Volume 12, Number 6

A New Perspective of Paramodulation Complexity by Solving 100 Sliding Block Puzzles


Ruo Ando1 and Yoshiyasu Takefuji2, 1National Institute of Informatics, Japan, 2Musashino University Faculty of Data Science, Japan


This paper gives complete guidelines for authors submitting papers for the AIRCC Journals. A sliding puzzle is a combination puzzle where a player slides pieces along specific routes on a board to reach a certain end configuration. In this paper, we propose a novel measurement of the complexity of 100 sliding puzzles with paramodulation, which is an inference method of automated reasoning. It turned out that by counting the number of clauses yielded with paramodulation, we can evaluate the difficulty of each puzzle. In the experiment, we have generated 100 * 8 puzzles that passed the solvability checking by countering inversions. By doing this, we can distinguish the complexity of 8 puzzles with the number generated with paramodulation. For example, board [2,3,6,1,7,8,5,4, hole] is the easiest with score 3008 and board [6,5,8,7,4,3,2,1, hole] is the most difficult with score 48653.Besides, we have succeeded in obverse several layers of complexity (the number of clauses generated) in 100 puzzles. We can conclude that the proposed method can provide a new perspective of paramodulation complexity concerning sliding block puzzles.


Automated reasoning complexity, paramodulation, given-clause algorithm, generated clauses, 8 puzzles, OTTER.