De Poli, Nicola Orio “Music Information Processing” 2007 Chapter 6, Page 6.21.

[5] Andreas Spanias,Ted Painter, Venkatraman Atti “AUDIO SIGNAL PROCESSING AND CODING”

page no 264 chapter 10.2 MIDI VERSUS DIGITAL AUDIO.

[6] Hung-Che Shen, Chungnan Lee “Whistle for music: using melody transcription and approximate

string matching for content-based query over a MIDI database” Multimed Tools Appl (2007) 35:259–

283.

[7] Justin Salamon, Joan Serrà, Emilia Gómez “Tonal representations for music retrieval: from version

identification to query-by-humming” Int J Multimed Info Retr (2013) 2:45–58 DOI 10.1007/s13735-

012-0026-0.

[8] Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu “Efficient Discovery of Frequent Approximate

Sequential Patterns”.

[9] Weiner [Wei73] “Suffix Trees and its

Construction”www.cbcb.umd.edu/confcour/Fall2012/suffixtrees.pdf.

[10] Barsky, Marina; Stege, Ulrike; Thomo, Alex; Upton, Chris (2008), "A new method for indexing

genomes using on-disk suffix trees", CIKM '08: Proceedings of the 17th ACM Conference on

Information and Knowledge Management, New York, NY, USA: ACM, pp. 649–658.

[11] Raga Surabhi is a collection of audio files containing raga snippets and songs for the process of

understanding and learning Carnatic music. http://www.ragasurabhi.com/

[12] Giovanni De Poli, Nicola Orio “Music Information Processing” 2007 Chapter 6, 6.1.1.3, Page 6.4.

[13] Erdem Unal, Elaine Chew, Panayiotis G Georgiou, Shrikanth S. Narayanan “Challenging Uncertainty

in Query By Humming Systems: A Fingerprinting Approach” IEEE Transactions on Audio Speech

and Language Processing, Vol.16, No.2 February 2008, Page: 359-371.

[14] Jean-louis Durrieu, 2005400106, “Music Information Retrieval A query-by-humming (QBH) system

segmentation of the songs and Approximative melody matching Based on The DTW algorithm”, July

2006.

[15] D.Vikram, M.Shashi “Feature Extraction from Monophonic Music Objects using Approximate

Sequential Patterns” 3rd International Conference on Communications, Signal Processing Computing

and Information Technologies [ICCSPCIT-14] Page 330-337, December 2014 .

[16] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large databases. In

Proceedings of the Third SIAM International Conference on Data Mining, 2003.

[17] Y. Kudo and T. Murai. A note on characteristic combination patterns about how to combine objects

in object-oriented rough set models. In Third International Conference on Rough Sets and Knowledge

Technology (RSKT 2008), pages 115– 123, 2008.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

96

Annexure [1]

Dataset: RAGA SURABHI
Test

No

Min Len Min Rep Error

Threshold

Execution Time No. RP

1 2 2 0.0 4:34 17111

2 2 2 0.1 4:32 17124

3 2 2 0.2 4:08 17213

4 2 2 0.3 4:13 17250

5 2 2 0.4 * *

6 2 3 0.0 3:23 12166

7 2 3 0.1 3:33 12168

8 2 3 0.2 3:16 12172

9 2 3 0.3 3:20 12178

10 2 3 0.4 * *

11 2 4 0.0 2:57 9504

12 2 4 0.1 3.01 9505

13 2 4 0.2 2:54 9056

14 2 4 0.3 3:00 9058

15 2 4 0.4 * *

16 2 5 0.0 2:49 7723

17 2 5 0.1 2:42 7723

18 2 5 0.2 2:40 7723

19 2 5 0.3 2:47 7723

20 2 5 0.4 * *

21 3 2 0.0 4:20 17022

22 3 2 0.1 4:20 17035

23 3 2 0.2 4:05 17123

24 3 2 0.3 4:08 17158

25 3 2 0.4 * *

26 3 3 0.0 3:24 11953

27 3 3 0.1 3:29 11955

28 3 3 0.2 3:21 11959

29 3 3 0.3 3:17 11965

30 3 3 0.4 * *

31 3 4 0.0 2:46 9243

32 3 4 0.1 2:54 9244

33 3 4 0.2 2:52 9245

34 3 4 0.3 2:56 9247

35 3 4 0.4 * *

36 3 5 0.0 2:38 7422

37 3 5 0.1 2:38 7422

38 3 5 0.2 2:36 7422

39 3 5 0.3 2:40 7422

40 3 5 0.4 * *

41 4 2 0.0 4:15 16797

42 4 2 0.1 4:19 16810

43 4 2 0.2 4:00 16898

44 4 2 0.3 4:03 16932

45 4 2 0.4 * *

46 4 3 0.0 3:08 11844

47 4 3 0.1 3:29 11846

48 4 3 0.2 3:11 11850

49 4 3 0.3 3:28 11856

50 4 3 0.4 * *

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.5, No.2, March 2015

97

51 4 4 0.0 2:36 9037

52 4 4 0.1 2:42 9038

53 4 4 0.2 2:50 9039

54 4 4 0.3 2:51 9041

55 4 4 0.4 * *

56 4 5 0.0 2:33 7285

57 4 5 0.1 2:30 7285

58 4 5 0.2 2:33 7285

59 4 5 0.3 2:36 7285

60 4 5 0.4 * *

61 5 2 0.0 3:58 15793

62 5 2 0.1 3:59 15806

63 5 2 0.2 4:17 15890

64 5 2 0.3 3:53 15923

65 5 2 0.4 * *

66 5 3 0.0 2:56 10457

67 5 3 0.1 3:08 10459

68 5 3 0.2 2:54 10463

69 5 3 0.3 2:58 10468

70 5 3 0.4 * *

71 5 4 0.0 2:27 7622

72 5 4 0.1 2:20 7623

73 5 4 0.2 2:21 7624

74 5 4 0.3 2:25 7626

75 5 4 0.4 2:25 7628

76 5 5 0.0 2:02 5780

77 5 5 0.1 2:07 5780

78 5 5 0.2 2:14 5780

79 5 5 0.3 2:12 5780

80 5 5 0.4 2:19 5781

*The result not obtained due to more approximation (error threshold= δ).

