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ABSTRACT 

 

DevOps is an emerging collection of software management practices intended to shorten time to market for 

new software features and to reduce the risk of costly deployment errors. In this paper we examine the 

security implications of two of the key DevOps practices, automation of the deployment pipeline using a 

deployment toolchain and infrastructure-as-code to specify the environment of the deployed software. We 

focus on identifying what changes when an organization moves from manual deployments to DevOps 

automated deployment processes. 

 

We reviewed the literature and conducted three case studies using simple configurations of common 

DevOps tools. This allowed us to identify specific: 

 

• Positive influences on security where automation enhances defenses. 

• Negative influences, where automation enables different kinds of attacks and increases the attack 

surface. 

• Research directions that look promising to support this new approach to software management. 

• Recommendations for DevOps adopters 
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1. INTRODUCTION 
 
In the last few years a new approach called DevOps has emerged for the management of large 
cloud-hosted software applications. The portmanteau word DevOps signifies the integration of the 
activities of software development with those of operations. Broadly speaking, the intent is to 
reduce time to market for new software features and to eliminate potentially costly deployment 
errors. 
 
Different authors present different definitions of DevOps [1]. It is generally seen as a collection of 
mutually-reinforcing practices that responds to the differing motivations of development and 
operation teams. Developers seek rapid change and the opportunity to put new software features 
in place as quickly as possible while operations staff wants stability to control risk [2]. DevOps 
practices range from the cultural (e.g. treat Ops as first-class citizens) to the technical (e.g. 
continuous deployment) [3]. 
 
In this paper we will focus on the security implications of two key DevOps practices: automation 
of the deployment pipeline and infrastructure-as-code to specify the environment of the deployed 
software. 
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A DevOps continuous deployment pipeline is an automated toolchain. When code is checked in 
by a developer, a series of steps take place with little or no manual intervention. The new 
software is built by one set of tools and deployed to a test environment which is provisioned by 
another set of tools. Other tools run the tests and, if these pass, the new code may then be released 
to staging and production environments [4]. 
 

DevOps is enabled by cloud computing and, indeed, would be almost inconceivable without 
infrastructure-as-a-service clouds. DevOps requires multiple near-identical execution 
environments, so that developers, testers, security analysts and so on see essentially the same 
environment as the end-user facing production. 
 

It is the infrastructure-as-code concept that keeps these environments consistent. Each 
environment, including its virtual hardware, its virtual networks, and its system software, is 
specified by templates and scripts that make up the infrastructure-as-code. The templates and 
scripts are baselined and version controlled just as is done with application code [5]. To the 
greatest extent possible, the same templates and scripts are used across the different 
environments, thus guaranteeing consistency. Executing the scripts creates copies of the 
environment that are provisioned, used, moved to production or discarded, often hundreds of 
times a day. This flexibility is strongly supported by cloud computing, with its ability to create 
virtual hardware rapidly and cheaply.  
 

This paper is an attempt to review systematically the security issues associated with moving to a 
DevOps process. Thus, we do not look at cloud security issues in general. Rather, we focus on the 
question of what changes when one moves from manual cloud deployments to DevOps automated 
cloud deployments. 
 

Of necessity, the paper involves an element of speculation in this rapidly emerging field. This 
work describes our understanding of current DevOps practices. It is based on review of available 
tool documentation, attendance at industry courses, conversations with professionals in the field 
and on our own case studies of three different toolchains (Section 4). However our results cannot 
be comprehensive since there are many other tools in use, DevOps practices are diverse, and 
security challenges are constantly changing.  
 

The paper is organized as follows. In the next section, we describe DevOps and the infrastructure-
as-code concept in greater detail. Then in Section 3 we go on to review related work on DevOps 
and security. 
 

In Section 4 we describe our three case studies. In each study we created a toolchain using a 
different set of widely-used DevOps tools. We then prepared and ran infrastructure-as-code 
scripts and templates that use the toolchain to perform a simple software deployment. From an 
analysis of the three cases we identify commonalities and construct an abstract toolchain model. 
We then define a risk model of the potential threat and use it to discuss the available security 
controls for each toolchain. 
 

From this experience, in Section 5 we summarize the ways DevOps affects security and identify: 
 

• Positive influences on security where automation enhances defenses and thus would 
appear to facilitate good overall application security. 

• Negative influences, where automation enables different kinds of attacks and increases 
the attack surface that needs to be protected. 

• Research directions that look promising to support this new approach to software 
management. 

• Specific recommendations for DevOps adopters. 
 
Finally, we summarize our conclusions in Section 6. 
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2. DEVOPS BACKGROUND 
 
A key goal of DevOps is to greatly reduce the risk of expensive configuration errors in the 
production environment stemming from human errors during deployment. A commonly cited case 
is that of Knight Capital, an American high frequency securities trading company [6]. On August 
1, 2012 Knight installed updated software on its systems, but due to a human error only 7 of the 8 
servers received the new version. When trading started, the old version misinterpreted a flag 
which had been repurposed in the new version, leading that one server to go into an infinite loop 
rapidly sending out buy and sell orders. After about 45 minutes and 4 million unwanted 
transactions Knight had lost $460 million and was forced out of business. 
 
DevOps attempts to reduce the risk of such errors using an automated continuous deployment 
pipeline, shown schematically in Figure 1. The concept is to have a single set of infrastructure-as-
code (scripts, templates, etc.) that runs on one or more build servers to create all the organization's 
software environments, from development through several testing environments to staging and 
then to production. The continuous deployment pipeline may be initiated either manually by a 
developer or automatically after a code change by an automation server such as Jenkins [7]. 
 

 
 

Figure 1. Schematic View of Tools in an Automated Continuous Deployment Pipeline 

 
New application code moves through the pipeline and passes through several "gates" where it is 
tested or verified automatically. At each point the infrastructure-as-code may provision an 
environment of new cloud virtual machines, deploy the application to them, run tests or scans, 
and destroy the machines when they are no longer needed. Though there are some inevitable 
differences, the infrastructure-as-code keeps all environments as similar as possible. 
  
Each environment is created by a collection of tools, here called the toolchain. Some of these 
tools run on the build server (e.g. T2 in the diagram), some are external services (T1, T3), while 
others run on the provisioned virtual machines (T4). The tools for provisioning and application 
deployment are kept the same for all environments.  
 
An emerging practice is to utilize immutable virtual machines, sometimes called "fully baked". 
These virtual machines are created with one or more applications installed on them, and then left 
unchanged. If any update is needed the old virtual machine is discarded and a new one is created 
using the deployment pipeline. System administrators never log in to production machines. We 
will point out later in Section 5 that this practice has significant security benefits. 
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3. RELATED WORK 

 
There is very little published academic work on security as it relates to DevOps. In an early paper 
(2011) Merkow and Raghavan discussed practices for what they call "continuous security" across 
the System Development Life Cycle [8]. Their paper was written before DevOps concepts 
became common, but many of their suggestions are relevant, particularly as to the use of security 
tools and their incorporation into the build process. Fitzgerald and Stol in a survey paper on 
continuous software engineering highlighted a number of activities that must become 
"continuous" in the DevOps approach [9]. One of these activities is "continuous security" which 
must become a key concern throughout the development process. As an example, they mentioned 
an experiment with a modified Scrum process in which regulatory compliance was assessed at the 
end of each Scrum sprint, instead of just at the end of the development cycle. Weber, Nepal and 
Zhu mentioned the need to secure the continuous deployment pipeline and the desirability of 
incorporating static and runtime security checks, but they do not go into details [10]. 
 
In their book on enterprise software security, van Wyk, Graff, Peters and Burley focused on the 
organizational view of DevOps and discussed how IT Security personnel should work with 
developers, for example in handling different kinds of security events [11]. They referred to this 
approach as "rugged DevOps". They mentioned, for instance, that during the handling of a 
security event the DevOps toolchain may need to be used to set up a special security incident test 
bed whose firewalls and intrusion detection must closely match the production settings so that an 
attack can be replayed or simulated for analysis. 
 
Bass, Weber and Zhu devoted a chapter of their book on DevOps to security and security audits 
[3]. Most of their discussion would be applicable equally to traditional and DevOps deployments, 
but the authors pointed out a number of specific concerns, such as the need to protect the 
deployment pipeline, the need to make sure old virtual machines are removed, the benefits of 
including automated security testing in the deployment pipeline, and the desirability of using 
"fully baked" servers with a short life span. 
 
The papers by Rimba et. al. and Bass et. al. used DevOps toolchains as examples in discussing a 
particular approach to securing software. Rimba et. al. focused on using design patterns for 
security and included a case study involving a DevOps toolchain [12]. Similarly, Bass et. al. took 
a DevOps toolchain as their example in describing their process for hardening a software system 
by identifying trusted and untrusted components, and then introducing trusted components that 
mediate access to the untrusted components [13]. Neither paper sought to analyze security issues 
associated with DevOps in general. These papers may be taken, however, as evidence that 
security in DevOps is a growing concern. 
 
Industry concern with DevOps is further shown at industry-focused conferences where courses on 
DevOps and its security are becoming common. The terms SecDevOps or DevSecOps are now 
being used at these conferences. For example, at the Software Engineering Institute's SATURN 
2015 conference Bellomo, Cois, and Kazman gave a full day course on DevOps with a major 
component on security. The presentation focused on security "anti-patterns" and how to avoid 
them. One theme (which we have already mentioned) was the desirability of using immutable or 
"fully baked" virtual machines that are never administered after deployment, so vulnerabilities 
may not be introduced, accidentally or deliberately, without going through the approved build 
process. Another theme was the need for automated security testing during the build process 
instead of relying on manual penetration testing of the deployed system. 
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A one day DevOps course at the 2015 Amazon AWS™ ReInvent conference was titled "Securing 
Next-Generation Workloads at Cloud Scale", and went into considerably greater detail, but 
focused specifically on the different AWS services and how they could contribute to security. 
One interesting concept was that role conflicts between developer personnel and IT security 
personnel could be mitigated by having each side "own" some part of the infrastructure-as-code. 
As an example, the template used in provisioning virtual machines and their environment could 
be divided into two parts: developers specify the virtual machines and the application deployment 
steps; IT security personnel specify the firewall settings. At deploy time, a master script weaves 
together the two parts of the template before the AWS provisioning service is called. 
 
We will return to some of these points in our discussion in Section 5, but first we will describe 
our three case studies. 
 

4. CASE STUDIES 

 
4.1. Toolchain Selection and Configuration 

 
The purpose of the case studies was to identify specific commonalities and differences in a range 
of DevOps toolchains with respect to attack surface and security controls. Real DevOps 
toolchains can be very complex [4] but to keep the analysis feasible those used in our case studies 
were limited in scope. First, the use case for all three studies was a very simple scenario of 
provisioning an immutable virtual machine and deploying on it an application consisting of a 
simple "hello world" web site served by the Python Simple HTTP Server. We did not study other 
possible toolchain functions such as triggering deployment after a code change, distributing 
application updates, running automated tests, or scaling resources based on load. For consistency, 
in all three cases the deployment environment was Amazon EC2™, the current market leader. 
Finally, since many of the DevOps tools can be used in a variety of ways and combinations, we 
had to pick one possible toolchain configuration from the many possibilities. In general, we tried 
to keep our configuration as simple as possible while following suggested good practices from 
published tutorials and from the tool vendor. 
 
We defined three toolchains, combining tools that are frequently mentioned in DevOps 
discussions. However to expose the widest range of security issues we picked tools with different 
architectures and different approaches to application deployment: 
 

• Toolchain A - CloudFormation, CodeDeploy, S3, Bash: This toolchain calls 
commercial API's for provisioning and deployment. AWS CloudFormation™ is 
Amazon's service for provisioning virtual machines (called "instances") and other virtual 
hardware [14]. Amazon CodeDeploy™ is one of their services to automate code 
deployments to an instance [15]. Amazon S3™ is a general cloud storage service and 
Bash is a popular shell command language for Unix machines. All of the AWS services 
may be easily controlled by Bash scripts that call the AWS Command Line Interface 
(CLI). 
 

• Toolchain B - Chef Server, Chef Knife, Chef Client, Knife EC2 Plugin, Bash: Chef is 
the name of a suite of open source IT automation tools supported by Chef Software Inc. 
[16]. Greatly simplified, to use Chef a developer writes "recipes" that describe the desired 
state of some resource on a virtual machine. Chef Server manages the recipes and makes 
them available. We used a Chef Server EC2 instance launched from the standard Chef 
Amazon Machine Image (AMI). Chef Knife and Chef Client work with the recipes 
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running on the developer side or the virtual machine side respectively. The Knife EC2 
Plugin adds functionality to Knife to work with AWS EC2 instances. 
 

• Toolchain C - Docker, CloudFormation, S3, Bash: Docker differs from the tools used 
in the first two case studies in that it deploys applications to lightweight containers 
instead of to complete virtual machines. Each container is isolated from others running on 
the same machine, but the container holds everything needed by an application including 
code, data, libraries, etc. Claimed advantages of containers include faster start-up and 
better sharing of machine resources [17]. 
 

4.2. Toolchain Model 
 
When the studies were completed and documented, we compared the three toolchains to model 
commonalities. The following abstract components were identified (Figure 2): 
 

• Build Server - the computer where the infrastructure-as-code is executed to provision the 
virtual machine and to build and deploy the application. The build server draws from a 
repository to obtain the: 
 

o Infrastructure-as-Code - the scripts and templates that describe the virtual 
machine, its network environment, and the process for building and deploying the 
application. 

o Application Content - the files making up the application, including source 
code, web pages, data, etc. 
 

• Provisioning Service - the service that actually instantiates the Provisioned Virtual 
Machine and its environment. 
 

• Tool Store - holds code for tools that need to be downloaded to the Provisioned Virtual 
Machine, mainly the Deployment Agent. 
 

• Artifact Store - holds the build artifacts that need to be downloaded to the provisioned 
virtual machine. 

 

• Deployment Service - the service that knows which applications go on which virtual 
machines and mediates between the virtual machine and the artifact store. 
 

 

 
 

Figure 2. High Level Model of Toolchain Components 
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• Provisioned Virtual Machine (PVM) - the virtual computer created to run the 
application. This virtual machine also hosts the: 
 

o Deployment Agent - software that is "bootstrapped" onto the provisioned virtual 
machine and which then takes over local tasks (copying files, starting services, 
etc.) needed to start the application. 
 

With a few exceptions, each of the toolchains contains these components, but the names used by 
tool vendors vary widely. For example Chef calls the Build Server the "workstation", the 
Provisioned Virtual Machine is a "node" while the Deployment Agent is a "client". 
 

4.3. Security Risk Model 
 
For a security analysis of the three toolchains, we consider a risk model as shown in Figure 3 and 
follow the risk analysis terminology of [18]. We hypothesize a sophisticated adversarial threat 
source of high capability that could be a group or a nation state with significant resources to 
devote to an attack. 
 

 
 

Figure 3. Security Risk Model 

 
Our hypothetical organization maintains an Application that includes the PVMs deployed by the 
continuous deployment pipeline. As indicated in the figure, the perimeter defense of the 
Application is relatively weak since it is accessible over the public internet. The Build 
Environment contains the organization's code repository and the Build Server(s) that run the 
pipeline. The Build Environment's perimeter is more strongly defended because access to these 
components can be restricted to the organization's personnel and its private network. 
 
Both the application and the Build Environment would exist even in a manual deployment 
process. What is new in a DevOps process are the toolchain components: the Provisioning 
Service, the Deployment Service, the Tool Store, the Artifact Store, and the Deployment Agent. 
These constitute additional attack surface that is exposed to the threat source. A successful attack 
on any one of these new components could be very costly, since a compromised component could 
let the attacker read and possibly modify the software for many of the organization's applications. 
A sophisticated attack on these components could be designed to ignore development and test 
environments and to trigger only when working with staging or production PVMs. At that point 
backdoor malware could be added undetected. 
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The three toolchains use very different procedures for provisioning and deployment. The 
infrastructure-as-code is different, the sequence of events is different, and the security controls 
employed are different. We will examine each of our implementations of the toolchains in greater 
detail. In each case we can classify the observed security controls as authentication/authorization 
controls, firewall controls, and transport layer security controls. 
 

4.4. Toolchain A - Security Analysis 

 
The infrastructure-as-code consists of a CloudFormation infrastructure template and a top level 
Bash deployment script. The template contains an embedded user-data Bash script which runs on 
the provisioned machine at start-up. Additionally, the application content contains the web page, 
an AppSpec file with deployment instructions, and a start-up script to run the web server. The 
deployment script initiates the following sequence of events (Figure 4): 
 

1) The deployment script zips the application content and uploads it to a user bucket in S3. 
2) The deployment script calls the CloudFormation service and passes it the template. 
3) CloudFormation provisions the PVM.  
4) As the PVM boots it runs the user-data script to download the CodeDeploy Agent from 

an Amazon bucket in S3 and install it. 
5) The deployment script calls the CodeDeploy service to create a "deployment" with 

information about the application and its location in S3. 
6) The CodeDeploy Agent queries the CodeDeploy service to locate the application content. 
7) The CodeDeploy Agent retrieves the application content from S3, downloads it, and 

extracts the AppSpec file. 
8) The CodeDeploy Agent follows the instructions in the AppSpec file to deploy the web 

page and start the HTTP server. 
 

 
 

Figure 4. Toolchain A - Sequence of Events 
 

Toolchain A, being largely based on Amazon API's, uses Amazon's Identity and Access 
Management (IAM) service for its authentication/authorization controls [19]. IAM allows the 
definition of users and roles. Both of these are assigned policies that specify how they can access 
AWS resources. For the Toolchain A study, an IAM user is issued credentials to run the scripts in 
the infrastructure-as-code while IAM roles are used for service-to-service 
authentication/authorization. An instance profile role is attached to the PVM and allows the 
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CodeDeploy Agent to read application content from S3. A service role is passed to the 
CodeDeploy Service to allow it to scan the organization's EC2 instances and identify which of 
these need software deployments. 
 
IAM policies allow sophisticated, fine-grained security control, but they suffer from complexity 
and limited transparency. The policies are stored in multiple places within IAM so they are not 
visible to a developer inspecting the infrastructure-as-code. The settings are also complex; getting 
them all right was a major challenge in doing the case study. A naive developer will be tempted to 
grant very broad access to get an application to run. 
 
There are several possible new attacks that could be mentioned. If the IAM user's credentials 
were compromised the attacker could deploy malicious code through CloudFoundation, 
CodeDeploy or S3. A compromised PVM could read from the S3 user bucket and may thus be 
able to steal copies of the organization's software. And of course, any deep compromise to the 
security of any of CloudFoundation, CodeDeploy or S3 could have broad impact on the 
organization. 
 
AWS allows a firewall (called a security group) to be attached to each virtual machine. For 
Toolchain A that allows some protection of the PVM, though the application that is deployed to it 
will require some ports to be open. AWS uses HTTPS for transport layer security of all 
communications. 
 

4.5. Toolchain B - Security Analysis 
 
The Build Server has installed on it the Chef Development Kit including the Knife command line 
tool and a Knife EC2-Plugin. The infrastructure-as-code consists of a Knife configuration file and 
a deployment script. The application content consists of a Chef recipe that describes the web site 
and specifies how to start the web server.  
 
The sequence is as follows (Figure 5): 
 

1) The deployment script calls Knife to upload the recipe to the Chef Server, which will 
serve as both Artifact Store and Deployment Service. 

2) The deployment script calls the Knife EC2 Plugin 
3) The EC2 Plugin provisions the PVM. 
4) The EC2 Plugin then logs in to the PVM. 
5) The EC2 Plugin instructs the PVM to download and install the Chef Client from a Chef 

package repository which acts as the Tool Store. 
6) The Chef Client then queries the Chef Server to get the recipe for the application. 
7) The Chef Client runs the recipe to deploy the web site and to start the web server. 

 
For Toolchain B as with Toolchain A, an IAM user is issued credentials to run the scripts in the 
infrastructure-as-code. However, thereafter Chef relies more on public-private key pairs for 
authentication/authorization. Chef Server issues two pairs of keys to the Build Server as part of 
the configuration of the Chef Development Kit. These key pairs are used when the Build Server 
authenticates to the Chef Server. Additionally, as each PVM makes its first Chef run, the Chef 
Server issues it a unique key pair for use in future authentication/authorization [20]. 
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Figure 5. Toolchain B - Sequence of Events 
 

We found this mechanism to be easier to set up than the IAM roles of Toolchain A and, since the 
key pairs are created automatically, there may be less risk that over-broad policies are assigned. 
However, a main difficulty may be that any future change to use a different Chef Server instance 
could be very complicated as the old key pairs would no longer be valid. 
 
With Toolchain B the interactions between the Build Server, Chef Server and the PVM are more 
complicated than with Toolchain A. With Chef, Knife on the Build Server uploads recipes to the 
Chef Server, and the Knife EC2 Plugin then logs in to the PVM to bootstrap the Chef Client. 
Then, the PVM has to communicate with the Chef Server to get the recipes. While creating 
complications, this three way communication does provide an opportunity to lock things down 
using AWS firewalls (security groups). Unfortunately the firewall settings recommended for use 
with the Chef Server standard AMI are extremely broad. After some study, we were able to 
replace these with a fairly complicated three way set of firewall settings to provide least privilege 
access. 
 
As with Toolchain A, an attacker who succeeds in compromising the PVM could go on to 
penetrate the deployment pipeline. The key pair and firewall settings would not prevent the 
opponent from reaching the Chef Server, so that an initial lodgement on the PVM could provide a 
base for attack. 
 
Also as with Toolchain A, Chef uses SSH or HTTPS for transport layer security on all 
communications. However, the Chef Server launched from the standard Chef AMI issues itself a 
self-signed certificate, which opens opportunities for a man-in-the-middle attack. 
 

4.6. Toolchain C - Security Analysis 
 
The infrastructure-as-code consists of a CloudFormation infrastructure template and a Bash 
deployment script which runs on the Build Server, a Dockerfile, which describes the Docker 
container, and a Bash helper script. The helper script installs Docker on the PVM and deploys the 
application into the Docker container. The application content is a simple web page. 
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Figure 6, Toolchain C - Sequence of Events 
 

The sequence is controlled by the deployment script and is as follows (Figure 6): 
 

1) The deployment script uploads the application content, the Dockerfile, and the helper 
script to a bucket in S3 which acts as the Artifact Store. 

2) The deployment script calls the CloudFormation provisioning service, passing it the 
template. 

3) CloudFormation creates the PVM, which is an Amazon Linux instance. 
4) As the PVM starts up, a user data script embedded in the template runs, downloads the 

application content, the Dockerfile and the helper script from S3, and then runs the helper 
script. 

5) The Bash helper script installs Docker from a package repository to the PVM and runs it. 
Docker creates a Docker image based on the Dockerfile passed to it and deploys a Docker 
container made using the newly created Docker image. 

6) A python HTTP server running inside the Docker container serves the web page on port 
8080 of the Docker container, which has been mapped to port 80 of the PVM  

 
This toolchain also uses Amazon IAM for authentication. An IAM user is needed to run the 
deployment script; this user needs permissions to write to S3, to run CloudFormation, and to pass 
an instance profile role to the PVM. The instance profile role lets the PVM read the application 
content from S3. One security group was needed, to open the PVM's port 80 so it could serve the 
web page. HTTPS is used in communicating from the Build Server to the CloudFormation and S3 
services. 
 
In some ways this toolchain was rather simpler in its security configuration than the preceding 
examples. It took some study to get least-privilege permissions for the IAM user and role right, 
but the firewall settings were quite straightforward. No Deployment Service was needed which 
reduced complications and the security risks associated with PVM communications back to the 
toolchain components. 
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5. DEVOPS SECURITY DISCUSSION 
 

5.1. DevOps New Defenses 

 
While there are problems, DevOps processes would seem to have the potential to significantly 
improve security defenses. If application structure and environment are represented in 
infrastructure-as-code, then theoretically that code can be inspected, tested and managed just as is 
source code. (As we will note in subsection 5.3 the current format of the code can make security 
analysis difficult.) There is a reduced chance of security vulnerabilities introduced through simple 
manual error. If automated security tests are available, these can be performed concurrently in 
duplicated test environments that are guaranteed to be very similar to the production environment. 
The DevOps advantages are substantially enhanced if the organization adopts the practice of 
using short-lived immutable virtual machines. With this practice the whole Application may be 
recreated every 24 hours or so. There is no manual security patching of production machines; 
instead each new build can start from an up-to-date image housing the latest patched operating 
system and middleware. Virtual machines are "fully baked" and never maintained so a malicious 
or careless employee cannot plant malware in the production environment without going through 
the build approval process. Perhaps most important, frequent replacement of virtual machines 
makes life much harder for sophisticated attackers who first break into the Application and then 
establish long term persistence by planting backdoor malware [21]. The backdoor would be 
eliminated each time the virtual machine was replaced. 
 

5.2. DevOps New Risks 
 
As we compare DevOps automated cloud deployment with manual cloud deployment it is clear 
that there are some new risks that need to be managed. We have already mentioned the additional 
attack surface that is provided by the Provisioning Service, the Tool Store, the Artifact Store, and 
the Deployment Service. Any weak link in the toolchain is a potential entry for a very damaging 
attack. A specific new risk that we observed in Toolchains A and B is that the PVMs that make up 
the Application may have a channel back to these new components. According to our risk model, 
the Application has a relatively lightly defended perimeter so that there is some risk that a 
compromised PVM can serve as a starting point for a dangerous attack. 
 
Some of the attack surface risk can be mitigated by careful attention to available firewall and 
authentication/authorization mechanisms. However in doing the case studies we noted that the 
tools are complex; a single toolchain often has multiple interdependent code files in several 
different file formats. Current documentation is often silent about "least privilege" security 
settings; in fact tutorials often suggest assigning very broad permissions. It can thus be quite 
difficult to establish exactly the minimum policies required so that a tool can run correctly. So as 
DevOps becomes widespread there is a danger that many organizations may adopt these tools 
without learning to adequately lock down their systems. 
 
With the frequent automated deployments of DevOps, traditional manual approaches to security, 
such as hand-evaluated security assurance cases [22], become much less practical. Given the time 
constraints, automated methods of evaluating security properties must predominate. But it is not 
possible to automate all security checks, and the reduced number of human eyes on the process 
certainly must raise concerns.  
 
Key management is a problem, even with manual system administration, but it may be even more 
difficult with DevOps automation. The PVMs need keys and certificates for database access, for 
transport layer security, and so on. Traditionally such keys were provided by a system 
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administrator logging in and configuring the keys by hand. There may be many keys required and 
it is not easy to automate this kind of key management safely. A commonly reported error is to 
place a key within a script which is then checked into a source code control system and thus 
becomes visible to all members of the development team. 
 
Several of the toolchains use public components from their "community". For example, in all of 
our three toolchains the Deployment Agent was downloaded from a public site. Additionally, 
some of the toolchains have public sets of code, templates or scripts, some of which seem to get 
installed on the Build Server or the PVM with little warning. It may be hard for an organization to 
know exactly what code they are using and where it came from. 
 

5.3. Research Directions 
 

One of the main claimed benefits of DevOps infrastructure-as-code is that the code can be 
inspected, tested and managed. From a security perspective however, this is more an aspiration 
than a reality. We have already mentioned that, even within one toolchain, the code is complex 
and is split into multiple files with interdependencies and different formats. In our three case 
studies the configuration of the security controls was even further dispersed and resided partially 
in Amazon's IAM service. 
 

Security configuration is not visible in the templates and scripts themselves. For example in the 
Toolchain A case study, the policies and trust relationships needed a total of 9 JSON fragments, 
some written by us and some provided by AWS, but all accessible only via IAM. Suppose an 
auditor of our code should ask "what S3 buckets can the PVM access?" To answer that question 
she would have to trace through the master deployment script, identify which IAM role is 
assigned to the PVM, go to Amazon's AWS console and find that role, and then scan each of the 
policies attached to the role. 
 
A promising research goal would seem to be to structure the infrastructure-as-code so that 
security questions can be more easily answered. Simple navigation, search and dependency 
analysis tools could be a good place to start. A clearer separation of concerns would help, so that 
security experts could examine the code for security issues while application experts focus on the 
mechanics of provisioning and deployment. A still greater advance would be some compact way 
of representing infrastructure-as-code that would allow proofs of security properties. In other 
words, infrastructure-as-code could benefit from good programming languages with appropriate 
specification and assertion mechanisms. 
 

Another research goal would be to enrich the set of feasible automated security checks. DevOps 
build chains often run audit and validation tools before each new release is promoted to the 
production environment. Anything that could improve the scope and precision of these tools 
would be very useful. Performance is also important. Since there may be many releases each day, 
tools should be designed to work incrementally so that each release does not require a full system 
scan. 
 

Better intrusion detection could also help alleviate the risks of attacks on DevOps components. 
For example the Build Server is a dangerous target, but it should be running a very limited and 
specific set of services. Research could identify which intrusion detection strategies are best for 
this and other DevOps components. 
 

5.4. Specific Recommendations 
 

While every organization will face different circumstances, our review of related work and our 
case studies would seem to indicate that adopters of DevOps automation should consider at least  
the following policies: 
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1) Where application structure makes it possible, use immutable PVMs and replace them 
often. 

2) If possible, block the path from the PVM back to tools such as the Provisioning Service, 
the Artifact Store, and the Deployment Service. This will make it harder for a 
compromised PVM to be used as a lodgement for attacks on the toolchain. 

3) The Build Server and the other toolchain components are likely to become more 
prominent targets. The activity on these components should be logged and the logs 
closely monitored to detect an attack as early as possible. 

 

6. CONCLUSIONS 
 
In this paper, we have tried to identify some of the security benefits and drawbacks of the DevOps 
approach to managing software. We have focused on how infrastructure-as-code allows 
automated provisioning of infrastructure and automated deployment of applications. We 
performed three case studies using DevOps tools that are in widespread use and identified the 
changes automation brings to the organization's attack surface. We also examined the security 
controls provided by the DevOps tools used in our studies.  
 
Our study was necessarily limited since there are many other tools used in DevOps; even with the 
tools we picked we had to choose one specific way of using each tool and that often excluded 
some of its features. Our results will not necessarily generalize to all DevOps tools and 
implementations. 
 
However, we think one conclusion is generally valid: that current DevOps tooling suffers from 
complexity. Using the tools, even those from a single vendor, involves using interdependent 
templates and scripts in multiple formats. The code invokes numerous functions and APIs that are 
not clearly documented. Security policies are not visible in the infrastructure-as-code but are 
stored externally in formats that require an expert for interpretation. Thus a developer attempting 
to build a secure system must have deep guru-level knowledge in multiple areas. 
 
Thus, in this paper we do not argue that DevOps makes cloud computing less secure. On the 
contrary there are some significant security benefits and the potential attack points we have 
described might all be managed by well qualified personnel acting with care and attention. Rather 
we argue that if, as seems likely, DevOps practices spread widely, it will be difficult to have 
available enough personnel with the required skills and focus. So we believe that a main direction 
for research should be to simplify security aspects of DevOps so that they can be managed by 
developers of normal skill. 
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