Volume 13, Number 5

Threshold based VM Placement Technique for Load Balanced Resource Provisioning
using Priority Scheme in Cloud Computing


Mayank Sohani and S. C. Jain, Rajasthan Technical University, India


The unbalancing load issue is a multi-variation, multi-imperative issue that corrupts the execution and productivity of processing assets. Workload adjusting methods give solutions of load unbalancing circumstances for two bothersome aspects over-burdening and under-stacking. Cloud computing utilizes planning and workload balancing for a virtualized environment, resource partaking in cloud foundation. These two factors must be handled in an improved way in cloud computing to accomplish ideal resource sharing. Henceforth, there requires productive resource, asset reservation for guaranteeing load advancement in the cloud. This work aims to present an incorporated resource, asset reservation, and workload adjusting calculation for effective cloud provisioning. The strategy develops a Priority-based Resource Scheduling Model to acquire the resource, asset reservation with threshold-based load balancing for improving the proficiency in cloud framework. Extending utilization of Virtual Machines through the suitable and sensible outstanding task at hand modifying is then practiced by intensely picking a job from submitting jobs using Priority-based Resource Scheduling Model to acquire resource asset reservation. Experimental evaluations represent, the proposed scheme gives better results by reducing execution time, with minimum resource cost and improved resource utilization in dynamic resource provisioning conditions.


Cloud Computing, Load Balancing, Quality of Service, Scheduling, Virtual Machine.