keyboard_arrow_up
Thelxinoë: Recognizing Human Emotions Using Pupillometry and Machine Learning

Authors

Darlene Barker1 and Haim Levkowitz2, 1Rivier University, USA, 2University of Massachusetts, USA

Abstract

In this study, we present a method for emotion recognition in Virtual Reality (VR) using pupillometry. We analyze pupil diameter responses to both visual and auditory stimuli via a VR headset and focus on extracting key features in the time-domain, frequency-domain, and time-frequency domain from VR-generated data. Our approach utilizes feature selection to identify the most impactful features using Maximum Relevance Minimum Redundancy (mRMR). By applying a Gradient Boosting model, an ensemble learning technique using stacked decision trees, we achieve an accuracy of 98.8% with feature engineering, compared to 84.9% without it. This research contributes significantly to the Thelxinoë framework, aiming to enhance VR experiences by integrating multiple sensor data for realistic and emotionally resonant touch interactions. Our findings open new avenues for developing more immersive and interactive VR environments, paving the way for future advancements in virtual touch technology.


Keywords

Emotion recognition, emotions, pupillometry, machine learning, ensemble learning, gradient boosting.