Volume 17, Number 6

A Data-Driven Predictive Framework for Inventory Optimization using Context-Augmented Machine Learning Models

  Authors

Anees Fatima and Mohammad Abdus Salam, Chicago State University, USA

  Abstract

Demand forecasting in supply chain management (SCM) is critical for optimizing inventory, reducing waste, and improving customer satisfaction. Conventional approaches frequently neglect external influences like weather, festivities, and equipment breakdowns, resulting in inefficiencies. This research investigates the use of machine learning (ML) algorithms to improve demand prediction in retail and vending machine sectors. Four machine learning algorithms. Extreme Gradient Boosting (XGBoost), Autoregressive Integrated Moving Average (ARIMA), Facebook Prophet (Fb Prophet), and Support Vector Regression (SVR) were used to forecast inventory requirements. Ex-ternal factors like weekdays, holidays, and sales deviation indicators were methodically incorporated to enhance precision. XGBoost surpassed other models, reaching the lowest Mean Absolute Error (MAE) of 22.7 with the inclusion of external variables. ARIMAX and Fb Prophet demonstrated noteworthy enhancements, whereas SVR fell short in performance. Incorporating external factors greatly improves the precision of demand forecasting models, and XGBoost is identified as the most efficient algorithm. This study offers a strong framework for enhancing inventory management in retail and vending machine systems.

  Keywords

Machine Learning; Demand Forecasting; Inventory Management; XGBoost; Predictive Analytics