Volume 11, Number 5

Batch Normalized Convolution Neural Network for Liver Segmentation


Fatima Abdalbagi1, Serestina Viriri2 and Mohammed Tajalsir Mohammed1, 1Sudan University of Science and Technology, Sudan, 2University of KwaZulu-Natal, South Africa


With the huge innovative improvement in all lifestyles, it has been important to build up the clinical fields, remembering the finding for which treatment is done; where the fruitful treatment relies upon the preoperative. Models for the preoperative, for example, planning to understand the complex internal structure of the liver and precisely localize the liver surface and its tumors; there are various algorithms proposed to do the automatic liver segmentation. In this paper, we propose a Batch Normalization After All - Convolutional Neural Network (BATA-Convnet) model to segment the liver CT images using Deep Learning Technique. The proposed liver segmentation model consists of four main steps: pre-processing, training the BATA-Convnet, liver segmentation, and the postprocessing step to maximize the result efficiency. Medical Image Computing and Computer Assisted Intervention (MICCAI) dataset and 3DImage Reconstruction for Comparison of Algorithm Database (3D-IRCAD) were used in the experimentation and the average results using MICCAI are 0.91% for Dice, 13.44% for VOE, 0.23% for RVD, 0.29mm for ASD, 1.35mm for RMSSD and 0.36mm for MaxASD. The average results using 3DIRCAD dataset are 0.84% for Dice, 13.24% for VOE, 0.16% for RVD, 0.32mm for ASD, 1.17mm for RMSSD and 0.33mm for MaxASD.


Liver Segmentation, Convolutional Neural Network, Computed Tomography.