Volume 12, Number 3

Testing Different Log Bases for Vector Model Weighting Technique

  Authors

Kamel Assaf, Programmer, Canada

  Abstract

Information retrieval systems retrieves relevant documents based on a query submitted by the user. The documents are initially indexed and the words in the documents are assigned weights using a weighting technique called TFIDF which is the product of Term Frequency (TF) and Inverse Document Frequency (IDF). TF represents the number of occurrences of a term in a document. IDF measures whether the term is common or rare across all documents. It is computed by dividing the total number of documents in the system by the number of documents containing the term and then computing the logarithm of the quotient. By default, we use base 10 to calculate the logarithm. In this paper, we are going to test this weighting technique by using a range of log bases from 0.1 to 100.0 to calculate the IDF. Testing different log bases for vector model weighting technique is to highlight the importance of understanding the performance of the system at different weighting values. We use the documents of MED, CRAN, NPL, LISA, and CISI test collections that scientists assembled explicitly for experiments in data information retrieval systems.

  Keywords

Information Retrieval, Vector Model, Logarithms, tfidf