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ABSTRACT 
 
Emerging sensor-embedded smartphones motivated the mobile Internet of Things research. With the 

integrated embedded hardware and software sensor components, and mobile network technologies, 

smartphones are capable of providing various environmental context information via embedded mobile 

device-hosted Web services (MWS). MWS enhances the capability of various mobile sensing applications 

such as mobile crowdsensing, real time mobile health monitoring, mobile social network in proximity and 

so on. Although recent smartphones are quite capable in terms of mobile data transmission speed and 

computation power, the frequent usage of high performance multi-core mobile CPU and the high speed 

3G/4G mobile Internet data transmission will quickly drain the battery power of the mobile device. 

Although numerous previous researchers have tried to overcome the resource intensive issues in mobile 

embedded service provisioning domain, most of the efforts were constrained because of the underlying 

resource intensive technologies. This paper presents a lightweight mobile Web service provisioning 

framework for mobile sensing which utilises the protocols that were designed for constrained Internet of 

Things environment. The prototype experimental results show that the proposed framework can provide 

higher throughput and less resource consumption than the traditional mobile Web service frameworks. 
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1. INTRODUCTION 
 
The capabilities of recent mobile devices such as smart phones and tablets have been steadily 
enhanced with faster processing power, larger and higher resolution display screens, greater 
memory, and enhanced power saving mechanisms. Additionally, accessing high speed mobile 
Internet (e.g., 3G/4G or LTE1) with mobile devices has become a common phenomenon in most 
urban areas of the world. Cisco Visual Networking Index Forecast Project predicts that, by 2018, 
the population of mobile device users will reach around 5 billion together with more than 10 
billion mobile devices connecting to the Internet2. 

 
Confluence of these mobile developments with the evolution of service-oriented architecture 
technologies have led to the mobile Web services (MWS), where the mobile terminals are being 
used as both Web service clients and providers (which is termed-Mobile Hosts [1]). Mobile Web 

                                                 
1http://www.3gpp.org/technologies/keywords-acronyms/98-lte 

2http://newsroom.cisco.com/release/1340551 
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service provisioning has been utilized in numerous fields such as Location Based Services (LBS) 
[2], Mobile Health Services [3], Mobile Social Networking applications [4], etc. 
Although recent smartphones has enough processing power and capable of high speed data 
transmission, the challenge of resource constraints still exists when providing MWS. The battery 
power of the mobile device will drain quickly due to the extensive usage of the high performance 
multi-core mobile CPU and the high speed 3G/4G mobile Internet data transmission. Therefore, 
in past years, several lightweight mobile Web service provisioning approaches [5], [6] have been 
proposed to address the resource intensive issues in MWS. 
 
In general, there are two trends of approaches:  
 

(1) Reducing the complexity of the messaging. e.g., utilising Representational State Transfer 
(REST) based service provisioning instead of Simple Object Access Protocol (SOAP); 

(2) Utilising external resources to enhance the overall performance. e.g., offloading the 
complex computational tasks to static Cloud [7] or to the Mobile Ad Hoc Cloud [8] and 
also using optimistic collaboration and scheduling to reduce the consumed bandwidth in 
order to serve energy [9], [10].  

 
However, when considering MWS based sensing provisioning systems, they still have some other 
challenges that need to be addressed in order to increase their efficiency. For example, when 
considering the mobile sensing scenarios, instead of providing the information regularly based on 
the requests, sometimes it may be ideal to store the information on the cloud and provide access 
to the data, for the further requests. This way, the communications latencies can be significantly 
reduced, if there are server bunch of clients requesting the same information.  
 
In addition, there should be a proper way to handle the conflicts and compatibility of services. 
Mobile devices have limited sensing components and they may not be able to operate 
concurrently. Conversely, some services may be able to operate at the same time, even though 
they are using the same sensing components. For example, video-based sensing and image-based 
sensing services both use camera component and may operate at the same time depending on the 
specification of the devices. In such cases, how does the Mobile-Host manage the services and 
provide timely service publishing? Similarly, in the case of real-time or a periodical sensing 
service operation, the executed service can affect the availability of other services. How does the 
Mobile Host measure or prioritize the availability of the services? 
 
To address these issues, in this paper, we extend ourprevious work [11] towards presenting a 
lightweight mobile Web service provisioning framework based on integrating a number of 
lightweight protocols including Constrained Application Protocol (CoAP) [12], Bluetooth Low 
Energy (BTLE) [13] and Efficient XML Interchange (EXI) [14]. We also have added a service 
scheduling feature to address the discussed challenges and to provide uninterrupted service 
provisioning while maintaining the basic functionality of the mobile device. 
 
The experimental results, which focused on the performance comparison between the traditional 
MWS and the proposed lightweight MWS, have shown the efficiency of the proposed lightweight 
MWS framework in terms of resource consumption and service provisioning throughput. 
 
The rest of the paper is organized as follows: Section 2 provides background on applications of 
Mobile Host and comparison of related work. Section 3 discusses protocols related to service 
provisioning. Section 4 presents the design details of the proposed framework followed by the 
description of the main components of the MWS. Section 5 provides the implementation details 
of the prototype and Section 6 presents the performance evaluation of the proposed protocol 
stack. The paper concludes in Section 7 along with future research directions. 
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2. BACKGROUND AND RELATED WORK  
 
This section explores the applications of the mobile host and state-of-art research on the mobile 
Web service provisioning. 
 
2.1 APPLICATIONS OF MOBILE HOST  

 
MWS has been utilized in different application domains over the past years.  
 
Berger et al. [15] were successful in provisioning a SOAP-based retail Web application where a 
mobile device presents wallet services to an electronic check-out at kiosk. The kiosk station uses 
mobile wallet service hosted by the customer mobile devices that delivers a complete payment 
transaction within the mobile device, the retail store system and the bank system. Two other 
fascinating applications are a) Mobile Picture album with the location information service and  b) 
Cooperative Journalism, where mobile host engages the coordination of journalists and their 
associations, which are presented in the work by Srirama et al. [16], and in [17] respectively. 
MobiCrop [18] is an application which grants crop farmers to use their mobile devices to get 
information about utilizing pesticides. Another interesting mobile health application provided in 
[19] called SOPHRA, which supports healthcare professionals to access patients' medical 
information that is hosted on their mobile devices. 
 
2.2 COMPARISON OF EXISTING MOBILE HOST FRAMEWORKS 

 
Most of earlier approaches were based on providing a SOAP-based MWS architectures. The work 
in Srirama et al. [16], [1], [20]  presented a lightweight mobile host with Personal Java 
implementation.  In that work, authors utilised HTTP and TCP for the application and transport 
layer protocols respectively, and SOAP messages format with the WSDL as service description. 
 
Gehlen and Pham [21] presented a P2P Web services on Java enable mobiles. In this architecture, 
each mobile node work as both client/server role which provides service in the distributed 
environment. The authors developed a mobile SOAP server that capable of providing XML Web 
services. In another work Srirama [22] , Srirama et al.  [23] described a framework based on 
JXTA technology for service provisioning in the P2P network environment. The light version of 
JXTA for mobile devices called JXME applied to set up a virtual P2P network. However, JXTA 
uses either TCP or HTTP protocols to traverse network barriers, and also the work used WSDL 
for service discovery and SOAP message format. Moreover, Ou et al. [24] designed a Layered 
P2P architecture to provide Web services in converged cellular and ad-hoc network environments 
with the vertical tunneling model to speed up the service discovery. The framework consists of 
eight modules including a WSDL module for service publishing and a SOAP Module for 
generating and parsing SOAP messages between the client and the service provider. 
 
In order to reduce the workload at the mobile host, Kim and Lee [25] proposed to sharing a task 
between devices. The authors suggested that migration and replication of Web services are 
necessary to provide a reliable service. The migration or replication of a service, initiate by the 
service provider, when a request received and there is a change in its context information. For 
instance, changes of context information such as shortage of battery level, changes of the device 
location, etc., which stops it providing the service on its own. Even though, migration of the 
services reduces the workload at the mobile, still the communication based on the same 
traditional protocols like HTTP, TCP, WSDL and SOAP, which is heavyweight. 

 
The RESTful Web service approach has been used in later mobile host frameworks, which is 
more appropriate for the constrained conditions because of their lightweight features. For 
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instance, Chang [26] proposed the context aware cache pre-fetching strategy for MP2P Web 
Service provisioning. Instead of XML formatted documents like SOAP, this frame work used 
RESTful architecture which is more suitable in the infrastructure-less decentralized MP2P 
environment. Also, Srirama and Paniagua [27] proposed a mobile host for Android devices based 
on OSGi (Open Services Gateway initiative) framework which is capable of providing services in 
a RESTful fashion using HTTP and XMPP.  
 
Mohamed and Wijesekera [5] proposes a lightweight framework for providing Web services on 
mobile devices which based on the REST architecture with JSON data representation. Moreover, 
the framework consists of main elements such as "HTTP Request/Response Listener", 
"Deployment Agent","Request Processor" to integrate the Web ser- vices, and the "Security 
Agent" to provide security services for the Web services. In addition to that, another framework 
that enables context-aware services, utilizing a hybrid model of both Mobile P2P and JmDNS for 
service discovery presented by Charl van der [28]. Accordingly, the JSON formatted messages 
reduce the communication over- head between devices and the multicast interchange messages 
increasing the reliability of the proposed framework. 
 
Although, 6LoWPAN protocols (i.e., IPv6 over Low Power Wireless Personal Area Networks) 
provide WSNs to use IP to communicate with other networks, the application protocols need to 
develop or modify in order to enable the fully device communication across the WSN settings. 
With this intention, use of the Devices Profile for Web Services (DPWS) as an application layer 
protocol in WSNs was introduced Moritz et al. [29]. The authors presented a SOAP-binding on 
top of the IETF Constrained Application Protocol (CoAP) coupled with Efficient XML 
Interchange (EXI) format to reduce overhead as well as to increase the efficient delivery of SOAP 
messages. However, the main shortcoming of using SOAP is that it needs heavy-weight parsers, 
which degrades the overall performance of the mobile Web server. 
 
Doukas et al [30] presented a generic Mobile SDK that allows developers to easily integrate IoT 
protocols (i.e., WebSockets and MQTT) into their applications in order to communicate with 
cloud based IoT environment. The authors described how a mobile device can communicate to an 
IoT application with the generic Mobile Software Development Kit (SDK) called COMPOSE. 
The SDK enables developers to implement communication with devices and IoT services 
leveraging various IoT protocols, like MQTT, RESTful communication and WebSockets, etc. 
 
Although, in the above mentioned frameworks, the service architecture has been switched from 
the SOAP to REST, but HTTP was still being used for the application protocol. Since the HTTP 
uses TCP as the transport layer protocol, the overhead of the protocol combination is also 
relatively high. To reduce the protocol overhead, should utilize lightweight application protocol 
such as CoAP, EXI, etc. which do not included in the existing MWS frameworks. 

 

3. RELATED SERVICE PROVISIONING PROTOCOLS 
 
This section describes the related protocols/technologies used in our framework. It consists of 
four major parts of MWS: message format, data transmission,  service description and service 

discovery mechanism. 

 
3.1 MESSAGE FORMAT 

 
In MWS provisioning, reducing the payload size in data transmission phase is improve the 
performance and energy efficiency. Moreover, binary XML and JSON are common options in 
past works [31]. However, the recent W3C standard - Efficient XML Interchange (EXI) is 
capable of outperforming Binary XML and JSON in reducing the data size. In the EXI 
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compression, the XML document is encoded into binary format that improves encoding/decoding 
performance and significantly reduces bandwidth requirements [32]. Overall EXI has a high 
compression efficiency of 50 times when compared to other compression schemes [33].  
 
3.2 DATA TRANSMISSION 

 
Traditional Web service provisioning relies on SOAP over HTTP. Past MWS frameworks [26], 
[5], [27] tended to utilize Representational State Transfer (REST) [34] based service provisioning 
in order to reduce the resource consumption of mobile host. 
 

3.3 REPRESENTATIONAL STATE TRANSFER 
 
REST is a communication protocol which handles the client-server communication over HTTP. A 
Web service designed based on REST is termed---RESTful service. URIs (Uniform Resource 
Identifiers) are used to access the resources over the Web server. The part of REST URI contains 
the ‘‘resource’’ which is also called Uniform Resource Name (URN) that is requested by clients. 
RESTful applications use the basic HTTP methods (i.e.  GET, POST, PUT and DELETE) to 
access the Web servers. Based on the experimental results [35],[27],[28] REST is more suitable 
for resource constrained mobile computing environments.  
 

3.4 CONSTRAINED APPLICATION PROTOCOL (COAP) 

 
CoAP is a RESTful  Web transfer  protocol that is designed for constrained environments [12]. 
CoAP provides a more compact message format mechanism, which introduces low overhead 
binary encoded header and reduces the message parsing complexity.CoAP is built on top of the 
User Datagram Protocol (UDP) that has significantly lower overhead with the multicast support 
contrast to the TCP.  
 
3.5 LOCAL SERVICE DISCOVERY 

 
Local service discovery in peer-to-peer (P2P) manner is one of the major features of MWS 
provisioning in many scenarios [23],[7]. Different to the global service discovery, which can be 
achieved by utilizing central service repository/registry, local P2P-based MWS discovery requires 
P2P communication protocols that are commonly available in existing mobile devices. In a 
classic design, the mobile host might utilize Wi-Fi or Bluetooth to support the P2P-based service 
discovery mechanism. We proposed to use Bluetooth Low Energy (BTLE) protocol that was 
designed for applications which require low power consumption and low radio duty cycle.  
 
3.6 SERVICE DESCRIPTION 

 
Service description metadata plays an important role in dynamic service composition systems. By 
providing standard service description metadata (e.g. WSDL), software clients can automatically 
identify the operations provided by the service. In the following sections, we discuss three main 
service description approaches that are suitable for MWS provisioning. 

 
3.7 WEB SERVICE DESCRIPTION LANGUAGE 

 
Original WSDL was designed to describe SOAP-based Web services. However, WSDL 2.0 is 
capable of describing RESTful services. Following is a portion of a WSDL 2.0 document that was 
used to describe a RESTful operation provided by the mobile host. An alternative Web service 
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description beside WSDL is Web Application Description Language (WADL)3which was 
introduced specifically to describe RESTful services. Although WADL was not accepted as a 
W3C standard, it has been broadly used in practice4.  
 

3.8 SENSOR MODEL LANGUAGE (SENSORML) 

 
SensorML5 is a metadata-based resource description language. It provides XML encodings for 
describing sensors, actuators, and processes. The schema and namespace information are defined 
under the header of the SensorML document. Generally, the elements defined in the document are 
mainly depending on the services and resources associated with the devices. Additionally, 
SensorML supports semantic description, which is not provided by WSDL 2.0 by default. 
 

4. SYSTEM DESIGN 
 
4.1 OVERVIEW OF ARCHITECTURE  

 
Error! Reference source not found. illustrates the architecture of the proposed MWS 
provisioning. In this environment, mobile host represents the Web service provider that is capable 
of providing various data to its clients. For example, the mobile host can collect sensory data 
from its surrounding sensor devices - SN1 and SN2 - and interpret the data to the useful 
information, then provide the interpreted data via its Web service mechanism. The 
communication protocol of the mobile host is mainly based on CoAP, and the message payload is 
in EXI format. 
 

 
Figure 1. Mobile Web Service Provisioning Framework 

 
The mobile host supports two types of service discovery: global service discovery and local 

service discovery. The global service discovery is realized by publishing its service description 
metadata (e.g., WSDL, WADL or SensorML) to a global service registry (e.g., DNS-SD). A 
remote client that knows the location of the service registry can discover the mobile host by 
requesting the service registry. Afterwards, the remote client can perform the regular service 
request to the mobile host by sending the CoAP service requests. The local service discovery is 
based on BTLE. As the Error! Reference source not found. shows, a client can discover the 
                                                 
3 http://www.w3.org/Submission/wadl/ 

4 http://eclipse.org/jetty/ 

5 http://www.ogcnetwork.net/SensorML 
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mobile host in proximal range via BTLE. The mobile host will provide certain information via 
BTLE to help the client to identify the communication requirement. If the client moves out of the 
BTLE range with the mobile host, it can still communicate with the mobile host via a mobile 
Internet connection. The mobile host has been assigned a public static IP address from the mobile 
Internet service provider (e.g. Estonian TELE2 and EMT both provide this service). In the 
situations where the public IP address allocation is not possible, the mobile host can utilize proxy 
services [6], or hole-punching/relaying mechanisms [38]. 
 
4.2 SENSING SERVICE PROVISIONING  

 
The mobile host can provide services based on time or resource allowance. For example, the user 
of the mobile host can set 5 hours as the service provisioning period and 50% as the maximum 
battery allowance. Hence, whether the 5 hours period has past or the battery has consumed 50%, 
the service provisioning will be terminated, and the corresponding service publishing will be 
withdrawn from the discovery server. Mobile host supports three types of sensing services:   
 
One-time sensing represents a generic Web service request/response operation that triggers 
corresponding sensing components to retrieve data and delivering the data to either the requester 
or specific end-points. 
 
Real-time sensing represents the streaming-based sensing service. The mobile host will perform 
the sensing activity continuously and provide the data to the client concurrently. 
 
Periodical sensing represents the activity that is triggered for each timestamp based on the 
request. For example, the request message may describe that for every 30 minutes; the mobile 
host will perform the sensing activity once, and provide the data to a specific endpoint based on 
the address described in the request message. Basic protocol stack. 

 
4.3 BASIC PROTOCOL STACK 

 

 
Figure 2. Protocol Stack of the Mobile Web Server 

 

Error! Reference source not found. illustrates the conceptual design of the protocol stack 
used in the proposed mobile host. The proposed framework is mainly based on lightweight 
protocols to make the process simple. In the lower layer of the protocol stack, the mobile host can 
utilize numerous common protocols such as the 3G/4G mobile Internet (for global service 
interaction), Wi-Fi/Wi-Fi Direct, Bluetooth (BT)/BTLE, IEEE 802.15.4 (e.g., ZigBee), or LTE-A 
(LTE Direct) for the local service interaction. 
Unlike traditional web servers based on HTTP, our application layer utilizes CoAP that provides 
a solution with a compact header size, simple, lightweight, RESTful message exchange in 
between mobile host and clients over constrained network.  
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As mentioned in the earlier, the proposed mobile host also utilizes EXI to compress the size of the 
message payload. Since the design of the mobile host is for provisioning sensory data in IoT 
scenarios, service description is very important because it facilitates to communicate smart object 
over the network. We proposed to use SensorML based resource description which provides 
XML encoding and the semantic description of sensory data.  

 
4.4 COMPONENTS OF THE MOBILE HOST  

 
Error! Reference source not found. illustrates the component architecture of the proposed 
mobile host. It consists of following main components. 
 
4.4.1 REQUEST/RESPONSE LISTENER  

 
It is the first contact point for the clients to the mobile host. Once the mobile host is started, it 
listens on port 5683 which is reserved for the CoAP services. Clients will get the contact details 
of the server with the service description from the local/global service discovery components that 
will be discussed later. 

 
Figure 3. Main Components of Mobile Host Web Server 

 
4.4.2 SERVICE ENGINE  

 
This is the core module of the mobile host that coordinates all the parts of the mobile host. Main 
tasks include analysing requests from the clients, processing and executing relevant methods to 
get data from a particular resource, and then sends data back to the clients with the response 
messages.  In order to handle services, the service engine has two main sub components: 
 
URI Mapper - Once the client request is received from the Request/Response Listener, URI 
Mapper analyzes the URI to fetch the service information which is requested by the client. The 
requested service indicates what kind of data or service it requires and the URI Mapper locates 
the corresponding resource within the engine to fetch the data. 
 
Resource Pool - Service engine maintains a collection of resources that has context data about 
particular Web services. Resource Pool has an instance for each CoAP resource which will 
execute upon the client request. The Resource Pool also communicates with the Data Collector to 
fetch data from the data providers for particular resources. 
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4.4.3 DATA COLLECTOR  

 
Data collector is responsible for collecting data from available resource providers. Such providers 
can be the inbuilt sensor components of the mobile host, external environmental sensory service 
providers or spatial data from mobile social network in proximity. The Service Engine selects the 
type of Data Collector that can retrieve data from the sensors.  
 
4.4.4 MESSAGE PROCESSER  

 
To reduce the size of the CoAP message the Message Processor processes the payload of 
the messages used in the communications. The proposed mobile host framework utilizes 
EXI-formatted binary scheme. EXI Parser gets data from the Service Engine, compresses 
it, and forwards to the service engine which will wrap it to the CoAP message.  
 
4.4.5 SENSOR MANAGER (SM)  

 
It is responsible to communicate with the inbuilt sensors. One of the main fact which consume 
more energy is applications that are reading data from inbuilt sensors of a mobile device.  When 
the client request is related to inbuilt sensory data, the Sensor Manager collaborates with the 
operating system to activate the sensor components, fetch the data and deactivate the sensor. 
Sensor manager only activates the sensor components when it is necessary and helps to minimize 
the energy consumption of the mobile host. 
 
4.4.6 LOCAL SERVICE DISCOVERY COMPONENT  

 
When the client device locates itself in close proximity to the mobile host, it can receive the 
BTLE advertisement broadcasted by the mobile host which is more energy efficient than other 
types of discovery mechanisms. After the BTLE connection is established, the client can explore 
the basic services that are provided by the mobile host.  
 
4.4.7 GLOBAL SERVICE DISCOVERY COMPONENT 

 
To enable the mobile Web services provisioning across other networks, the mobile host registers 
its service description with the global DNS server. In RESTfull architecture, all Web services 
publish with associated URIs that can be discovered by the clients.  
 
4.4.8 GLOBAL SERVICE SCHEDULE MANAGER 

 
Mobile host can provide services based on available time and resources. The main task of the 
service scheduler manager is providing a schedule for the service provisioning which is defined 
as below: 
 
Definition 1 (Global Sensing Service Schedule - GS) 
 
GS is defined as a tuple ( T , �) where: 
T is a set of timestamps for service provisioning period. Each timestamp is scheduled as 1 minute. 
i.e. for a 1 hour service provisioning, |T | = 60.  
�: � → � maps timestamps with the scheduled sensing service executions. 
Mobile host supports three main types of sensing services as described earlier in this section. The 
sensing service request can be performed in two forms as simple or complex. To enhance the 
sensing service provisioning, a model of the sensing service schedule is defined and described in 
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the following section. 
 

4.5  SENSING SERVICE SCHEDULER MODEL 
 
In order to optimize the service provisioning, use of the sensing service pool in service schedule 
and defined as below: 
 
Definition 2 (Sensing Services Pool- SSP)  
 
SSP describes the information of sensing services provided by the mobile host. It is defined as a 
tuple (�,ς,κ,ε)where: 
 
�: is a set of sensing services 
ς: � → �	maps sensing services to sensing components (e.g.,GPS sensor, accelerometer  camera, 
audio recorder, network signal browser etc.) 
κ: � → � maps sensing services to conflict services 
ε: � → � maps sensing services to the system resource usage sets (e.g. CPU, RAM, network 
transmission bandwidth usage, etc.) 
 
Example 1 (Conflict Service) 
 
Let s1 and s2 be two services. Let Τ` ⊆ 	Τ. Assume s1 has been requested by a real-time sensing 
request, which has its timestamp period withinΤ`, and s2 is not requested by any client. 
Suppose	�2	 ∈ 	�	��1�, then s2 will be marked as unavailable duringΤ`. 
 
4.5.1 SENSING SERVICE REQUEST PROCESSING 

 
If the request is a simple service request that involves only a one-time service invocation that has 
only one activity. Otherwise, the request will be handled as the description provided in the request 
itself. It is defined as below: 
 
Definition 3 (Request Processing  - RP) 
 
RP is defined as a tuple (�,�, �, �) where: 

• � is a set of nodes 
• � ⊆ 	�	�	�is a set of flow relation rule 
• � ∶ 	� → 	� maps nodes to node types. A node type can be an activity, a gateway, an 

event, a sub-process, etc. An activity node that involves sensor service is marked as sType 
• � =  !", … !$%, &	 ∈ 	�  is a set of work schedule plan that identifies when and how long 

the process needs to be performed. Each !	 ∈ �	is defined as a tuple  (st, et), which 
correspond to start time (st) and end time (et) 

 
Example 2 (Work Schedule Plan Handling) 
 
Suppose a RPcontains � =  !", … !$%.  Let  (st1, et1) be the start time and end time of !".	 st1 = 
14:00 and et1= 14:10, which denotes a 10 minutes sensing task. Schedule Manager will model !" 
as a set of timestamp that consists of {14:00, 14:01, 14:02, 14:03,..., 14:10} when it is processing 
the request. 
 
Schedule Manager analyses the request type based on the elements in P. It is based on the 
following rules: 
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• One-time request: |P| = 0 
• Real-time request: | P | = 1, the end time - et of !" 	 ∈ �	is not null 
• Periodical request:|�| ≥ 1, ∀	!	 ∈ � ∶ 	 +,-	 ≠ &/00	 ⋀ �,- 	≠ &/00 

 
For any request that exceed the scope defined above, is considered as an invalid (i.e. insufficient 
parameter) request, which will trigger an error. 
 
4.5.2 ONE-TIME REQUEST PROCESSING 

 
A one-time request involves 1...N sensing service invocation (services of sType nodes), which is 
denoted by SXR,  �23 =  �4

235 	≤ 7	 ≤ �%. 
 
Let ,8 =∈ 9	, :&;	�8 = 	�	�	,8	� a set of executed services at ,8	:&;	�8 	≅ &=>, in which now 
denotes the current system time.   
 
Let �` = �23 	∩ 	�8,7@		|�`| > 0	,ℎ+&	∀	�	 ∈ �`,  sensing service - s will be assigned for executing 
the activity. Let  �"	 = 	 �23	\	�8 .  For each s∈S'', the corresponding task will be replaced from the 
original sensing service invocation task that will forward to the new service which retrieves 
sensing data which has already been gathered during the previous real-time or periodical requests.  
 
4.5.3 REAL-TIME AND PERIODICAL REQUEST PROCESSING 

 
There are two main differences in between periodical sensing and real-time sensing. First, in 
periodical request, the request processing can be executed in a number of periods, but the request 
executes only once in the real-time sensing. Second, in periodical request, the request can set a 
specific start time, while, the real-time sensing just executes. 
 
4.5.4 SERVICE AVAILABILITY MEASUREMENT AND SCHEDULE PUBLISHING 

 
Schedule Manager updates the service availability information when it progresses a new request. 
The service availability is influenced by two factors: service conflicts and system resource 
allowance (i.e. CPU, RAM, network bandwidth, etc.). 
 
Let Stx be a set of scheduled service executions at the timestamp ,8 	 ∈ 	Τ, �G8 =  �HG8|	1 ≤ I	 ≤
�	%	. J	�	�HG8 	� denotes a set of conflict services of �HG8. Hence, a set of conflict services at 
timestamp - ,8 (denoted by KG8) will be: KG8 =	∪H	∈|	MNO| J	��HG8�,	and the available services at 

timestamp ,8 (denoted by �G8) will be �G8 = �		\	KG8. 
 
The above process has only filtered the services based on conflicts. Following is the process that 
considers the system resource availability. 
 
Let �PQP = R+S

PQP5 	≤ 0	 ≤ �	%, be a set of the available system resources (Note that available 
system resources are different to the hardware specification of the mobile device. User can set the 
availability in percentage to avoid the service provisioning affecting to the normal use of the 
mobile device). 
Let �G8 be a set of sensing services assigned at ,8 =∈ 	9. For each service - �T 	 ∈ 	�G8, its system 
resource consumption is found in U	��T�.  Let   �PV = U	�	�T	� in which  �PV = R+S

PV51	 ≤ 0	 ≤ �	% 
in which the system resource denoted by +S

PV and +S
PQP are the same, and let W+S

PV be the usage 
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value of +S
PV and W+S

PQP
be the remaining value of +S

PQP. For each ,8the W+S
PQPafter assigning 

�GO(denoted by W+S
GO) will be: W+S

GO = W+S
PQP − ∑ W+S

PV
PT∈MNO . 

  

Let �GO =  	W	+S
GO. Referring to the previous result, �G8 is a set of services that has been identified 

as available at ,8. For a service �Q ∈ 	�GO, let �PZ be the system resource usage required by the 

service. If  ∃+S
PZ 	 ∈ �

PZ, such that W+S
PZ > W+S

GO, which indicates that the service �Q requires a 

higher usage value than the actual available resource value. Hence, the �Q is considered as 
unavailable at the time stamp ,8. 
 

5. IMPLEMENTATION 
 
This section describes the prototype implementation of the proposed framework. 
 
5.1.1 MOBILE HOST 

 
The mobile host was implemented on Google/LG Nexus 5 running Android version 5.0.1. The 
implementation is basically adapted from the JCoAP6 that provides a Java API for the CoAP. The 
mobile host has also been tested on Raspberry Pi B+ and Nexus 9 tablets. 
 
For the external sensory data collection we implemented Arduino based temperature sensor 
module which senses the ambient temperature and sends the data to the mobile host over the 
BTLE connection. The Arduino setup includes the MEGA ADK board (microcontroller board 
based on the ATmega2560), LM35 temperature sensor and the RedBear BLE Shield (based on 
the Nordic nRF8001 Bluetooth Low Energy IC).  We implemented the Bluetooth communication 
at the Raspberry Pi with the LogiLink CSR Bluetooth v4.0 dongle, BlueZ 5.29 and Node.js. To 
start an instance of the Web server, the mobile host needs to instantiate a new CoAP local 
endpoint. In our implementation, we defined four types of resources: 

 
TmpResource - provides the current room temperature 
LocationResource - provides current GPS details of the mobile host 
AltitudeResource - provides current altitude information of the mobile host 
LightResource - provides the ambient light of the environment 
 
At the present implementation, these resources are only designed to perform the GET method 
which is called by the clients to get services from the mobile host.   

 
5.1.2 EXI DATA PROCESS 

 
We used ExiProcessor7 the open source Java-based library that encodes text-XML files into 
binary EXI and decodes EXI files back to XML. Current prototype uses pre-compressed EXI files  
because the current Android OS SDK does not support a number of required API libraries for 
ExiProcessor. For the testing, we managed to implement ExiProcessor on the Raspberry Pi with 
the 3G dongle for the mobile Internet connectivity. 
 

                                                 
6 https://github.com/dapaulid/JCoAP 

7 http://sourceforge.net/p/exiprocessor/home/Home/ 
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5.1.3 LOCAL AND GLOBAL SERVICE DISCOVERY 

 
Clients within the proximity can discover the mobile host from the IP described by the BTLE 
advertisement without establishing Bluetooth pairing connection with the mobile host.  For the 
global discovery, the DNS server was simulated in a regular laptop computer. 

6. PERFORMANCE EVALUATION  
 
We designed a case study to investigate the performance of the proposed Web service framework. 
 
6.1.1 EXPERIMENT 1  

 
The mobile host implemented in Google/LG Nexus 5 running Android version 5.0.1 with the 
TELE2 4G mobile Internet connection. The clients simulate on a computer that connects to the  
University's Wi-Fi network. Clients request the altitude of the mobile host that replies the CoAP 
response message with the payload of 23 Bytes. We simulated different number of simultaneous  
client requests from 10 to 300 per second. 
 
Then we measured the average throughput using the request/response ratio in each occasion.  We 
repeated the same test case with the mobile host that use the conventional Web service framework 
(HTTP/REST) to contrast the lightweight in our mobile Web service framework.  We also 
performed the same test case in the University Wi-Fi network to evaluate the performance of the 
framework further.  
 
6.6.2 THROUGHPUT COMPARISON  

 

 
Figure 4. Throughput Of MWS 

Error! Reference source not found.4. illustrates the throughput comparison between the 
conventional HTTP-based MWS framework and the proposed lightweight MWS framework. The 
proposed framework can maintain the 100% success rate up to 140 coinciding requests per 
second and at least maintains 95% success rate up to 160 coinciding  requests per second in the 
Wi-Fi network. Furthermore, we observed that improved performance in the 4G network because 
of the inconsistent packet delay than the Wi-Fi network. On the other hand, the conventional 
mobile Web server showed that it can only handle up to 70 simultaneous requests per second in 
the Wi-Fi network and 130 simultaneous requests per second in the 4G network with the 
throughput of 95%. Moreover, we can see the throughput of the conventional MWS dropped 
drastically after reaching its maximum capability. 
 
6.6.3 CPU USAGE COMPARISON  

 
In order to record the CPU usage while the mobile host operating MWS, we utilised the Android 
Device Monitor that displays the CPU Load for the top applications running on the mobile 
device. As the Error! Reference source not found.. shows, the average CPU load is below 
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5% in the CoAP-mobile host. Conversely, in HTTP-mobile host, it is around 11.75% for 100 
simultaneous client requests per second. When the numbers of client requests are increasing 
(around 110/Sec), the HTTP-based mobile host application crashed because it is CPU intensive. 
On the other hand, CoAP-based mobile host can accommodate even a higher load from clients. 
Another interesting factor we observed is that the kernel CPU loads of both applications. In the 
HTTP-based mobile host,  kernel CPU load is at a very high level while comparing with the 
CoAP-mobile host, which is as little as about 1%. 
 

 
Figure 5. CPU load of MWS 

 
6.6.4 ENERGY CONSUMPTION COMPARISON   

 
To measure the energy consumption, we monitored total energy consumption of the device when 
the mobile host is running under the different loads. During the test the mobile host serves 20, 40, 
60 and 80 clients per second with the size of payload from 100 bytes to 1000bytes. Our test bed 
consists of PeakTech® Digital Multimeter which provides the visualised real-time energy 
consumption logging of the mobile devices. The Multimeter coupled to the battery of the phone 
and measures the current flow and the voltage level during the experiment. As shown in the 
Error! Reference source not found., the CoAP server consumes less energy than the HTTP 
server. With 20 concurrent client requests, the average energy consumption is increased 
according to the size of the payload for the both protocols as expected (Error! Reference 

source not found.. Chart (a) ). However, we noticed that decrement of power consumption of 
the HTTP server at higher payloads (800 bytes & upwards). For instance, as shown in the Error! 

Reference source not found.6. Chart (c), with 60 concurrent client requests, HTTP and CoAP 
consume 65.78 J and 52.61 J for 800 bytes respectively. Consequently, when the payload 
increases, the energy consumption increases accordingly in CoAP server, but slightly decreases in 
HTTP server. Furthermore, we can see that HTTP consumes less energy than CoAP when the 
payload is 1000 bytes. The reason that we observed is many sessions have been dropped at this 
point due to the limitations of the HTTP server which caused the drop of energy consumption. 
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Figure 6. Comparison of Energy Consumption (Coap Vs HTTP) 
6.6.5 EXPERIMENT 2  

 
After observing the high performance of the proposed CoAP-mobile host, we designed a test case 
to investigate the performance of a mobile phone and a Raspberry Pi model B+. We wanted to 
explore the feasibility of using a Raspberry Pi over the mobile phone in the mobile Web service 
provision.   
 
First, we installed our CoAP Webserver on the Raspberry Pi model B+ and used a 4G dongle to 
connect to the internet. We measured the energy consumption of the device in idle state and when 
the server running under a different number of client requests and payloads. We applied the same 
setup for the mobile phone and record the measurements as explained in the previous case study 
with help from the PeakTech Digital Multimeter. According to the result (shown in the Error! 

Reference source not found.), the mobile phone consumes less energy than the Raspberry Pi 
(RPi). With 20 concurrent client request (Figure 7. Chart (a)), energy consumption of the phone 
varies in a large range according to the size of the payload (from 12 J to 45.5 J). However, RPi 
behave differently because it consumes from 50 J to 60.9 J for the same amounts of payloads. 
There is a limitation we observed that we could not increase the size of the payload along with the 
number of client requests due to the large number of packets lost at the RPi. For instance, when 
using RPi server, there were a large number of packet losses on the client device when the 
payload beyond the 500 bytes and the energy consumption also decreased accordingly. Moreover, 
we only able to measure the energy consumption at the RPi up to the payload of 500 bytes during 
the rest of the experiment. The overall result shows that at the RPi, the size of the payload is not 
that much affected to the average energy consumption because there is no big variance in 
consumed energy against the size of the payload (Figure 7. Chart (a) & (b).  
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Figure 7. Comparison Of Energy Consumption (Phone Vs Raspberry Pi ) 

 
6.6.6 EXPERIMENT 3 

 
In this experiment we added Global Sensing Service Scheduler into the mobile host. Then we 
measured the energy consumption for different number of coinciding client requests that are 
asking the list of temperatures in five buildings for the last six hours. The size of the payload of 
the reply message is around 800kb.  
 

 
Figure 8. Comparison Of Energy Consumption 

 
With the Sensing Service Scheduler, mobile host does not have to send a reply with the same data 
for all the clients, instead after sending response for the first request, it copies the data to a cloud 
instance and replies with the URL of the server which has the data to the subsequent requests. 
According to the result shown in the Error! Reference source not found.. the Sensing 
Service Scheduler keeps minimizing the energy consumption by handling multiple service 
requests for the same resource. More details of experiments conducted with the Global Sensing 
Service Scheduler can be found in our work at [9]. 
 

7. CONCLUSION 
 
In this paper, we have presented a lightweight mobile Web service provisioning framework for 
resource constrained environment. We extended our original work by adding service scheduling 
and the management of conflicts in order to improve the quality of service provisioning. Together 
with this improvement our mobile host enables mobile users to participate in different mobile 
phone sensing systems without affecting much of their hardware resources. During our 
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implementation and testing, we used REST and lightweight protocols in order to maintain the less 
complexity and energy efficiency of the framework. 
 
The evaluation results have shown that the proposed lightweight MWS framework can provide a 
more cost efficient MWS provisioning solution than the past traditional MWS frameworks. 
 
As for the future research directions, we would like to improve the efficient service discovery 
features which are most important in the Machine-to-Machine communication. 
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