Volume 10, Number 5

Free- Reference Image Quality Assessment Framework Using Metrics Fusion and Dimensionality Reduction

  Authors

Besma Sadou1, Atidel Lahoulou2, Toufik Bouden1, Anderson R. Avila3, Tiago H. Falk3 and Zahid Akhtar4, 1Non Destructive Testing Laboratory, University of Jijel, Algeria, 2LAOTI laboratory, University of Jijel, Algeria, 3University of Québec, Canada and 4University of Memphis, USA

  Abstract

This paper focuses on no-reference image quality assessment(NR-IQA)metrics. In the literature, a wide range of algorithms are proposed to automatically estimate the perceived quality of visual data. However, most of them are not able to effectively quantify the various degradations and artifacts that the image may undergo. Thus, merging of diverse metrics operating in different information domains is hoped to yield better performances, which is the main theme of the proposed work. In particular, the metric proposed in this paper is based on three well-known NR-IQA objective metrics that depend on natural scene statistical attributes from three different domains to extract a vector of image features. Then, Singular Value Decomposition (SVD) based dominant eigenvectors method is used to select the most relevant image quality attributes. These latter are used as input to Relevance Vector Machine (RVM) to derive the overall quality index. Validation experiments are divided into two groups; in the first group, learning process (training and test phases) is applied on one single image quality database whereas in the second group of simulations, training and test phases are separated on two distinct datasets. Obtained results demonstrate that the proposed metric performs very well in terms of correlation, monotonicity and accuracy in both the two scenarios.

  Keywords

Image quality assessment, metrics fusion, Singular Value Decomposition (SVD), dominant eigenvectors, dimensionality reduction, Relevance Vector Machine (RVM)