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ABSTRACT 

 
One major problem in maintaining a software system is to understand how many functional features in the 

system and how these features are implemented. In this paper a novel approach for locating features in 

code by semantic and dynamic analysis is proposed. The method process consists of three steps: The first 

uses the execution traces as text corpus and the method calls involved in the traces as terms of document. 

The second ranks the method calls in order to filter out omnipresent methods by setting a threshold. And 

the third step treats feature-traces as first class entities and extracts identifiers from the rest method source 

code and a trace-by-identifier matrix is generated. Then a semantic analysis model-LDA is applied on the 

matrix to extract topics, which act as functional features. Through building several corresponding 

matrices, the relations between features and code can be obtained for comprehending the system functional 

intents. A case study is presented and the execution results of this approach can be used to guide future 

research. 
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1. INTRODUCTION 

 
Software maintenance often involves time-consuming and tedious activities. Maintainers spend 

50% up to almost 90% of their time trying to understand the program so as to make changes 

correctly [1]. To understand the underlying intents of an unfamiliar system, maintainers look for 

clues in the code and documentation. These clues include program semantic information e.g. 

identifiers and comments, program structural information such as programming patterns and 

idioms, program dependencies and so on.  

 

Feature location is to determine the relationships between domain concepts and other software 

artefact [2], e.g., set of execution methods and the related method declarations in source code. We 

refer to a feature is a unit of user-observable behaviour of a system. There are various techniques 

for feature location such as static analysis, dynamic analysis, formal concept analysis etc. In this 

paper we introduce an approach to analyse dynamic information combining with semantic 

information. The main reasons for this combination are as follows: 

 

Dynamic analysis: In reverse engineering approaches, it is common to focus on analysing static 

source code entities of a system. But it is difficult for us to determine what roles for software 
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entities playing in a software system and how these functions interact [3]. A set of trace events 

generated by exercising desired use cases can be analysed to correlate features and software 

entities e.g. methods and classes. As execution traces show system’s runtime behaviour, so it is 

helpful for us to understand how the system’s functions are implemented by dynamic analysis. 

Semantic analysis: Only analysing the structure of a software system to understand program is 

not enough, since the structure tells us only how the system is working but not what the system is 

about [4]. The names of identifiers and comments of source code can help understand what the 

system is about by semantic analysis. A programmer’s code and comment often hint the content 

of design documents and requirement documents, so it is possible to extract semantic information 

associated with high-level business functions from the comments and identifier names of the 

source code using information retrieval technology.  

 

We focus on the correlation between features and code using dynamic and textual analysis 

technology. The assumption is that the maintainer has limited prior familiarity with the target 

system and wants to know how many features in the system and where they are implemented. A 

simple solution is to exercise use cases as many as possible. By doing so, on one hand, to help the 

maintainer know some functions of the target system, on the other hand, to locate features by 

analysing generated trace events. Rather than assuming a one-to-one correspondence between 

features and scenarios, we consider a scenario might tangle many features, and a feature scatter in 

many execution traces. In other words, our approach is not restricted only to start from a single 

feature and find its corresponding code, but on the assumption that maintainer start from a set of 

use case scenarios, and then get relevant features, that is, the method is able to extract more 

features and correlate features and code with a probability distribution. 

 

The paper presents an implementation approach for finding features and locating features in code. 

To this end, we first start by generating dynamic traces executing usage scenarios. The execution 

result is the methods execution calls within trace then becomes the document corpus under 

analysis. Meanwhile, method identifiers are parsed and extracted to establish the corpus of terms 

and documents for LDA analysis, and the utility functions (i.e. methods with very high frequency 

counts) are removed from the document corpus. And then LDA is used on the set of topics-to-

terms associations. Finally, a series of matrix comparisons are generated (e.g. trace-to-topic, 

topic-to-identifier, class-by-topic) to calculate semantic similarities. The Luncene tool is used to 

rank the list of relevant source code fragments, and visualization techniques depicting relevance 

are also demonstrated using cluster maps. 

 

2. BACKGROUND 

 
In this section we will recall necessary basic notions and tools used in our paper for semantic and 

dynamic analysis proceedings. 

 

2.1. Execution Traces  

Dynamic information is gathered based on a set of scenarios invoking the related features. A 

scenario is a sequence of user inputs to a system [5]. As scenarios are being run, trace events are 

collected. An execution event corresponds to a class or a method to accommodate different levels 

of granularity.  

 

Figure 1 shows the relations between the execution traces and method entities extracted from the 

source code. Rather than assuming a one-to-one correspondence between features and scenarios, 
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we assume that a scenario invokes many features. Meanwhile, the features and code units are also 

many-to-many mappings. We finally obtain a probability distribution between feature and code 

by LDA extraction, which is more consistent with the actual situation. 

 

 
Fig. 1. Feature-Model in UML 

In this paper we focus only on method invocation events, but we can also apply to other different 

levels of abstraction (e.g. classes, packages). We use a profiling tool, namely Java Platform 

Debugger Architecture (JPDA) [6]. The JPDA-based tracer has the characteristics of flexibility, 

and allows collect marked-traces during a system’s execution so that users can start and stop 

tracing at will. 

 

We establish the relationships between features and software entities by usage scenarios and 

capture traces. Based the generation matrix, we cluster and analyse data according to feature 

criterion. We use a trace-identifier matrix as input for the clustering algorithm. The column 

represents identifiers extracted from source code and the row is the execution trace. Although a 

trace might contain many features, however, they are similar on function, so we can apply 

semantic analysis technology to cluster functional topics on the matrix. 

 

2.2. Ranking Execution Traces 

A set of traces can be obtained for generating a corresponding matrix: each row represents each 

trace, and each column represents each method involved in the trace. We use a formula similar to 

Term-Frequency/Inverse-Document-Frequency to distinguish elements that are specific to a 

particular trace from those shared by traces. We modify the formula which introduced in [2] to 

the following scoring formula: 

log ( )

( )

i

iji

jsocre m

×   

=

∑
# of  i nvoked met hods  by  t r ace # t r aces  t hat  i nvoke met hod

# of  t ot al  i nvoked met hods # t r aces t hat  i nvoke met hod  
 

In the equation, “terms” are methods execution calls within trace, “term frequencies” are number 

of method calls, and “documents” are executive traces. The algorithm is described in pseudo code 

in Figure 2. 

 

 

input: method name in each trace; Threshold of score 
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output: list of score rank  
HashMap<String, Float> tf (String[] method) {         
       for each method[i] in a trace 
         int methodCount = 0;  
         for each method[j] in a trace 
             if (i != j) { 
             if (method[i].equals(method[j])) { 
                 method[j] = " "; 
                 methodCount++;                     
          } 
       if (method[i] != " ") 
       { 

tf.put(method[i](new 
Float(++methodCount))/methodNum); 

         method[i] = " ";     
} 

    } 
         return tf;  
 } 
HashMap<String, Float> idf () { 
…… 
Calculate the number of traces D 
Calculate the number of traces that active the 

current Method Dc 
        idf.put(method, Log.log(D / Dc, 2)); } 
        return idf;             
  } 
…… 
Score(mj) = Sum(tf * idf) of each method 
Mt={mj | score (mj) >= Threshold} 

 
Fig. 2. The algorithm of traces score 

 

2.3. Extracting semantic information 

 
The process steps for extracting semantic information from the source code have also been 

previously introduced in [7]. The steps work as follows: Extracting semantic information such as 

comments and identifiers, from each source code element at a desired level of granularity (e.g., 

package, class, method). Pre-processing the textual information, e.g., perform stemming and 

remove stop words. Storing the pre-processed data extracted from each code element as a 

separate document in the document collection.  

 

In this paper we extract the relevant information (e.g., name, parameters, relationships, etc.) from 

source code by fact extraction and store these data in a relational database. The structure of 

methods and classes is shown in Table 1. 

 

 

 
Table 1. Relevant table structure 

Level of Granularity Attribute 

class ClassName 
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InheritsFrom 

ImplemetsTo 

Variables 

method MethodName 

Arguments 

ReturnType 

ReturnValue 

Terms in comments 

 

We collect a set of traces in a corpus, For example, each document in a corpus. The first line is 

the number of traces, and each successive line is a single trace in the collection with a set of terms 

or identifiers. In the paper, the list of identifiers from the above database corresponding to a 

single method name or class name. Because we have stored these identifiers in a database, so we 

just need to sort related method name and fetch the corresponding data, then write the 

information to the document. This format is consistent with the input format required by the LDA 

tool used in textual analysis. 

 

2.4. LDA Model 

 
Latent Dirichlet Allocation (LDA) is a document model which explicitly models topic 

multiplicity of each document. It is a generative probabilistic model of a corpus. The basic idea is 

that documents are represented as random mixtures over latent topics, where each topic is 

characterized by a distribution over words [8]. In LDA, documents are represented as mixtures 

over latent topics, and each topic is characterized by a distribution over words. 

 

The LDA-based model assumes a prior Dirichlet distribution on θ, thus allowing the estimation 

of φ without requiring the estimation of θ. LDA assumes the following generative process for 

each document w in a corpus D: 

 

1. Choose N ~ Poisson(ξ). 

 

2. Choose q ~ Dir(α). 

 

3. For each of the N words wi: 

 

(a) Select a topic tk ~ Multinomial (θ). 

 

(b) Select a word wi from p(wi|zw,β), a multinomial probability conditioned on topic tk. 

 

There are more details pertaining to LDA in [8]. 

 

 

 

 

2.5. Semantic Clustering 
 

To get a semantic model of the software system, we implement these steps as follows: 
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First, we split the software system into text documents and use the textual representation of traces 

as a document. Second, we sort methods on the database for obtaining the related attribute values, 

then we replace terms with identifiers by pair-wise matrix multiplication. An identifier is any 

word found in the source code or comments, except keywords of the programming language. 

Identifiers are separated based on standard naming conventions. Considering traces as a 

document and an identifier as a term，we create a trace-by identifier matrix, similar to the 

common document-term matrix. 
 

2.6. Applying LDA 

 
Since LDA is basically a topic modelling technique, it not only discovers similarity between 

identifiers, it also creates a cluster of similar identifiers to form a topic. In this paper we use LDA 

to cluster identifiers according to feature criterion. 

 

Generating probability distributions: Topic-identifier and trace-topic matrices are obtained after 

applying LDA, in the matrices each trace is probabilistically associated with a set of topics and 

each topic is probabilistically associated with a set of identifiers.  

 

Grouping similar topics: The process is to calculate cosine similarity among topics to group 

similar topics for further analysis. Two topics will be clustered into the same category if a cosine 

similarity between them is greater than a certain threshold [9]. A topic can belong to several 

different categories, and the result is a list of categories and some rest topics. 

 

3. OUR APPROACH 

 
We outline how we apply our technique to incorporate feature-traces model of source code and 

how to extract topics from the trace model. The approach is a combination coming from two 

different sources: the execution traces of scenarios, and the comments and identifiers extracted 

from the class calls or method calls source code. The whole execution process is illustrated in 

Figure 3. 

 
Fig. 3. Overview of our approach 

 
3.1. Traces as text corpus 
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We assume one has limited prior familiarity with the target system, so he or she exercise some 

scenarios for understanding system’s functions by clicking the button or menu on GUI to obtain 

traces events. JPDA profiling tool is used to extract execution traces and model as a list of 

methods within traces. The tool can collect marked traces to reduce the size of the traces or 

collect complete traces without mark at will [10], and the outputs of the tool are a set of events in 

each thread. 

 
Fig. 4. The generation of a document and terms  

We rank the methods of the collection by calculating rank score according to the algorithm in 

Section 2, and set a threshold to filter out some methods with very high frequency counts, which 

are useless to special-function. We use a similar example with [11] to show how Traces form a 

document and the methods form the terms.  

 
Table 2. The score of each method 

tf-idf m1 m2 m3 m4 

Trace1 0.044022813 0.044022813 0.044022813 0 

Trace2 0.08804563 0.044022813 0 0 

Trace3 0 0 0.08804563 0 

Score(m) 0.132068443 0.088045626 0.132068443 0 

 

The score of each method is calculated and show the result is shown in Table 2.  Some methods 

with lower score will be removed. For instance, m4 () is considered as a utility method and is 

filtered out. 

 

In analysis we consider only the relationships between traces and software entities e.g., classes or 

methods. For mapping each cell to concept, we keep one occurrence of any repetition only if a 

concept is repeated many times in a trace. Because a repetition does not introduce a new concept, 

thus we compress traces to remove repetitions. Therefore, in Figure 4 we change the cell value of 

m1 () in trace 2 from 2 to 1. 

 

 

 

 

3.2. Building the Trace-Identifier Matrix 
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We treat traces as text corpus and analyse the entities and related static structural model of source 

code. In this way, the relationships between the method calls in traces and the static model 

method entities are established and a matrix is generated with each column represents an 

identifier of source code and each row is a trace. The value of each cell in the matrix is either 0 or 

1, indicating the absence or presence of a method or a class in the trace. The generation process 

of the trace-identifier matrix is shown in Figure 5. 

 
Fig. 5. The generation of trace-identifier matrix 

Our semantic analysis tool is applied on the traces. To use the traces as text corpus, we correlate 

the method names found in the traces and the database tables for obtaining related information, 

and then replace terms with identifiers by pair-wise matrix multiplication. Figure 5 shows the 

generation process of matrix. 

 

3.3. Performing the LDA Analysis 

 
We use an open-source software tool for LDA analysis called GibbsLDA++ [12]. GibbsLDA++ 

uses Gibbs sampling to estimate topics from the document collection as well as estimate the 

word-topic and the topic-document probability distributions. The tool also outputs a list of topics 

with the top n words in the topic, i.e., the n words that have the highest probability of belonging 

to that topic, where n is a parameter set for each analysis [18].   

 

Besides, after applying LDA to the matrix of trace-identifier, two relevant probability 

distributions, i.e., trace-topic and topic-identifier matrices are generated. From the results 

returned by LDA, the most likely terms in each topic, i.e. the topics with the highest probability, 

can be examined to determine the likely meaning of the topic. 

 
Fig. 6.  Clustering  by semantic similarity 

 

 

The trace-topic matrix and the topic-identifier matrix are generated using LDA. Figure 6 shows a 

partial clustering process. Identifiers can be further clustered into different categories using a 
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certain cosine value based on the corresponding relationships. The semantic similarity shows how 

two topics are related to each other.  
 

CASE STUDY 

 
In this section we present the results of applying our approach to the JHotDraw [13] case study. 

JHotDraw is an open source tool written in java which provides a graphical user interface. The 

6.0 version of the software consists of 486 files representing 650 classes, 4,710 methods, and 845 

fields across 28,337 lines of code. 

 

Use cases selection: On the assumption that the requirements information is out-of-date or 

incomplete, so we exercise execution scenarios as many as possible. The process is to click 

buttons or menu on the GUI of the system, and our tool collects all trace events to analyse. Table 

3 shows a part selected ten use cases [14] in JHotDraw system.  

 
Table 3. Selected use cases in jhotdraw 

U1. Use the Rectangle button to draw a new Rectangle figure 

U2. Use the Round Rectangle button to draw a new figure 

U3. Use the ellipse button to draw a new ellipse figure  

U4. Use the polygon button to draw a new polygon figure 

U5. Use the line button to draw a new line figure 

U6. For each graphical element in the load file: turn tracing off; select it; turn 

tracing on; move it 

U7. For each graphical element in the load file: turn tracing off; select it; turn 

tracing on; delete it  

U8. For each graphical element in the load file: select it; use bring-to-front 

command from the zoom figure. 

U9. Use the URL button to attach an URL to each graphical element; to 

modify the URL on each graphical 

U10. Create a new text field using the text button; modify the existing text 

field using the text button 

 

Table 4 depicts the experimental results of execution traces extraction. The second column shows 

the number of scenarios in terms of various use cases, the next is the count of execution events in 

traces. The rest number of methods after filtering is listed in the last column. 

 
Filtering out Omnipresent methods: Software system contains some components that act as mere 

utilities. Some method invocations related to system events, are not feature-specific and can 

appear almost anywhere in a trace. Therefore, we decide to remove the omnipresent components 

in the system. The detection approach has been discussed in Section 2.2. We calculate the trace 

score and set a certain threshold to filter out utilities. Figure 7 shows the dual axis chat views of 

the data in Table 4.  
 

 

 

Table 4.  Results of execution trace extraction 
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Use case Number of 

scenarios 

Number of methods Number of methods  

after filtering 

U1 4 7889 6657 

U2 4 5040 4980 

U3 5 8493 7320 

U4 7 10769 8960 

U5 4 4253 4190 

U6 4 4930 4790 

U7 4 5739 5432 

U8 6 11078 9590 

U9 5 10356 10132 

U10 4 6074 5879 

 

 

Fig. 7.  Dual axis chat views of data in Table III 

Applying LDA: The LDA-based approach can capture more subtle statistical relationships among 

topics, words, entities and traces [15]. We extract 30 topics from the trace-identifier matrix, and 

list a partial topics and labels in Table 5. 

 
Table 5.  A partial  extracted  topics from jhotdrawtem 

Topic label(feature) Word list (topic) 

ITERATION “list has iterator next add” 

UNDO “undo change figure activity affect” 

DRAW FIGURE  “figure change listener event remove” 

EVENTS, TOOL “mouse event tool add down” 

FIGURE ATTRIBUTES “attribute figure object constant draw” 

MAP “all map contain object vector” 

DRAW,COLOR “colour draw print map name” 

DRAW SHAPE “point  line box draw bound” 

CONTENT “content class string producer frame” 

DRAW,FIGURES “figure add draw decorated find” 

DRAW RECTANGLE “shape rectangle draw rectangular figure” 

CONNECT  “connection connector figure start end” 

ROTATION “radius angle reset rotation view” 

EVENT, OBSERVER “desktop component container event listener” 

RENDERING “graphic draw image rectangle fill” 

EDITOR,ANIMAT ION “editor draw create animation tool” 

PERSISTENCE “store read write input output” 

MOVE “drag drop source listener target” 

To perform a comparison, we inspect the trace-topic matrix with the probability distribution of 

topics over traces. For each latent topic identified by a set of 5 words, we assign a meaningful 
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feature name. In some cases the identifiers in a set of words are good enough for identifying a 

feature.  

 

For example, in Table 5 we see the “draw” features given by “point  line box draw bound”, 

“graphic draw image rectangle fill”, “draw shape rectangle regular figure”, as well as a presence 

of “iteration” feature with “list iterator has next add” and the “undo” feature given by “undo 

change figure activity affect” etc.  

 

Querying topics: Because we have generated several mapping matrices such as trace-topic, topic-

identifier and class-topic etc., we can find the corresponding relationships among files, 

components, topics and traces according to the results obtained to each trace. We save these data 

in database tables, and then use Luncene to index relevant fields in the tables. We have developed 

a prototype tool with a topic (or feature) querying interface for displaying desired features and 

their relationships. Figure 8 shows the GUI of our query tool. 

 

 
 

Fig. 8.  Our prototype tool for querying 

For example, the user formulates a query, which describes the desired features. Our tool sorts the 

query words from the database. If same words or similar words are present, then the tool outputs 

all relevant topics in the left panel. For each topic in the list, the user can click it, and then the 

corresponding classes or methods names are listed in the right panel. The user can further 

investigate the relevant feature-traces events, and a graphical view of the topic probability 

distribution of the files is also shown in the GUI. 

 

Since features are not the primary units of decomposition in object-oriented programs, so it is 

difficult for implementations of features to be represented explicitly in programs’ source code. 

However, we are able to identify this relationship by using probability distribution, which is more 

consistent with the actual situation. Table 6 lists the set of components and associated 

probabilities that related to a topic. 
 

Table 6.  Corresponding probability values of components for sample topics 
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topic class Probability 

“draw, editor, 

happen, serial, 

mouse” 

AbstractAttributeEditorHandler.java 0.177966 

DefaultDrawingView.java 0.127586 

DrawingAttributeAction.java 0.122642 

ZoomEditorAction.java 0.119565 

DrawingAttributeEditorHandler.java 0.101153 

“draw, figure, 

transform, 

bound, restore” 

EllipseFigure.java 0.383333 

RectangleFigure.java 0.382609 

ImageFigure.java 0.378571 

AbstractAttributedDecoratedFigure.java 0.373134 

TextAreaFigure.java 0.368421 

topic method Probability 

“draw, stroke, fill, 

view, decorate” 

DrawingEditor.createInputMap() 0.270270 

BezierControlPointHandle.draw(Graphics2D) 0.153846 

BoundsOutlineHandle.draw(Graphics2D) 0.152941 

drawFigure(Graphics2D) 0.152778 

ConvexHullOutlineHandle.draw(Graphics2D) 0.146067 

“draw, composite,  

scale, image,  

hint” 

ODGGroupFigure.draw(Graphics2D) 0.379310 

SVGPathFigure.draw(Graphics2D) 0.337079 

ODGPathFigure.draw(Graphics2D) 0.314607 

SVGAttributedFigure.draw(Graphics2D) 0.314376 

SVGGroupFigure.draw(Graphics2D) 0.310345 

 

Generating categories: To group similar topics on topic-identifier matrix, we compute cosine 

similarity between each pair of topics. If a cosine similarity between two topics is greater than a 

certain threshold, we cluster them into the same category [9]. Some similar features are clustered 

together in terms of similarity comparison. For example, we set the threshold is 0.6, the similarity 

of “tool enabled object usable palette” and “editor drawing create animation tool” is above 0.6, 

which means the draw tool for use; “drag drop target source listener” and “event listener object 

fire iterator” show listener event happening; “invoke handle owner step undo” and “undo figure 

figures activity affected” show undo design model etc. By grouping relevant files into categories, 

we further comprehend the system functional intents. 

 

Forming class-topic matrix: We can also examine the relationships between topics and files by 

the class-topic matrix. Table 7 shows a partial probability distribution data selected from the 

JHotDraw experiment results. 

 
Table 7.  A partial of probability distribution in JHotDraw 

Class Topic1 Topic2 Topic3 Topic4 

 “mouse event 

down tool 

added” 

“list next 

has 

iterator 

event” 

“mouse 

event 

down 

tool 

added” 

“graphics draw 

image rectangle 

fill” 

AddTool 0.352631 0.243412 0.237861 0.012321 

PolyLineFigure 0.123021 0.534300 0.030045 0.320000 

PolyLineConnector 0.000120 0.650132 0.120000 0.400521 

PolygonTool 0.000521 0.670120 0.064521 0.414211 

PaletteButton 0.214211 0.124832 0.214211 0.300000 
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TextAreaFigure 0.400000 0.517232 0.490000 0.135432 

DragTracker 0.135462 0.111213 0.567262 0.520000 

NestedCreationTool 0.342401 0.000000 0.220000 0.124221 

TriangleFigure 0.526342 0.131212 0.652123 0.004211 

FigureChange 0.621001 0.106423 0.323232 0.000000 

FigureChangeAdapter 0.600000 0.006423 0.124242 0.122462 

 

The above data can be graphically displayed using a cluster map view of topic-class, which 

shows the topic assignment across each component. Figure 9 shows the view, where a class with 

a higher topic assignment is indicated with a darker colour and vice versa. In this paper, the heat-

map technique [16] for graphical representation of data depicting relevance is used, and the 

clustering visualization is also demonstrated to quickly contrast and compare the distribution in 

the various topics.  

 

 
 

        Fig. 9.  Graphical display the relationships of class-topic 

 

We can further cluster these classes by their similarity according to the data in Table 7.  

 

 
 

Fig. 10.  Graphical display the similarity of  classes 

We process the data in Table VII to generate an equivalent matrix. The matrix is graphically 

displayed in Figure 10 (1). Then we cluster these classes by their similarity by selecting λ =0.912 

as cut value which determines the following four clusters, and the clusters are displayed in Figure 

10 (2). 

 

 

 

Cluster 1: class 1, class 6, class 8, class 10, class 11 

Cluster 2: class 2, class 3, class 4 
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Cluster 3: class 9  

Cluster 4: class 5, class 7 

3. DISCUSSION 

In this paper we first exercise the system to collect execution traces for some scenarios related to 

various use cases, which containing sets of different features. Then we compress the traces to 

remove utilities. Second, we treat traces as first class entities and extract identifiers from the 

method source code and generate a trace-identifier matrix. Then we apply a semantic analysis 

tool on the matrix for extracting topics, which as functional features. Our approach makes the 

syntax and semantics have a good combination. 

 

F-measure: We assume that the maintainer exercises features by clicking the button or menu of 

the target system for obtaining trace events. Therefore, our feature model does not achieve 100% 

coverage of the system. To locating more features, we need to increase the coverage the 

application by exercising more scenarios. However, by extracting identifiers from components 

source code, expanding the scope of application semantics, to some extent this way can increase 

the recall. Meanwhile, owing to filter out some concepts useless to system special-functions, we 

get relative precision for features extracted in the traces. The future work we will compute the F-

measure, the harmonic mean of precision and recall: f-measure = 2· (recall · precision) / (recall + 

precision) by some detail experiment data, and select an acceptable trade-off. 

 

Effectiveness Measure: We build text corpus from the names of the methods involved in the 

traces, then we sort methods in the database to obtain their corresponding identifiers of source 

code by our parser tool. We consider it is beneficial for enriching semantic information by add 

identifiers into analysis instead of methods name only.  However, if a great deal identifiers are 

introduced into analysis models, it is possible to introduce some not feature-specific terms into 

analysis. So we need to have a choice of variable identifiers.  

 

Topic and Software Feature: Pierre Baldi et al. [15] propose to unify the concept of latent topic 

with the concept of concern in the domain of software. They claim the distribution of a topic 

across modules indicates whether the topic is more or less scattered. Their conclusion is a 

concern is a latent topic.  Based on this idea, we focus on features of concerns: our approach 

obtains concerns from execution traces, filters out some common concepts, and complements 

semantic concepts into analysis. So we think a feature is also a latent topic. This is a theory of our 

approach. 

4. RELATED WORK 

Hybrid feature location leverages the benefits of static and dynamic analyses. T.Eisenbarth et al. 

[5] develop a technique that applies formal concept analysis to traces to produce a mapping of 

features to methods. A feature-driven approach is presented in [17] by extracting execution traces 

to achieve an explicit features location. In contrast, our approach not only takes into account 

mappings between features and software entities like methods or classes, but also extracts more 

features to help program comprehension. 

 

Marcus et al. [10] present an approach with a single execution trace combining with LSI to 

extract code relevant to a feature. Adrian Kuhn et al. [11] propose to combine LSI-based analysis 
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and dynamic analysis to identify related features. In contrast, our approach is not restricted only 

to start from a single feature and find its corresponding code, but on the assumption that 

maintainer starts from a set of use case scenarios, then get relevant features. The tool for us to use 

is LDA instead of LSA, because LDA is able to extract features and correlate features and code 

with a probability distribution, which is more consistent with the actual situation. Besides, a 

series of matrix comparisons are generated (e.g. trace-to-topic, topic-to-identifier etc.) by LDA 

tool to calculate semantic similarities.  

 

Several works [9, 18] have shown that the idea of applying LDA in source code for extracting 

topics can be carried out. In contrast, our approach is not used directly to examine source code for 

topics, but on the concepts after dynamic processing and filtering, so obtained topics via LDA 

have functional intents. Besides, Abram et al. [19] treat CVS commits as documents, and 

compare how extracted topics changed between time periods. LDA has been also used for 

traceability link recovery [20] and compared to other similar Information Retrieval based 

approaches, but in [20], topics extraction from requirement documents and design documents not 

from source code as ours. 

5. CONCLUSIONS AND FUTURE WORK 

Reverse engineering approaches focus only on the implementation details and static structure 

often ignores the semantics of the problem and solution domain. But semantic information is 

essential in revealing full of the picture of software system. Our approach discusses a technique 

for determining which components source code implement which features of software application 

by incorporating dynamic traces and semantic analysis via a series of pair-wise comparison 

matrices. We demonstrate the application of the proposed technique via a case study. The main 

idea behind the technique is to use LDA to extract topics, i.e. functional intents, from methods 

and identifiers involved in execution traces.  The technique is used for feature location in source 

code. 

 

In the future, we will focus on the following issues: (1) extending the scope of our feature 

approach to consider exercising more scenarios according to feedback information (2) combining 

dynamic analysis with system’s structural model, e.g. program-element dependencies for 

enriching the semantic information,  (3) assigning automatically meaningful labels to traces to 

help maintainers understand their meanings, and (4) conducting systematic empirical studies on 

the choice of the appropriate parameters for the proposed approach and  collecting more 

empirical data to evaluate the effectiveness based on LDA for features location. 
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