Volume 11, Number 4

Coloured Algebras and Biological Response in Quantum Biological Computing Architectures


L-F Pau1 and P. Borza2, 1CBS, Denmark & Erasmus University, Netherlands and 2Transilvania University Bra┼čov, Romania


This paper reports about progress in two areas towards quantum computing architectures with elements inspired from biological controls, as proposed in an earlier paper. The first area is about exploiting mathematical results in coloured algebras, which, combined with the colouring of particle flows, would reduce the decoherence and enhance the decidability in the quantum processing elements; definitions are being recalled, with the required assumptions and results. The second area is to provide experimental results, and a patented biological feedback process in synapse , about light and acoustic excitations in a live animal species to enhance reactivity; the experimental set-up is characterized , the measurement results provided, and the implications are explicated for quantum processing elements approximating a synapse. A paragraph on open issues explains how the results in the two areas will be combined and will help in the design a very early compiler version.


Quantum computing architecture, quantum biological computing, coloured algebras, decoherence, synapse control, light and sound excitation of live creatures