Volume 13, Number 6

Privacy Preserving Reputation Calculation in P2P Systems with Homomorphic Encryption


FUJITA Satoshi, Hiroshima University, Japan


In this paper, we consider the problem of calculating the node reputation in a Peer-toPeer (P2P) system from fragments of partial knowledge concerned with the trustfulness of nodes which are subjectively given by each node (i.e., evaluator) participating in the system. We are particularly interested in the distributed processing of the calculation of reputation scores while preserving the privacy of evaluators. The basic idea of the proposed method is to extend the EigenTrust reputation management system with the notion of homomorphic cryptosystem. More specifically, it calculates the main eigenvector of a linear system which models the trustfulness of the users (nodes) in the P2P system in a distributed manner, in such a way that: 1) it blocks accesses to the trust value by the nodes to have the secret key used for the decryption, 2) it improves the efficiency of calculation by offloading a part of the task to the participating nodes, and 3) it uses different public keys during the calculation to improve the robustness against the leave of nodes. The performance of the proposed method is evaluated through numerical calculations.


P2P reputation management, homomorphic cryptosystem, EigenTrust, Paillier cryptosystem.