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ABSTRACT 
 
This research paper proposes an algorithm to find association rules for incremental databases. Most of the 

transaction databases are often dynamic. Suppose consider super market customers daily purchase 

transactions. Day to day customer’s behaviour to purchase items may change and new products replace 

old products. In this scenario static data mining algorithms doesn't make good significance. If an algorithm 

continuously learns day to day, then we can get most updated knowledge. This is very much helpful in 

present fast updating world.  Famous and benchmarked algorithms for Association rules mining are 

Apriory and FP- Growth. However, the major drawback in Appriory and FP-Growth is, they must be 

rebuilt all over again once the original database is changed. Therefore, in this paper we introduce an 

efficient algorithm called Binary Decision Tree (BDT) to process incremental data. To process 

continuously data we need so much of processing and storage resources. In this algorithm we scan data 

base only once by which we construct dynamic growing binary tree to find association rules with better 

performance and optimum storage. We can apply for static data also, but our main intension is to give 

optimum solution for incremental data.  
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1. INTRODUCTION 
 

Data Mining, also referred as Knowledge Discovery in Databases (KDD), is a process of finding 

new, interesting, previously unknown, potentially useful, and ultimately understandable patterns 

from very large volumes of data [1]. The regularities or exceptions discovered from databases 

through data mining have enabled human decision makers to better make decisions in many 

different areas [1]. One important topic in data mining research is concerned with the discovery 

of interesting association rules. 

 

It aims to find interesting association or correlation relationships among a large set of data items. 

The discovery of interesting association relationships among huge amounts of business 

transaction records can help in many business decision making process. It can be used to improve 

decision making in a wide variety of applications such as: market basket analysis, medical 

diagnosis, bio-medical literature, protein sequences, census data, logistic regression, fraud 

detection in web and CRM of credit card business etc. 
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A typical and widely-used example of association rule mining is Market Basket Analysis. For 

example, data are collected using bar-code scanners in supermarkets. Such market basket 

databases consist of a large number of transaction records. Each record lists all items bought by a 

customer on a single purchase transaction. Managers would be interested to know if certain 

groups of items are consistently purchased together. They could use this data for adjusting store 

layouts (placing items optimally with respect to each other), for cross-selling, for promotions, for 

catalogue design and to identify customer segments based on buying patterns [5]. 

 

Association rules provide information of this type in the form of “if-then” statements. These rules 

are computed from the data and, unlike the if-then rules of logic, association rules are 

probabilistic in nature. In addition to the antecedent (the “if” part) and the consequent (the “then” 

part), an association rule has two numbers that express the degree of uncertainty about the rule. In 

association analysis the antecedent and consequent are sets of items (called item sets) that are 

disjoint (do not have any items in common). 

 

The first number is called the support for the rule. The support is simply the number of 

transactions that include all items in the antecedent and consequent parts of the rule (the support 

is sometimes expressed as a percentage of the total number of records in the database). The other 

number is known as the confidence of the rule. Confidence is the ratio of the number of 

transactions that include all items in the consequent as well as the antecedent (namely, the 

support) to the number of transactions that include all items in the antecedent. 

 

2. PROBLEM STATEMENT/ RELATED WORK 

 
Many algorithms are proposed to find association rule. Bottlenecks in most of the algorithms are 

 

1. Multiple scans of data base. 

2. Intermediate candidate generation. 

3. Not suitable for incremental data. 

 

We went through few of the fundamental algorithms like Apriori and FP tree.  

Apriori is a great improvement in the history of association rule mining, Apriori algorithm was 

proposed by Agrawal in [Agrawal and Srikant 1994] [3]. 

 

It follows two step process consisting of join and prune actions. In the join step candidate item 

sets are generated, then in the prune step database is scanned to check the actual support count of 

the corresponding item sets and remove the item sets whose support is below the threshold. 

 

Bottlenecks of the Apriori algorithm are complex candidate generation process that takes more 

time, space, memory and multiple scans of the database. Changing of support may lead to 

repetition of the whole mining process. Another limitation is it is not suitable for incremental 

mining. Since as time goes on databases keep on changing, new datasets may be inserted into the 

database, those insertions may also lead to a repetition of the whole process if we employ Apriory 

algorithm. 

 

Pattern mining, is another milestone in the development of association rule mining. The frequent 

item sets are generated with only two passes over the database and without any candidate 

generation process. FP-Tree was introduced by Han et al in [Han et al. 2000] [4]. 
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The first scan of the database is the same as Apriori, which derives the set of frequent items (1-

item sets) and their support count. The set of frequent items is sorted in the order of descending 

support count. An FP-Tress is then constructed as follows. 

 

First, create the root of the tree labelled with “null”. Scan the database second time. The items in 

each transaction are processed in order (i.e., sorted according to descending support count) and a 

branch is created for each transaction. To facilitate tree traversal, an item header table is built so 

that each item points to its occurrences in the tree via a chain of links. 

 

The mining of the FP-tree proceeds as follows. Start from each frequent length 1 pattern 

construct its conditional pattern base then construct its FP-tree, and perform mining recursively 

on such tree. The pattern growth is achieved by the concatenation of the suffix pattern with the 

frequent patterns generated from a conditional FP-tree. 

 

By avoiding the candidate generation process and less passes over the database, FP-Tree is an 

order of magnitude faster than the Apriori algorithm. Every algorithm has its limitations, for FP-

Tree it is difficult to be used in an interactive mining system. During the interactive mining 

process, users may change the threshold of support according to the rules. However for FP-Tree 

the changing of support may lead to repetition of the whole mining process. Another limitation is 

it is also not suitable for incremental mining. Since as time goes on databases keep changing, new 

datasets may be inserted into the database, those insertions lead to a repetition of the whole 

process because in first scan we assign individual items in descending order based on support 

count, but in incremental data while we add new data it changes the support count and order of 

the items. Hence FP- Tree algorithm is not suitable for incremental databases [7].  
 

3. BINARY DECISION TREE (BDT) 

 
Many algorithms exist like this but not able to overcome completely these drawbacks. We tried to 

give optimum solution for these problems by the Binary Decision Tree(BDT) Algorithm.  

 

We consider transactions of a supermarket as a case study to describe this algorithm. We call 

each transaction as a record and we convert reach record into corresponding bitpattern. For 

example consider I1, I3, I4, I6 is one transaction then the corresponding bit pattern is 101101(i.e. 

if the item is present then corresponding bit is ‘1’ otherwise ‘0’. 

 

Binary Decision Tree(BDT) is a binary tree (i.e each node will have at most 2 childs.) in which 

each node contains 3 fields namely check_bits, decision_bit and support_count. 

 

 
Figure 1: node of a Binary Decision Tree 

 

Here check_bits field of a node used to represent each record. It is used for identification purpose. 

decision_bit field is used for taking decision for upcoming records. If the corresponding 

decision_bit is ‘0’ then traverse towards left child otherwise traverse towards rightchild of node. 

support_count field of a node describes number of transactions ending with the node(i.e no need 

to traverse farther.) 

check_bits decision_bit supportcount 
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This algorithm scans database only once record by record and updates tree correspondingly. Item 

support_count may increase or decrease in future in incremental databases. So we are not 

considering minimum support count. 

 

3.1. Binary Decision Tree (BDT) construction 

Binary decision tree construction algorithm shown bellow. 

Step 1: scan the database. 

Step 2: for each record do the following steps. 

Step 3: if it is the first record then place items in check_items, decision_item NULL and with  

 support_count value 1. 

step 4: else 

                 update_DBT(present_record_items, DBT_root_node) 

step 5: end; 

update_DBT(record_items, DBT_node) 

step 1: compare the same index items present in record with DBT_node check_items 

 sequentially 

step 2: if all items are same 

step 2.1: compare with decision_item  

step 2.1.1: if it is also same  

step 2.1.1.1: if it is the last item in the present record increment support_count by 1. 

step 2.1.1.2: else update_DBT(present record items, DBT_node_right-child) 

step 2.1.2: else update_DBT(present record items, DBT_node_left-child) 

step 3: else create_DBT_new_node(record_items, DBT_node, varied_item_index) 

step 4: return; 

create_DBT_new_node(record_items, DBT_node, item_index) 

step 1: create new node with item_index as decision_item, items between decision_items of 

parent and present node as check_items and support_count with 0. 

step 2: if the decision_item present in record_items 

step 2.1: if it is last item increment support count of new notde by 1 

step 2.2: else create new node as right-child for decision node with remaining items in record 

after decision item as check_items, decision item 0, support_count 1. make the 

DBT_node as left-child with after decision item as check_items. 

step 3:  else create new node as left-child for decision node with remaining items in record after  

decision item as check_items, decision item 0, support_count 1. make the DBT_node as 

right-child with after decision item as check_items. 

 

Step 4: return; 
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Following example describes construction of binary decision tree. 

Table 1: Super market transactions data 

TID List of item_ids 

T100 I1, I2, I5 

T200 I2, I4 

T300 I2, I3 

T400 I1, I2, I4 

T500 I1, I3 

T600 I2, I3 

T700 I1, I3 

T800 I1, I2, I3, I5 

T900 I1, I2, I3 

 

    Figure 3: After insertion of 2
nd

 record                                    Figure 4: After insertion of 3
rd

 record 

 

Second record T200 having items I2, I4 to insert these items compare the items with the 

check_bits in root node. In T100 I1 bit pattern is 1 and in root node check_bits I1 pattern is 0. So 

make I1 as a decision_bit. In T100 decision_bit I1 is present that is it’s bit pattern 1. So traverse 

towards right child and place T100 items except decision_bit as check_bits and support_count is 

1. In T200 decision_bit is 0. So traverse towards left child and place T200 items as check_bits 

and it’s support_count as 1.  

 

Third record T300 having items I2, I3 to insert these items compare the T300 items with root 

node. Root node not having check_bits then compare with decision_bit. Corresponding bit I1 is 0 

in T300. So traverse towards left child. Left child having I2 as check_bits so compare with 

corresponding bit in T300. T300 also having I2 then compare with decision_bit I3. I3 is 0 in 

T300. So traverse towards left child and place T300 item remaining as check_bits and with 

support_count 1.These process will continue for all the transactions as shown in figures. 

 

 
Figure 5: After insertion of 4

th
 record                                    Figure 6: After insertion of 5

th
 record 

 

 

 

 Figure 2: After insertion of 1
st
  record 

First record T100 having items I1, I2, I5. These items 

have to place in check_bits field, decision_bit not 

required so 0 and support_count is 1. 

I1, I2, I5 0 1 
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       Figure 7: After insertion of 6
th

 record                                 Figure 8: After insertion of 7
th

 record 

 

 
 

     Figure 9: After insertion of 8
th

 record                                   Figure 10: After insertion of 9
th

 record 

 

3.2. Binary Decision Tree (BDT) mining process 

The mining of the DBT proceeds as follows.  

 

Step 1:  Create a bit pattern for required item set. 

Step 2:  Start traversing from root 

Step 3:  Pickup one by one bit pattern sequentially compare with the corresponding check_bit                    

items at each node if check_bit is NULL or all check_bits are 1. 

Step 3.1: If stills bits are present in required item set then compare with corresponding decision 

bit. If the bit pattern is 1 traverse towards right-child. If bit pattern is 0 traverse towards 

toward both child left-child and right-child. 

Step 3.2: else end traversing. 

Step 4: after the completion of bit pattern to find support count of required item set add 

support_count s of end node and all its right-childs.  

Step 5: end; 

 

For example to find support count of I2, I3 item set the DBT mining process as follows. 

Bit pattern for I2, I3 is 011. Start traversing from root. Root is having chek_bit NULL. So 

compare with decision_bit I1. I1 bit is 0 in our item set. So traverse towards both left-child and 

right-child. In the left-child check bit is I2; I2 bit pattern is 1 in item set. There is no further 

check_bits so compare with decision_bit I3, corresponding bit pattern is 1. There are no forther 

items to traverse in the item set so stap traversing.  In the right-child check_bit is NULL. So 

compare with decision_bit I2, I2 bit pattern is 1 so again traverse towards right-child is having 

check_bit NULL. So compare with decision_bit I3 corresponding bit pattern is 1. No further bits 

in itemset so stap traversing[6]. 
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Figure 3: After insertion of 8

th
 record 

 

We are having 2 end nodes. First end node is not having right-child and current end node support 

count is 2. Other end node support count is 1 and it is having one right-child with support count 

1. So total support count is 4 for item set I2, I3. 

 

3. CONCLUSIONS 

 
In this paper we proposed an algorithm called Decision Binary Tree (DBT) by which we can find 

out support count of any item set. The significance of this algorithm is it scans database only 

once and it accepts incremental databases without repeating the processing steps. Our algorithm 

is not generating candidates like Apriori. Hence we are not having problem of redundancy.  In 

this algorithm we are not filtering  item sets below the minimum support count. So based on user 

requirement we can check support count of any item set. 
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