Volume 13, Number 3

About Digital Communication Methods for Visible Light Communication


Wataru Uemura, Yasuhiro Fukumori and Takato Hayama, Ryukoku University, Japan


The visible light communication (VLC) by LED is one of the important communication methods because LED can work as high speed and VLC sends the information by high flushing LED. We use the pulse wave modulation for the VLC with LED because LED can be controlled easily by the microcontroller, which has the digital output pins. At the pulse wave modulation, deciding the high and low voltage by the middle voltage when the receiving signal level is amplified is equal to deciding it by the threshold voltage without amplification. In this paper, we proposed two methods that adjust the threshold value using counting the slot number and measuring the signal level. The number of signal slots is constant per one symbol when we use Pulse Position Modulation (PPM). If the number of received signal slots per one symbol time is less than the theoretical value, that means the threshold value is higher than the optimal value. If it is more than the theoretical value, that means the threshold value is lower. So, we can adjust the threshold value using the number of received signal slots. At the second proposed method, the average received signal level is not equal to the signal level because there is a ratio between the number of high slots and low slots. So, we can calculate the threshold value from the average received signal level and the slot ratio. Unfortunately, the first proposed method adjusts the threshold value after receiving the data, once the distance between the sender and the receiver is changed, then the performance becomes worse. And after adjusting the threshold, the performance becomes better. Therefore, this method should be used in stable environments. The second proposed method can change the threshold value during the signal is received. That means this method can work very quickly. So, this method can show good performance for the wide range. We show these performances as real experiments.


Visible Light Communication, Digital Communication, Pulse Position Modulation.