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Abstract. This study presents a semi-supervised labeling framework integrating clustering al-
gorithm and Human-in-the-Loop (HITL) methodology to improve labeling accuracy in high-
dimensional, noisy datasets. By leveraging an advanced density-based clustering algorithm, SS-
DBSCAN, and expert feedback, the framework enhanced data annotation across diverse datasets,
including MIMIC III, Cancer Doc Classification, Hotel and Movie Reviews, Spam txt, and News
Articles. Evaluations across HITL, non-HITL, and original labels confirm that the HITL framework
achieved 98.25% accuracy on the MIMIC III dataset, significantly outperforming the non-HITL
setup (96.25%). Similarly, on the Spam txt dataset, HITL attained an accuracy of 96.50%, com-
pared to 93.70% without HITL and 89.63% using original labels. While datasets like Cancer and
News posed challenges due to class imbalance and data complexity, HITL still demonstrated im-
proved accuracy compared to non-HITL configurations, achieving 64.15% and 59.40% , respectively.
These results highlight the framework’s validity, scalability, and reliability for semi-supervised la-
beling in large, unlabeled datasets.

Keywords: Semi-Supervised Learning, Re-Clustering, Human-in-the-Loop (HITL), SS-DBSCAN,
Data Labeling Validation.

1 Introduction

The swift proliferation of massive data across various fields has presented both
advantages and obstacles for machine learning and artificial intelligence. As a fun-
damental task in Natural Language Processing (NLP), text classification plays a
vital role in structuring and deriving valuable insights from this overwhelming in-
flux of data [1]-[3]. Text classification applications span diverse areas, including
sentiment analysis, fraud detection, fake news detection, and clinical decision sup-
port, underscoring its value in academic, industrial, and healthcare settings [4],
[5]. However, relying on labeled datasets for supervised learning poses a significant
bottleneck. The manual annotation of data is time-consuming, costly, and often
subject to human biases, making it challenging to achieve scalability, especially for
high-dimensional, complex datasets [6], [7].
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While supervised learning remains the gold standard for achieving high ac-
curacy, its dependence on large-scale labeled data has spurred the adoption of
semi-supervised learning (SSL) techniques. SSL leverages labeled and unlabeled
data, addressing the challenges associated with manual labeling while maintaining
competitive model performance. These techniques have been extensively studied
and applied in various NLP tasks, including sentiment analysis, word sense disam-
biguation, and fake news detection, where they demonstrate significant potential
for reducing dependency on labeled data [8], [9]. However, SSL methods face criti-
cal challenges, mainly when applied to noisy, ambiguous, or high-dimensional data.
Adding unlabeled data to a fixed set of labeled examples can lead to performance
degradation if not handled carefully [10], [11].

Datasets such as clinical provide a striking example of the challenges associ-
ated with SSL. These datasets often include heterogeneous information such as
laboratory results, medical imaging data, and medication records. The irregular
distributions, sparsity, and high variability inherent in such data make it difficult
for traditional clustering and labeling techniques to deliver accurate and meaningful
results without significant expert input [12], [13]. Automated tools often fall short
in these contexts, producing errors that undermine the reliability of downstream
analyses. Addressing these limitations requires innovative approaches that combine
automation with expert oversight.

This study presents a novel framework integrating Stratified Sampling for Density-
Based Spatial Clustering of Applications with Noise (SS-DBSCAN) with Human-
in-the-Loop (HITL) methodologies to overcome these challenges. SS-DBSCAN is
particularly well-suited for clustering high-dimensional and noisy datasets, as it
identifies dense regions while effectively managing outliers and irregularities [14].
By incorporating stratified sampling, this method ensures that clustering parame-
ters such as epsilon and MinPts are optimized for better handling sparse and het-
erogeneous data. Meanwhile, the HITL approach allows domain experts to refine
the clusters by performing feature similarity checks and relabeling where necessary,
thus ensuring high-quality labeled data. This expert feedback is utilized to fine-tune
a BERT model, enhancing its ability to classify and cluster data more accurately.

Integrating these techniques addresses key limitations in traditional labeling
and clustering methods by reducing manual effort, increasing the accuracy of auto-
mated labels, and improving scalability. Unlike conventional SSL approaches that
often struggle with noisy and ambiguous datasets, this framework leverages the ro-
bustness of advanced clustering algorithms and the contextual expertise of human
annotators, as described in our previous paper [13]. Doing so offers a powerful solu-
tion for preprocessing complex datasets, particularly in healthcare, where accurate
data labeling is essential for clinical decision-making and research.

This work contributes to the growing field of semi-supervised learning and NLP
by demonstrating the efficacy of combining automated clustering algorithms with
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human expertise. It underscores the importance of scalable, efficient, and accu-
rate labeling techniques in unlocking the potential of large and complex datasets,
paving the way for more advanced analyses and impactful applications in artificial
intelligence.

2 Related Works

Semi-supervised learning (SSL) has increasingly been recognized as a pivotal method-
ology for leveraging unlabeled data effectively [15]-[17]. This section reviews the
existing research on SSL techniques, specifically focusing on their application in
complex and heterogeneous datasets like those found in healthcare, and highlights
the shortcomings that our proposed method addresses.

2.1 Semi-Supervised Learning Techniques

Recent advancements have explored the use of SSL to reduce dependency on la-
beled data. Zhou et al. (2005) and Chong et al. (2019) utilized graph-based SSL
to improve data labeling in large datasets by constructing a graph where nodes
represent samples and edges reflect similarities [18] ,[19]. However, these methods
often face scalability challenges when applied to high-dimensional datasets. Song
et al. (2023) have also shown efficacy in various domains by inferring labels from
data structured in affinity graphs [20] ,[21]. Although affinity graph-based meth-
ods showed promising results across diverse domains, they struggle to manage the
variable and intricate structures typical of complex text datasets.

Yang and Gondy (2019) addressed the challenge of scarce training data in ma-
chine learning by comparing a high-precision LSTM classifier, a high-recall LSTM
classifier, and a manually created rule-based system for generating large datasets
from a small set of human-labeled examples [22]. The main shortfall of their method
is that it relies on a rule-based system, which can be difficult and time-consuming
to create because it requires a lot of expert knowledge. Another significant con-
tribution by Gupta et al. (2018) involved the use of co-training approaches where
two models are trained simultaneously on separate views of the data, promoting
mutual enhancement [23]. However, these methods often fail to capture complex
relationships in data with high feature interdependencies, such as clinical records
[19] ,[21].

2.2 Clustering in Semi-Supervised Learning

Clustering has proven to be an essential tool in SSL, particularly for grouping
unlabeled instances that can then be labeled collectively. Traditional methods,
including k-means and hierarchical clustering, have been widely used but often
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fail in datasets with irregular distributions or sparse data points [24]. More so-
phisticated approaches like DBSCAN [25] and its variants (e.g., DBSCAN-DLP,
DBCAMM, SS-DBSCAN algorithms) [13], [26]-[29] have been proven to address
these issues. They have highlighted the effectiveness of density-based clustering in
identifying dense regions and handling outliers in the data. These techniques have
demonstrated utility in domains such as agriculture, text analysis, and even image
recognition, where clustering enhances the efficiency of semi-automatic labeling.
This paper chose SS-DBSCAN over other clustering algorithms like HDBSCAN
and OPTICS because it provides better adaptability for high-dimensional, noisy
datasets while maintaining computational efficiency [14], [30].

2.3 Human-in-the-Loop in Semi-Supervised Learning

The Human-in-the-Loop (HITL) paradigm integrates human expertise into machine
learning workflows to refine models and enhance data labeling processes. HITL is
particularly impactful in semi-supervised learning, where human annotators col-
laborate with automated algorithms to validate or refine pseudo-labels [17], [31],
[32]. This approach addresses challenges in domains like healthcare, where domain
expertise is crucial for accurate annotations. For instance, decision boundary vi-
sualization tools enable annotators to interpret and refine model-generated labels
effectively [31]. Techniques like interactive labeling frameworks and active learning
strategies further optimize this process by focusing human input on high-value,
uncertain samples. Gondy et al. (2019) demonstrated that combining automated
labeling with minimal human intervention significantly improves dataset quality
while reducing annotation costs [22]. Moreover, HITL facilitates the adaptation of
models to specific data contexts, particularly in dynamic environments with evolv-
ing patterns. This adaptability is achieved through iterative feedback loops, where
human corrections are fed back into the model, enhancing its predictive accuracy
over time [17]. The integration of HITL has been applied successfully in areas such
as text classification, image recognition, and weed detection, demonstrating its ver-
satility and effectiveness in improving semi-supervised workflows [17], [21].

2.4 Drawbacks of Existing Methods

Despite significant advancements, many current SSL methodologies (Co-Training,
Self-Training, and Consistency Regularization etc.) exhibit limitations in addressing
the nuanced requirements of complex datasets, such as those found in complex text
datasets. Key challenges include:

1. Scalability- Most methods lack scalability for high-dimensional datasets, limit-
ing their applicability, especially in medical fields where clinical documentation
is comprehensive.
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2. Handling Sparse Data- Inefficiencies in managing sparse or unevenly dis-
tributed data remain prevalent, particularly in domains requiring fine-grained
analysis .

3. Outlier Management- Methods like SS-DBSCAN address outliers effectively,
yet many SSL approaches fail to integrate robust mechanisms for noise and
anomaly detection, which are critical in data analysis .

These limitations underscore the necessity for a more adaptable SSL framework that
integrates clustering with HITL to enhance scalability, precision, and robustness for
complex datasets. The proposed method bridges these gaps by leveraging density-
based clustering, refined hyperparameter optimization, and semi-automatic labeling
to improve performance across diverse, high-dimensional data scenarios.

3 Research Contribution

This paper contributes to the field by:

1. Introducing a scalable framework specifically tailored to address challenges in
labeling heterogeneous datasets, including irregular distributions, sparsity, and
high variability.

2. Designing a HITL methodology that incorporates expert feedback for relabeling
clusters and evaluating the labeling technique.

3. Significantly reducing the manual effort required for labeling large datasets by
combining automated clustering with targeted expert intervention.

4 Methodology

This section describes our methodology for labeling data through SS-DBSCAN
clustering and human-in-the-loop (HITL) intervention. Figure 1 illustrates the pro-
cess, which starts with a dataset containing few labeled and mostly unlabeled data.
SS-DBSCAN clusters the data, followed by feature similarity check and relabel-
ing based on feature similarity. The refined labels are compared for accuracy with
those predicted by a fine-tuned BERT model with further expert input, ensuring
improved classification performance. This algorithm is robust, scalable, and adap-
tive, making it suitable for datasets of varying sizes and complexities. Each stage
of the algorithm plays a crucial role in ensuring accurate and efficient labeling.
The methodology is effectively described step-by-step in the following algorithm as
follows:

Defining Key Variables and Notations

– Let D represent the dataset.
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Fig. 1: Workflow of SS-DBSCAN and Human-in-the-Loop (HITL)

– Let C = {C1, C2, . . . , Cn} denote the set of n clusters in the dataset.

– Let Ci ⊆ D represent the data points in the i-th cluster, with size |Ci|.
– Define Ri as the representative subset of Ci, where:

|Ri| = min(MaxReps, |Ci|)

Here, MaxReps is a predefined maximum number of representatives.

– Let E0 and E1 represent the expert-labeled datasets for class 0 and class 1,
respectively.

– Define S(x, y) as the similarity function:

– Define S(x, y) as the similarity function:

S(x, y) =
x · y

∥x∥∥y∥

– Let k denote the number of neighbors considered, dynamically defined as:

k = min(MaxK, |Ci|),

where MaxK is a predefined maximum value for k.
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4.1 Defining Clusters and Representatives

The dataset was grouped into clusters, with each cluster containing a subset of
data points. To streamline processing, we selected a representative subset of data
points from each cluster. The number of representatives was determined dynami-
cally, taking the smaller of either a predefined maximum number of representatives
or the total number of points in the cluster (1). This adaptive approach ensured
scalability and efficiency, allowing the algorithm to handle both small and large
clusters without losing critical information about their structure.

Step 1:

1.1 The dataset is divided into clusters, C = {C1, C2, . . . , Cn}, where each cluster
Ci contains a subset of the data points.

1.2 For each cluster, a representative subset of data points Ri is chosen:

|Ri| = min(MaxReps, |Ci|) (1)

where MaxReps is the maximum number of representatives and |Ci| is the size
of the cluster. The representative subset size is dynamic. If the cluster con-
tains fewer than MaxReps data points, all points are used. Otherwise, a fixed
maximum is used, ensuring scalability for large datasets.

4.2 Similarity Measurement and Label Propagation

In this context, cosine similarity [27] is used to assess the similarity between clusters
and a set of expert-labeled examples. This analysis guided the label propagation
process, where labels from expert-labeled examples were extended to unlabeled
instances within each cluster based on feature similarity [28]. We computed the
similarity between the representative points of each cluster and two expert-labeled
datasets representing class 0 and class 1 in (2) and (3) respectively. Cosine similarity
was used as the metric for comparison, focusing on the directionality of feature
vectors rather than their magnitude. By separately calculating the similarity for
each class, we established a clear basis for comparing the alignment of clusters with
the labeled data, ensuring robust and meaningful comparisons.

Step 2:

2.1 For each cluster Ci, calculate the similarity between representatives Ri and the
expert-labeled datasets E0 and E1 (class 0 and class 1):

Si,0 = {S(r, e) | r ∈ Ri, e ∈ E0} (2)

Si,1 = {S(r, e) | r ∈ Ri, e ∈ E1} (3)
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2.2 Here, S(x, y) is the similarity function:

S(x, y) =
x · y

∥x∥∥y∥
(4)

Here, we computes the similarity between the cluster representatives and expert-
labeled data for both class 0 and class 1 (4).

4.3 Ranking and Selecting Top k Similarities

The similarity scores for each cluster are combined and ranked in descending or-
der (5). To identify the most relevant similarities, we select the top scores up to a
dynamic parameter , which is adapted based on the size of the cluster (6). Each sim-
ilarity score is paired with its corresponding class label, preparing the data for the
subsequent majority voting process. This step filters out less relevant similarities,
focusing only on the most significant contributors to the final labeling decision.

Step 3:

3.1 Combine and rank the similarity scores for class 0 and class 1:

Combined Similarities = {(s, 0) | s ∈ Si,0} ∪ {(s, 1) | s ∈ Si,1}. (5)

3.2 Sort the combined similarities in descending order of scores and select the top
k:

Top k = {(sj , cj) | j ≤ k} (6)

where cj is the class label corresponding to the similarity score sj .

4.4 Counting Class Frequencies

We quantify the alignment of each cluster with the labeled classes by counting
the occurrences of class labels in the top similarities (7). This involves summing
indicator values that matcheas the respective class labels, providing a numerical
assessment of the cluster’s similarity to each class. This frequency count serve as
the foundation for majority voting, allowing us to determine the predominant class
for each cluster while also identifying ambiguous cases that did not strongly align
with any class.

Step 4:

4.1 Count the occurrences of each class label in the top k similarities:

ClassCount(c) =

k∑
j=1

I(cj = c), (7)
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where the indicator function I is defined as:

I(cj = c) =

{
1, if cj = c,

0, otherwise.

This step determines how many of the top k similarities are associated with
each class label (0 or 1). This count forms the basis for majority voting.

4.5 Determining the Majority Class

Using the class frequency counts, we determine the majority class for each cluster
in (8). A majority threshold is applied to ensure that the selected label accurately
reflect the cluster’s overall trend. If neither class achieved a majority above the
threshold, the cluster is labeled as an outlier, adding robustness to the algorithm
by accommodating cases where clusters lacked clear alignment with any class. This
step translated the similarity and frequency data into definitive labels.

Step 5:

5.1 Determine the majority class for the cluster:

MajorityClass(Ci) =

{
argmaxc∈{0,1}ClassCount(c), if max(ClassCount(c)) > k

2 ,

−1, otherwise (outlier).

(8)
If one class has more than half of the votes in the top k similarities, it is assigned
as the label for the cluster. If neither class has a clear majority, the cluster is
labeled as an outlier.

4.6 Assigning Labels

Once the majority class for a cluster is determined, the label is assigned uniformly
to all points within the cluster (9). This ensured consistency and uniformity, allow-
ing the labels to be seamlessly integrated into the dataset. By processing clusters
collectively, this approach maintains scalability, making it suitable for large datasets
with numerous clusters.

Step 6:

6.1 Assign the determined label to all data points in the cluster:

NewLabel(x) = MajorityClass(Ci) ∀x ∈ Ci (9)
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4.7 Dynamic Parameters

Dynamic parameters played a vital role in enhancing the flexibility and efficiency
of the algorithm. The representative sample size is adjusted based on cluster size,
reducing computational costs for larger clusters while preserving full representa-
tion for smaller ones. Similarly, the parameter is dynamically adapted to balance
accuracy and efficiency, ensuring meaningful majority voting for clusters of varying
sizes. Representative Sample Size- This aparameter adjusts dynamically based on
cluster size:

|Ri| = min(MaxReps, |Ci|).

while k balances accuracy and efficiency:

k = min(MaxK, |Ci|).

These dynamic parameters make the algorithm adaptive. For smaller clusters,
the full data can be used, while for larger clusters, the parameters cap the compu-
tation for efficiency.

This algorithm dynamically adapts to dataset characteristics. It uses similarity
measures to compare cluster features with expert-labeled data, ranks and selects
the most similar points, and applies majority voting to determine the best class
label for each cluster. The dynamic parameters make it scalable and robust across
various datasets.

Validation of the Labeling Technique Using Re-Clustering vs
BERT-Based Prediction Models and Ground Truth Labels

To enhance the accuracy of our clustering results, we integrate a Human-in-the-
Loop (HITL) approach [31]–[34], where human experts review the initial labels
generated by SS-DBSCAN. This process enables experts to refine the cluster assign-
ments based on their domain knowledge and interpretation of the data, ultimately
producing re-clustered labels with improved accuracy.

To validate the effectiveness of this semi-supervised labeling technique, which
incorporates a re-clustering approach, we conducted a comprehensive evaluation by
comparing the generated labels with:

1. Predictions from a BERT model fine-tuned using a Human-in-the-Loop (HITL)
framework.

2. Predictions from a standard fine-tuned BERT model (without HITL).
3. The original labels (where available).

This validation process ensures that the proposed technique aligns closely with
ground-truth labels where applicable and demonstrates its potential as a robust
labeling strategy for large-scale, unlabeled datasets.
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The following metrics were used to evaluate performance:

Accuracy =
True Positives + True Negatives

Total Instances

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

5 Experimental Results

This experiment utilized six datasets namely Cancer Doc Classification, MIMIC
III, Hotel Reviews, Movie Reviews, Spam txt, and News Articles. The aim was to
evaluate the performance of the proposed semi-supervised labeling technique by
validating the re-clustered labels against:

1. A BERT-based model fine-tuned using a Human-in-the-Loop (HITL) frame-
work.

2. A standard fine-tuned BERT model (without HITL).

3. Original expert-labeled data (where available).

5.1 Dataset Descriptions

1. MIMIC III Dataset- Contains medical text data focusing on adverse drug
reactions (ADR) and non-ADR cases. Labels are expert-defined and categorize
instances as ADR (label 1) or non-ADR (label 0).

2. Cancer Doc Classification Dataset- Includes documents related to Thyroid
and Colon Cancer, categorized based on cancer type.

3. Hotel, Movie, Spam txt, and News Datasets- Text data relevant to re-
views, spam detection, and news classification tasks, with labels representing
respective categories.

5.2 Labeling with SS-DBSCAN and Re-Clustering

The SS-DBSCAN algorithm generated clusters for unlabeled data, which were then
reassigned labels based on feature similarity with the expert-labeled datasets. This
reclustering ensured that clusters aligned closely with expert-defined labels.
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5.3 Evaluation with a Fine-Tuned BERT Model

To validate the re-clustered labels, we used a BERT-based prediction model fine-
tuned with a HITL framework. The model iteratively incorporated expert feedback
to refine its predictions and achieve high performance. The accuracy, precision, and
recall metrics were used to evaluate the re-clustered labels across all datasets. The
validation involved comparisons with:

1. With HITL- The fine-tuned BERT model using human-in-the-loop feedback.
2. Without HITL- The standard fine-tuned BERT model without expert feed-

back.
3. Original Labels- The expert-labeled datasets (where available).

Results are summarized in Tables 1, 2, and 3, and visualized in Figure 2.

Fig. 2: Accuracy Comparison Across Validation Setups

The performance of the semi-supervised technique was validated across six
datasets (Cancer, Hotel, Movie, Mimic, Spam txt, and News). Tables 1, 2, and
3 provide the results for three configurations: With Human-in-the-Loop, Without
Human-in-the-Loop, and Using Original Labels.
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Table 1: Performance with Human-in-the-Loop (HITL)
Dataset Data Ratio [Labeled, Unlabeled] Accuracy Precision Recall

Cancer [500, 3500] 0.6415 0.9466 0.4410
Hotel [500, 5000] 0.9597 0.9889 0.9597
Movie [500, 3000] 0.8737 0.7633 0.8737
Mimic [500, 3000] 0.9825 0.9960 0.9825
Spam txt [500, 5000] 0.9650 1.0000 0.9650
News [500, 5000] 0.5940 1.0000 0.5940

Table 2: Performance Without Human-in-the-Loop (HITL)
Dataset Data Ratio [Labeled, Unlabeled] Accuracy Precision Recall

Cancer [500, 3500] 0.4410 0.9264 0.4410
Hotel [500, 5000] 0.9597 0.9889 0.9597
Movie [500, 3000] 0.8737 0.7633 0.8737
Mimic [500, 3000] 0.9625 0.9760 0.9625
Spam txt [500, 5000] 0.9370 1.0000 0.9370
News [500, 5000] 0.5294 1.0000 0.5294

Table 3: Performance with Original Labels
Dataset Data Ratio [Labeled, Unlabeled] Accuracy Precision Recall

Cancer [500, 3500] 0.6215 0.9466 0.4610
Hotel [500, 5000] 0.8882 0.9882 0.8882
Movie [500, 3000] 0.8343 0.8125 0.8343
Mimic No labels — — —
Spam txt [500, 5000] 0.8963 1.0000 0.8963
News [500, 5000] 0.5712 1.0000 0.5712
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Significance of the Validation Framework

The comparison revealed:

1. The HITL fine-tuned model consistently aligned well with re-clustered labels,
validating the reliability of the labeling approach.

2. Incorporating expert feedback marginally improved performance compared to
the standard fine-tuned BERT model.

3. The technique demonstrated high potential for labeling large-scale, unlabeled
datasets, with results closely aligning with supervised benchmarks.

4. Incorporating HITL significantly improved labeling precision and recall, as re-
flected in the performance metrics.

Therefore, this validation framework highlights the effectiveness of our re-clustering
technique and its potential applications in real-world data labeling scenarios.

5.4 Results and Interpretation

The results of the experiments are presented in Figure 2 and Tables 1–3. These
results offer comprehensive insights into the performance of the proposed semi-
supervised technique across six datasets, demonstrating its effectiveness in scenarios
with and without ground-truth labels.

For the MIMIC III dataset, the proposed technique achieved an accuracy of
98.25% with the Human-in-the-Loop (HITL) configuration, marking the highest
performance among all setups. The model without HITL achieved a slightly lower
accuracy of 96.25%. While this dataset lacked original labels for direct validation,
the alignment between HITL and without-HITL results highlights the reliability of
the re-clustering technique, especially when HITL feedback is incorporated.

The Cancer dataset exemplifies the value of HITL in refining semi-supervised
techniques. With HITL, the method achieved an accuracy of 64.15%, significantly
outperforming the without-HITL setup (44.10%) and surpassing the accuracy of the
original labels (62.15%). These results underscore the alignment between HITL-
driven predictions and the original labels, suggesting that HITL can serve as a
robust validation mechanism for re-clustering in the absence of ground-truth labels.

For the Hotel dataset, the method demonstrated robust performance across
all setups. Both the HITL and without-HITL configurations achieved an accu-
racy of 95.97%, significantly outperforming the original labels, which yielded an
accuracy of 88.82%. This strong alignment of HITL-driven predictions with the
re-clustered labels further validates the reliability of the technique, even for well-
balanced datasets.

In the Movie dataset, HITL achieved an accuracy of 87.37%, which not only
outperformed the original labels (83.43%) but also matched the performance of the
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without-HITL configuration. This indicates that HITL feedback enhances the label-
ing quality while maintaining strong alignment with ground-truth labels, making
it a valuable tool for validating re-clustering techniques.

For the Spam txt dataset, HITL achieved the highest accuracy at 96.50%, out-
performing the without-HITL setup (93.70%) and original labels (89.63%). The
alignment between HITL-driven predictions and original labels demonstrates that
HITL can reliably evaluate the effectiveness of the re-clustering process in identi-
fying true labels.

Finally, in the News dataset, HITL achieved an accuracy of 59.40%, outperform-
ing both the without-HITL setup (52.94%) and original labels (57.12%). While the
dataset posed challenges due to complexity and class imbalance, the HITL configu-
ration closely aligned with the original labels, reinforcing its utility as a validation
mechanism when ground-truth labels are sparse or unavailable.

Overall, the results demonstrate the superior performance of the HITL configu-
ration compared to the without-HITL setup and highlight its strong alignment with
original labels across diverse datasets. This alignment underscores the reliability of
the HITL approach in assessing the effectiveness of re-clustering techniques, even in
the absence of ground-truth labels. Integrating HITL, the proposed semi-supervised
method becomes a scalable and reliable tool for label generation in large-scale, un-
labeled datasets, bridging the gap between unsupervised and supervised learning
paradigms.

5.5 Significance of Results

The comparison of results across the three validation setups demonstrates the fol-
lowing:

1. The HITL framework consistently outperformed the without-HITL setup and
original labels in terms of accuracy, precision, and recall.

2. The similarity-based re-clustering ensured that clusters aligned with true labels,
enhancing the labeling accuracy.

3. The proposed technique demonstrated robust performance across diverse datasets,
including medical text (MIMIC III and Cancer), reviews (Hotel and Movie), and
spam/news classification. However, some datasets, such as Cancer and News,
yielded less optimal results due to data imbalance across classes and the chal-
lenges in accurately clustering complex datasets.

These findings validate the proposed semi-supervised technique as a scalable
and reliable labeling tool for large-scale, unlabeled datasets.

Discussion

The integration of SS-DBSCAN with Human-in-the-Loop (HITL) presents a trans-
formative approach to addressing the challenges of semi-supervised data labeling.
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This study highlights how the HITL framework not only improves the performance
of clustering techniques but also validates its utility in scenarios where ground-
truth labels are unavailable. Across six datasets, the proposed method consistently
demonstrated superior performance compared to non-HITL configurations, partic-
ularly for datasets with complex structures and class imbalances.

A significant feature of the proposed framework is the inclusion of dynamic
parameters, which enhanced the adaptability and efficiency of the re-clustering
process. Two key parameters were fine-tuned dynamically:

– Representative Sample Size (|Ri|): This parameter was adjusted based on
cluster size to optimize computational efficiency while preserving representative
data points. For smaller clusters, all data points were used as representatives,
whereas larger clusters were capped by a predefined maximum number of rep-
resentatives (MaxReps):

|Ri| = min(MaxReps, |Ci|),

where Ci represents the size of the i-th cluster. This ensured that computational
resources were allocated effectively without sacrificing the quality of cluster
representation. Based on our experiments, we recommend:

• Small clusters (≤ 500 points): Use all data points as representatives.
• Medium clusters (3000–10000 points): Select 10% to 20% of data points, up
to a cap of 150.

• Large clusters (> 10000 points): Set MaxReps > 150 to balance efficiency
with accuracy.

– Dynamic k: The number of representatives used for majority voting during
label reassignment was dynamically adapted to balance accuracy and compu-
tational efficiency. For smaller clusters, the algorithm used all available data
points, while for larger clusters, the parameter was capped at a maximum value
(MaxK):

k = min(MaxK, |Ci|).

where MaxK is a predefined upper limit. Based on dataset experiments, we
recommend:
• For medium clusters (500–5000 points): Use MaxK = 10 to 20 for balanced
results.

• For large clusters (> 5000 points): Set MaxK > 20 to limit processing
overhead.

These dynamic parameters contributed significantly to the algorithm’s scala-
bility and flexibility. By allowing the algorithm to adapt based on the dataset’s
inherent properties, computational costs were minimized for larger clusters, while
smaller clusters were analyzed in their entirety, ensuring high-quality labeling out-
comes.
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Effect of Data Size and Fine-Tuning Parameters on Results

While the proposed framework demonstrated consistent improvements across all
datasets, minor variations in results were observed, which can be attributed to
differences in data size, choices of fine-tuning parameters (such as the number of
representatives, cluster size, and number of neighbors), and dataset complexity.

For example, the Cancer dataset exhibited fluctuating accuracy scores based
on the dataset size and the number of representatives selected. With 1500 labeled
samples, the accuracy was 52.25%, whereas increasing the dataset to 3500 improved
the accuracy to 64.15%. This suggests that larger labeled datasets enhance the
model’s ability to capture meaningful patterns, but also that selecting too few
representatives can result in suboptimal cluster assignments.

The MIMIC III dataset, which required identifying adverse drug reactions, dis-
played significant improvements as the dataset size increased. With 500 labeled
instances and 1500 unlabeled, the accuracy was 61.20%, while expanding to 500
labeled and 3000 unlabeled samples led to an accuracy of 98.25%. This dramatic
increase highlights the importance of optimizing both the number of neighbors and
cluster size when re-clustering high-dimensional medical data. If too few neighbors
are considered, important associations may be missed, while an excessive number
could dilute meaningful subgroup structures.

Similarly, in the Spam txt dataset, performance varied with data size and clus-
tering parameters. When using 500 labeled and 1500 unlabeled samples, accuracy
was 86.27%, but when the dataset was expanded to 500 labeled and 5000 unlabeled,
accuracy reached 96.50%. The improved results suggest that a larger dataset aids
in stabilizing the cluster formations, reducing the likelihood of mislabeling. How-
ever, excessive numbers of representatives in clusters can introduce noise, leading
to minor inconsistencies in precision and recall scores.

The HITL configuration further amplified the framework’s robustness by inte-
grating expert feedback into the clustering process. This feedback facilitated itera-
tive refinement of cluster labels, ensuring that the generated pseudo-labels closely
aligned with original labels, even for datasets with significant class imbalances, such
as Cancer and News. The iterative approach also mitigated the challenges of noisy
and imbalanced data, which are common in real-world applications.

Scalabity

Our proposed SS-DBSCAN with Human-in-the-Loop (HITL) framework is designed
to scale to large datasets while maintaining efficiency. Selecting representative data
points ensures SS-DBSCAN does not suffer from computational bottlenecks typi-
cally associated with density-based clustering methods. Instead of processing the
entire dataset, the framework dynamically selects representative subsets, signifi-
cantly reducing computational complexity. Moreover, the HITL feedback mecha-
nism is structured to focus only on ambiguous or low-confidence clusters, limiting
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the extent of manual intervention. While expert review can be time-consuming,
our approach reduces the required interventions by optimizing clustering before
human feedback is sought. HITL integration can be optimized for extremely large
datasets using active learning strategies, where human feedback is selectively ap-
plied to high-impact clusters rather than all data points. The computational cost
of integrating HITL can vary in real-world applications depending on the dataset’s
complexity. Our experiments show that HITL improves accuracy with only a frac-
tion of human-labeled data, making it feasible for large-scale deployments. Future
work could explore further optimizations, such as leveraging distributed computing
for greater efficiency.

HITL as a Validation Tool for Re-Clustering Techniques

The results consistently demonstrated that the HITL configuration not only out-
performed the non-HITL setup but also aligned closely with original labels. For
example, the MIMIC III dataset achieved an accuracy of 98.25% with HITL, com-
pared to 96.25% without HITL. Similarly, in the Spam txt dataset, HITL achieved
96.50% accuracy, outperforming the non-HITL setup (93.70%) and the original la-
bels (89.63%). These findings validate the efficacy of HITL as a reliable evaluation
mechanism for re-clustering techniques, particularly in the absence of ground-truth
labels.

While the framework proved effective across diverse datasets, limitations in
datasets like Cancer and News highlight opportunities for future improvements.
Significant class imbalances and overlapping clusters in these datasets reduced over-
all accuracy, suggesting a need for advanced techniques such as data augmentation
and feature engineering.

In conclusion, the integration of SS-DBSCAN with dynamic parameters and
HITL feedback represents a scalable, reliable, and effective approach to semi-supervised
labeling. The adaptability provided by dynamic parameters ensures efficient and
high-quality labeling, while the HITL framework bridges the gap between unsu-
pervised and supervised learning paradigms, making this methodology a practi-
cal solution for real-world applications. The observed variations in results across
datasets highlight the importance of optimizing data size, selecting appropriate
fine-tuning parameters, and adapting re-clustering strategies to the complexity of
each dataset. Future research should explore more refined tuning strategies and
validation techniques to further enhance the applicability of this approach.

6 Conclusion

in semi-supervised learning, they each have limitations that make them less effective

While Co-Training, Self-Training, and Consistency Regularization are widely used
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for high-dimensional, noisy, and sparsely labeled datasets. Co-training requires dis-
tinct feature views, which are often unavailable in text classification. Self-training
suffers from error propagation, where incorrect pseudo-labels reinforce biases in
subsequent iterations. Consistency Regularization improves robustness but is com-
putationally expensive and struggles with unstructured text data where small per-
turbations can change meaning. In contrast, SS-DBSCAN + HITL overcomes these
challenges by leveraging density-based clustering for structure-aware labeling while
incorporating expert validation to correct errors early, preventing label drift. By in-
corporating expert feedback, the framework not only enhanced clustering accuracy
but also provided a reliable validation mechanism for scenarios where ground-truth
labels are unavailable.

Moreover, the alignment between HITL-driven labels and original labels under-
scores the framework’s robustness and reliability as a scalable solution for semi-
supervised learning. The integration of dynamic parameter tuning and stratified
sampling further enhanced the adaptability of SS-DBSCAN, ensuring its applica-
bility across various domains, including healthcare and text classification.

Despite its success, the study identified limitations in datasets with significant
class imbalances and overlapping clusters. Addressing these challenges will require
future work to explore advanced data augmentation strategies and feature engineer-
ing techniques. Additionally, incorporating domain-specific metrics and evaluating
the framework’s real-world impact across specific applications, will further validate
its utility.
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