Volume 11, Number 3

The Performance of Convolutional Coding Based Cooperative Communication: Relay Position and
Power Allocation Analysis


Cebrail ÇIflikli, Waeal Al-Obaidi and Musaab Al-Obaidi, Erciyes University, Turkey


Wireless communication faces adversities due to noise, fading, and path loss. Multiple-Input MultipleOutput (MIMO) systems are used to overcome individual fading effect by employing transmit diversity. Duo to user single-antenna, Cooperation between at least two users is able to provide spatial diversity. This paper presents the evaluation of the performances of the Amplify and Forward (AF) cooperative system for different relay positions using several network topologies over Rayleigh and Rician fading channel. Furthermore, we present the performances of AF cooperative system with various power allocation. The results show that cooperative communication with convolutional coding shows an outperformance compared to the non-convolutional, which is a promising solution for high data-rate networks such as (WSN), Ad hoc, (IoT), and even mobile networks. When topologies are compared, the simulation shows that, linear topology offers the best BER performance, in contrast when the relay acts as source and the source take the relay place, the analysis result shows that, equilateral triangle topology has the best BER performance and stability, and the system performance with inter-user Rician fading channel is better than the performance of the system with inter-user Rayleigh fading channel.


MIMO, AF cooperative, convolutional coding, path loss, power allocation, fading