Volume 10, Number 5

Customer Opinions Evaluation: A Case Study on Arabic Tweets

  Authors

Manal Mostafa Ali, Al-Azhar University, Egypt

  Abstract

This paper presents an automatic method for extracting, processing, and analysis of customer opinions on Arabic social media. We present a four-step approach for mining of Arabic tweets. First, Natural Language Processing (NLP) with different types of analyses had performed. Second, we present an automatic and expandable lexicon for Arabic adjectives. The initial lexicon is built using 1350 adjectives as seeds from processing of different datasets in Arabic language. The lexicon is automatically expanded by collecting synonyms and morphemes of each word through Arabic resources and google translate. Third, emotional analysis was considered by two different methods; Machine Learning (ML) and rulebased method. Finally, Feature Selection (FS) is also considered to enhance the mining results. The experimental results reveal that the proposed method outperforms counterpart ones with an improvement margin of up to 4% using F-Measure.

  Keywords

Opinion Mining, Arabic, Bag of Words, Feature Selection, Emotions, Adjective Lexicons