Volume 12, Number 1

An Explanation Framework for Interpretable Credit Scoring


Lara Marie Demajo, Vince Vella and Alexiei Dingli, University of Malta, Malta


With the recent boosted enthusiasm in Artificial Intelligence (AI) and Financial Technology (FinTech), applications such as credit scoring have gained substantial academic interest. However, despite the evergrowing achievements, the biggest obstacle in most AI systems is their lack of interpretability. This deficiency of transparency limits their application in different domains including credit scoring. Credit scoring systems help financial experts make better decisions regarding whether or not to accept a loan application so that loans with a high probability of default are not accepted. Apart from the noisy and highly imbalanced data challenges faced by such credit scoring models, recent regulations such as the `right to explanation' introduced by the General Data Protection Regulation (GDPR) and the Equal Credit Opportunity Act (ECOA) have added the need for model interpretability to ensure that algorithmic decisions are understandable and coherent. A recently introduced concept is eXplainable AI (XAI), which focuses on making black-box models more interpretable. In this work, we present a credit scoring model that is both accurate and interpretable. For classification, state-of-the-art performance on the Home Equity Line of Credit (HELOC) and Lending Club (LC) Datasets is achieved using the Extreme Gradient Boosting (XGBoost) model. The model is then further enhanced with a 360-degree explanation framework, which provides different explanations (i.e. global, local feature-based and local instance- based) that are required by different people in different situations. Evaluation through the use of functionally-grounded, application-grounded and human-grounded analysis shows that the explanations provided are simple and consistent as well as correct, effective, easy to understand, sufficiently detailed and trustworthy.


Credit Scoring, Explainable AI, BRCG, XGBoost, GIRP, SHAP, Anchors, ProtoDash, HELOC, Lending Club.