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ABSTRACT 

 

Software effort estimation is an important process of system development life cycle, as it may affect the 

success of software projects if project designers estimate the projects inaccurately. In the past of few 

decades, various effort prediction models have been proposed by academicians and practitioners. 

Traditional estimation techniques include Lines of Codes (LOC), Function Point Analysis (FPA) method 

and Mark II Function Points (Mark II FP) which have proven unsatisfactory for predicting effort of all 

types of software. In this study, the author proposed a regression model to predict the effort required to 

design small and medium scale application software.  To develop such a model, the author used 60 

completed software projects developed by a software company in Macau. From the projects, the author 

extracted factors and applied them to a regression model. A prediction of software effort with accuracy of 

MMRE = 8% was constructed.  
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1. INTRODUCTION 

 

The problems faced by project designers in controlling and managing software projects are 

overrun of effort estimate. With inaccurate effort estimates, it surely affects project designers to 

make correct decisions and leading to the failure of the entire software project development [1]. 

Over the last ten couple of years, there is an increasing strong demand for software development 

team to build quality application software in the competitive global markets [2]. The total 

investment of application software development and maintenance has been overrun for the past 

ten years. As analyzed by [3] [4], the overestimated effort schedule is varied substantially from 

41% to 258%, and the total investment over-prediction is from 97% to 151%. Besides, there are 

research conducted by US government agencies revealing that 60% of the software project 

development overrun the original scheduled completion time, 50% of these projects have been 

overrun the estimated costs while in the case of 46% of those completed projects were useless at 

all  [5]. The results indicated that not only the importance of planning and controlling over 

software projects, but also the early effort estimation of software project development is 

important too. 

 

Over the years, there are many discussions related to effort estimation of software project 

development [6] [7] [8] [9] [10] [11] [12]. However, some of those well-developed models cannot 

be used to make early estimation. Other models require more time spent by project developers to 

understand both user requirements and program specifications or until the programs are 

completely designed.  For example, COCOMO measures program size with total LOC for 

development effort estimation.  Unfortunately, LOC is unknown until the entire application 
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software is developed. This makes the effort estimate unstable. Similarly, FPA method is used to 

make predication of program size using inputs, master files, logical files, interfaces and outputs.  

Although this method has been widely used by organizations, particularly in Europe, than LOC, it 

is still not known yet until the design phase is complete [13]. Due to problems of calibrating early 

effort estimate using both LOC and FPA, it is, therefore, needed to propose a general model for 

making effort estimates for small and medium application software. 
 

2. LITERATURE REVIEW 
 

Software effort estimation is one of the important activities in software development life cycle 

[10], as such, many estimation models have been proposed previously. These models are 

classified into non-algorithmic models and algorithmic models [11]. Non-algorithmic models are 

mainly based on comparatively methodologies such as Expert Judgment and Machine Learning 

Techniques [14] [15]. While algorithmic models are constructed using history numerical data [16]. 

For example, SLIM [17] [18]. COCOMO is a well-known estimation model which is 

procedurally complete and thoroughly documented for effort estimates [19]. Using COCOMO 

method, effort estimate proceeds through two steps. First, the basic level of COCOMO, a nominal 

effort estimate must be calculated by using a formula. While size measured in LOC is the only 

one independent variable in this level. Second, upon the calculation of nominal effort estimate, it 

is multiplied by a composite multiplier function, m(X), where X indicates the result of all 15 

independent variables referred to cost drivers in the intermediate level of COCOMO. The 

functional form of the model is shown below: 
 

E = aiS
bi
 m(X) 

 

where S is the total program size measured in LOC and m(X) is the multiplier function. 

 

By following a gradation, multipliers are to determine the rating of the cost drivers running from 

very low to very high. The coefficients ai and bi are calculated from a combination of the mode 

and the level. Software projects were categorized into three modes by Boehm [20], they are 

namely organic, semidetached and embedded.  For those projects falling into organic type, they 

are relatively small in terms of program size, little innovation is required, and are designed by 

companies themselves. For those projects classifying into the type of embedded, they are large in 

terms of functions, they must be in operations within tight constraints and they require high 

innovation. Those projects of semi-detached class are falling somewhere between organic and 

embedded [19]. This makes the project designers finding difficulties to estimate the effort 

accurately required for application software [21].   

 

In addition to COCOMO, Albrecht [22] [23] proposed another method named FPA for predicting 

application software effort using program requirements. This method is to measure the functional 

requirements of systems according to their complexities. In this method, the function types, such 

as external inputs, outputs, inquiries, external interfaces to other systems, and logical internal files, 

of systems are derived by classifying the system components perceived by system counters, they 

are then classified further and added together. According to the number of data elements of each 

component, it is further categorized into simple, average or complex classification. Each 

component is then assigned a number of calculation points according to its type and complexity. 

The total effort arrived for a system is calculated by multiplying the total sum of function points 



International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.1, January 2017 

25 

for all user function types by the technical complexity factors (TCF).  The TCF is obtained by 

calibrating the level of influence (DI) of the 14 components [7]. 

 

Despite the research works for proposing the models, they have been proven unsatisfactory for 

predicting effort of different types of software applications [9]. With COCOMO model, it 

consists of three different sub-models, namely Basic, Intermediate, and Detailed COCOMO. 

According to evaluation suggested by Boehm [20], Intermediate model is proven to be better than 

the Basic model for effort prediction among the three levels. While the Detailed model is only 

slightly better than the Intermediate one [18] [24]. However, the 15 cost drivers of the 

Intermediate model are scalars ranging from 0.7 to 1.66 with a nominal value of one. This value 

is to represent the characteristics and the types of system projects as well as the environment 

where the projects were constructed. Therefore, the results of Intermediate model are significantly 

influenced by the values of those cost drivers, in turn detailed information of the software projects 

and the development environment must be identified and gathered.  Since the values of the cost 

drivers were originally from the software projects constructed during the period of the 1960s and 

1970s. This model is still at a high level of uncertainty particularly in today’s complex software 

environment regarding its accuracy, reliability and validity [24]. Therefore, there is a high 

possibility of leading to inaccurate effort estimate in such a complex software environment. 

 

For FPA method, several studies reported that project designers faced similar difficulties during 

system constructions. For example, due to the counting experience of the project counters who 

are varied from person to person. Because of this reason, the cost involved to reach the final 

number of function point data may be different [25] [26] [27]. In addition, when the function 

point data were counted by system analysts at a software house, the time spent by calculating 

system functions was mostly 40 hours for a medium-size system (800-2,400 FPs) and even more 

for large (>2,400 FPs) computer application systems. Furthermore, a study reported by [26], due 

to the growth of variability of function point counting, the differences in function point measures 

of the same system arisen by different system counters with an average of 12.2%. Jeffery [28] 

reported an even worse result with a 30% of variance within the same company and more than 

30% among different companies. Due to the subjectivity in which function types are categorized 

into simple, average and complex, the potential for error variance may exist.  
 

3. OBJECTIVE OF THE STUDY 
 

The aim of this research is to find out how design factors, such as Development kit, Designer 

experience, Number of programmers, Complexity, and Education level, affect the effort required 

for system development. The reason of choosing these factors is because they are free from 

calculation of total lines of code and number of function points.  Unlike LOC and FPA, the 

results of effort estimate are based on the information available after preliminary and detailed 

design.  Instead, our model makes the effort estimate earlier than that of LOC and FPA, because 

we can determine these factors before the application software is fully developed. 
 

4. PROJECT DATA  
 

The author interviewed a local software company from which data were collected. The company 

designs small and medium systems for local customers and clients. The characteristics of the 

system projects include: small to medium size in terms of LOC ranged from 5,875 to 80,918; they 

were all developed using fourth generation programming language; they relate to shipment, 
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import and export, inventory control and report generation activities; they were developed by a 

small team of two to five programmers and system analyst; the software company has a well-

developed way to keep track the detailed information of the developed programs. All collected 

software projects were developed by following standard system development life cycle. In an 

attempt to confirm the reliability of both dependent and independent variables, all software 

projects were verified by a programmer and double checked by a system analyst. Minor mistakes 

were reported and corrected afterwards. The sample size consists of 60 completed software 

projects, from which 40 projects were drawn as a main sample and 20 projects as the holdout 

sample respectively. The main sample was used to develop a model for prediction purpose, and 

the holdout sample was used to measure the validity of the proposed model. 

 

5. RESEARCH MODEL AND ITS VARIABLES 
 

Upon data collection, the following variables were proposed. Definitions of the variables are 

explained below. Effort is a dependent variable referring to total man-hour effort required to build 

a software project. Independent variables include Development_kit(Dev_kit), 

Designer_experience(Designer_exp), No_of_programmers(No_prog), Complexity(Comp) and 

Education_level(Edu_level).  
 

5.1 Effort 
 

This variable emphasizes the effort (man-hour) spent by project developers to design application 

software. Effort is measured either in man-hour or man-month depending on the size of software 

projects [23] [27]. In the study, we consider man-hour is because the software projects are small 

to medium. Some software projects didn’t last several months.  For those software projects 

studied, only the time spent in analyzing and designing by project designers is counted. While the 

time spent to discuss with clients and end users are excluded. The measurement used to count the 

effort is the total number of man-hours for single software project. The software company has a 

very good practice to record detailed information, such as time spent for each project, the number 

of project designers assigned to a project and the development tool used, of each developed 

software project. Therefore, the data collection process was easy and straight forward. 
 

5.2 Dev_kit 
 

This variable is to measure the complexity of system development kit used by project designers. 

Usually, the complexity of a development kit correlate to the time required to develop software 

projects, as a good development kit can make programmers more productive during system 

development. When a suitable development kit is used, it can support the construction process by 

automating tasks executed at every stage of system development life cycle. It facilitates 

interaction among project designers by diagramming a dynamic, iterative process, rather than one 

in which changes are cumbersome [29].  It is also a useful tool to enable project designers to 

clarify end user’s requirements at the very early stage of system development life cycle [30].  

CASE tool is the common development kit used to support development process in many 

companies. This factor is measured with a five-point Liker-like scale ranging from (1) very low 

productivity to (5) very high productivity.  
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5.3 Designer_exp 
 

This variable is to measure the actual working experience of project designers designing 

application software in computer industry. The actual experience of project designers in 

developing software projects and the experience in a specific kind of programming language are 

key determinants. By common sense, an experienced project designer can reduce the number of 

errors to program codes if he has good mastering of that type of programming language and has a 

number of years in developing software projects. This leads to a minimum time in developing and 

maintaining programs in the future. Thus, the more the number of years of service that a designer 

serves in the industry, the higher the level of working experience the designer has gained. We 

take the average of years of experience among the team members if there is more than one 

participates in a project.  
 

5.4 No_prog 
 

This variable is to count the number of project designers working collaboratively as a team. In 

order to make sure a late project which can be completed on time, there are project designers who 

often add extra programmers [31]. Sometimes, this arrangement may not work well, especially 

when there is lack of proper communication among project designers and no training offered 

before the development. This could definitely slow down the development process and lead to 

many problems. However, the situation may not happen in our study, because the software 

projects developed by a team of project designers are small to medium in term of LOC. A project 

designer is relatively easy to make an accurate estimate before a software project starts. Therefore, 

there are no additional members who are invited to a late project.  For this variable, according to 

the detailed information of the developed projects, we are in an easy position to collect the 

number of project developers responsible for each project being developed.  
 

5.5 Comp 
 

This variable refers to the degree of program complexity designed. A thorough understanding of 

the software development process improves the relationship between program complexity and 

maintenance effort.  That is, high complexity of software projects increase the difficulty of 

project designers to quickly and accurately understand the programs before they are developed or 

repaired [32]. The higher the level of complexity of a program is, the greater the effort required 

by project designer [33]. Especially, when a program has highly interactive modules to 

communicate not only within itself, but also with modules from other programs.  This will 

increase the time required by project designers in designing the software projects. In the study, 

this variable is to measure and examine system specifications and design specifications prepared 

by the company during analysis and design phases. Due to the characteristics of collected 

software projects, they all are business oriented programs. The determination process for program 

complexity is under the control of project designers. For this variable, the data is collected using a 

five-point Liker-like scale ranging from (1) very low complexity to (5) very high complexity.  
 

5.6 Edu_level 
 

This variable is to measure the level of education that a project designer has acquired in related 

field. Many companies prefer to recruit programmers who are equipped not only with extensive 

working experience in industry but also those who have well training with at least a bachelor 
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degree or higher in related field. Project designers with higher level of education usually can 

solve programming problems more easily than those who don’t. To measure the factor, we use a 

five-point Liker-like scale ranged from (1) very low level of education to (5) very high level of 

education.  

 

A linear regression model is hypothesized following discussion of the variables and it is shown in 

the following equation. 

 

Effort = α + β1Dev_kit + β2Designer_exp + β3No_pro + β4Comp + β5Edu_level 
 

6. DATA ANALYSIS  

 

The general descriptive statistics, mean and standard deviation, of the tested variables are 

presented in Table 1. In an attempt to find out the design factors influencing the effort estimate. 

We used SPSS to run a correlation test to identify any potentially useful relationships between 

dependent variable and independent variables.  The results are shown in Table 2 after conducting 

multiple regression.  There is an evidence revealing strong relationships between independent 

variables and the dependent variable. Particularly, there is a strong correlation reported between 

Dev_kit, No_pro and Comp and the dependent variable Effort.  This is to imply the selected 

independent variables having potential predictive capabilities for the dependent variable.  

 
Table 1 Summary statistics 

 

Variable Mean Std. Deviation 

Effort 662.19 252.21 

Dev_kit 3.88 1.07 

Designer_exp 5.69 2.11 

No_pro 3.08 1.16 

Comp 3.50 1.14 

Edu_level 4.08 1.35 

 
Table 2 Pearson correlation coefficients 

 

Variable Effort Dev_kit Designer_exp No_pro Comp 

Dev_kit .720 - - - - 

Designer_exp -.251* .115* - - - 

No_pro .931 .550 -.061* - - 

Comp .645 .539 .037* .556 - 

Edu_level .243* .217* -.223* .305 -.064* 

 

All are significant at 0.01 level, except for * significant at 0.05 level 

 
From the results, implications have revealed design factors having strong influence on software 

effort estimate. One of the major factors influences the effort estimate is the No_pro, it is 

evidenced by the value of correlation (.93), indicating of 93% of the variance in effort estimate. 

This is to emphasize that when more team designers are involved in designing a software project, 

the overall accuracy of effort estimate can be improved substantially. Similarly, the value of 

Dev_kit (.72) shows significantly that it has high impact on productivity of project designers. 
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This is due to fact that a good development kit has a complete set of data, such as input and 

output formats, system data and database structures, maintained in data repository, so that 

designers can choose the data from the data repository. This enables designers contributing the 

minimum time to design the data items from the very beginning. As a result, the time spent by 

project designers in defining the data items is minimized significantly. Also, there is a close 

relationship between Effort and Comp (.64). This factor explains more time is required for 

development when internal complexity of a program is high.  Thus, it is expected the effort 

estimate can be affected by the complexity of programs, especially when programs are the highly 

complex. 

 

However, the correlation value of Edu_level (.-243) has low effect on the effort estimate. The 

possible explanation is that project designers can acquire extensive programming knowledge by 

themselves without attending a degree course in the modern days. Of course, some project 

designers can solve complex problems more easily if they have a higher level qualification but 

this is not true at all time.  Similarly, the correlation value of Designer_exp (-.251) has totally no 

significant influence on effort estimate. It is because all of the system projects were developed 

using a single programming language. When a project designer is already familiar with a specific 

programming language, he may be very productive for the rest of other programs. Besides, all 

programs developed by the company are small to medium, extensive programming experience is 

not that important. Therefore, it is in line with previous studies developed by [34]. 
 

7. DISCUSSIONS 
 

The model proposed in this study may not be an accurate predictor for future effort estimate since 

it is only suitable for the testing data from which it was constructed. In order to improve the 

accuracy and reliability of the proposed model for future effort estimate. We used an accuracy 

criterion for evaluation purpose. The accuracy and reliability of a model is highly important as it 

directly affects the success or the failure of system effort prediction. Project scheduling, 

controlling, coordination and staffing decisions are always depending on accurate estimation [13]. 

However, sometimes an inaccurate model can still be consistent if it uniformly misestimates 

effort for only a set of software project data. If a model is not consistent, the management may 

not rely much on the estimates. As a result, an inconsistent model may be of little use in practice. 

The accuracy of a given software project estimate is calibrated by the magnitude of relative error 

(MRE).  The MRE is calculated for a given project by the following formula: 

 

MRE = 100 | (Actual Effort – Estimated Effort) / Actual Effort |  

 

Thus, the accuracy of prediction of a software project is proportional inversely to its MRE value. 

Besides, mean MRE (MMRE) is the mean value for the indicator over all observed data in the 

sample. A lower value of MMRE usually indicates a more accurate model [35].  The prediction at 

a given level usually explains an indication of overall fit for a set of software projects, based on 

the MRE values for each pair of data: 

 

Pred(p) = i/n 

 

where p is the selected threshold value for MRE, i refers to a set of software projects with  a value 

of MRE which is smaller than or equal to p, while n is the total number of software project data. 

In an attempt to measure the accuracy and reliability of the proposed model, a holdout sample of 
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20 software projects was drawn from the main sample. Upon validation, the accuracy of 

predictive values for COCOMO model and the proposed model are shown in Table 3. By 

comparing the MMRE values of these two models, the proposed model has higher predictive 

capability than COCOMO model. In addition, the predicted results indicated explicitly that a 

simple model can generate less error than a complex one, because the design factors were directly 

extracted from the early stage of system analysis phase. Meanwhile, when comparing the PRED 

values of are models, our model has a higher predicted value than COCOMO. In general, it is in 

line with our expectation. Therefore, it is to conclude that the proposed model is more accurate 

and reliable than COCOMO model.  

 
Table 3 Indicators of model accuracy 

 

Model MMRE PRED(0.3) PRED(0.2) PRED(0.1) 

COCOMO .13 .76 .61 .22 

New Model .08 .82 .65 .31 
 

8. CONCLUSION AND FURTHER RESEARCH WORK 
 

By drawing a conclusion, there are several points to note. The first point is to emphasize is that 

the results of the proposed model are promising and fruitful. It is because the possibility of 

developing a prediction model for application software using fourth generation programming 

language.  However, although the results are pleasing, it must be addressed that we are not 

proposing a general model for all types of application software. The use of software projects are 

mainly from a small company as a basis for prediction purpose. The suggested results may not 

generalize to real environment.  

 

The second point is that we avoided using COCOMO model or FPA method with two reasons. 

First, we don’t know yet the total LOC of a program until it is fully developed.  Second, the total 

LOC counted is different from programs to programs, it is also varied from programming 

language to programming language.  

 

The third point is that it is possible to use design factors to estimate the total effort required for 

software project development. Such design factors are easily collected at an early stage of system 

development life cycle when the company has a good practice to manage system development 

activities. By using simple regression model, a prediction software project of effort estimate with 

accuracy of MMRE = 8% was constructed. And this level of accuracy was obtained relatively 

easy without using complex model such as COCOMO. It is to believe that our results may 

generalize to other software projects with similar characteristics.  

 

9. LIMITATIONS 
 

There are a couple of limitations: (1) the predicted results are mainly from those software projects 

constructed by a single company, the area of application may be only restricted to those software 

projects designed by that company and those software projects with similar characteristics; (2) the 

sample size is only 60 software projects which are mainly from a single company. To be more 

generalized, the sample size should be large enough and contain projects from more than one 

company. So that the new model can be applied to other areas to ensure its validity. (3) Further 

research is also needed to compare to FP Method or other methods. 
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