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ABSTRACT 
 

In this paper, an accurate numerical method is presented to find the numerical solution of the singular 

initial value problems. The second-order singular initial value problem under consideration is transferred 

into a first-order system of initial value problems, and then it can be solved by using the fifth-order Runge 

Kutta method. The stability and convergence analysis is studied. The effectiveness of the proposed methods 

is confirmed by solving three model examples, and the obtained approximate solutions are compared with 

the existing methods in the literature. Thus, the fifth-order Runge-Kutta method is an accurate numerical 
method for solving the singular initial value problems.  
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1. INTRODUCTION 
 

The studies of ordinary differential equations have attracted the attention of many 
mathematicians and physicists. A lot of problems in mathematical physics and astrophysics can 

be modelled by several types of differential equations. These equations have different 

characteristics depending on order, provided conditions, modelled problems, etc. In particular, 
initial value differential equations were used in the theory of stellar structure, thermal behaviour 

of a spherical cloud of gas, isothermal gas spheres, and thermionic currents (see [1 - 7].  

 

Numerical solutions for the initial valued problems were presented by different researchers, for 
instance, Shiralashetti et. al., [8], was used the Haar wavelet collocation method; Susmita and 

Chakraverty [4], were used the Chebyshev Neural Network method [9] also used, an implicit 

numerical method for the numerical solution of singular initial value problems. Further, different 
applications of differential equations via numerical methods provided in [14 - 16].  Recently, 

Shiralashetti et. al., [8], states that the Haar wavelet collocation method to solve the linear and 

non-linear differential equations. Yet, there is a lack of accuracy and convergence. So that, it is 

important to apply and use efficient numerical methods for solving the second-order singular 
initial value problems. 

 

One member of the family of Runge-Kutta methods is a fifth-order Runge Kutta method (RK5) 

which means, the error per step is on the order of
6h , while the total accumulated error has 

order
5h . Thus, in this paper, we use the fifth-order Runge Kutta method to produce a more 

accurate solution. 
 

 

https://airccse.org/journal/acii/vol8.html
https://doi.org/10.5121/acii.2021.8301
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2. FORMULATION OF THE METHOD 

 
Consider the singular initial value problem of the form: 

 

      ( ) ( ) ( , ) ( ), 0y x y x f x y g x x l
x


      ,        (1) 

 

subject to the initial conditions 

 

      (0) , (0)y y   ,          (2) 

 

where , , and     are given constant numbers with 0   for ( )y x is an unknown function. 

Now, dividing the interval [0, 1]  into  N equal subinterval of mesh length h and the mesh point 

is given by 0 , for 1,2,..., 1.ix x ih i N     For the sake of simplicity, 

denote ( )i iy x y , ( ) , ( )i i i iz x z g x g  , etc.   

 

Further, let us the substitutions ( ) ( ) and ( ) ( )z x y x z x y x    , then Eq. (1) with Eq. (2) can be re-

written at the nodal point 
i

x  as: 

 

    
( , , ), (0) ,

( , , ), (0) ,

i i i i

i i i i

y F x y z y

z G x y z z





  

  

        (3) 

 

where    ( , , )i i i iF x y z z   and  ( , , ) ( , )i i i i i i i

i

G x y z g z f x y
x


   . 

 

To solve Eq. (3), we apply the single-step methods that require information about the solution at 

the point ix  to calculate at 1,ix   [11, 12].  The general numerical solution of Eq. (3) using the 

fifth Runge Kutta method is given as: 

 

        

1

1

1

5

5
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,
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i i i i
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i i i i
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y w k

zz w
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
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
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 







           (4) 

 

where  
 

 

4 4

4

1 1

1 1

4
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i i i i ij j i ij j

j j

i i i i ij j i ij j

j j

hF x c h y a k z a

h

k m

G x c h y a km mz a

 

 














  

  

 

 
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Thanks to Christodoulou [10], was present the fifth-order Runge Kutta method to solve a first-

order initial value problem of the form 0 0( , ), ( )
dy

f t y y t y
dt

  , which is given by the following 

equation: 

   1 1 3 4 5 6

1
(7 32 12 32 7 )

90
n ny y k k k k k        ,     (5)  

 
where    

 

1 ( , ),n nk hf x y
  
                            

1
2 ( , ),

2 2
n n

kh
k f t y         

             1 2
3

3
( , ),

4 16
n n

k kh
k f t y


  

           

             

3
4 ( , ),

2 2
n n

kh
k f t y      

            5 2 3 4

3 1
( , ( 3 6 9 ))

4 16
n n

h
k f t y k k k      , 

           6 1 2 3 4 5

1
( , ( 4 6 12 8 ))

7
n nk f t h y k k k k k       . 

 

Thus, to solve Eq. (3), the fifth-order Runge Kutta method can be re-written as:  

 

      
1 1 3 4 5 6

1 1 3 4 5 6

1
(7 32 12 32 7 ),

90

1
(7 32 12 32 7 ).

90

i i

i i

y k k k k k

z m mz m m m

y 



     

 





   


      (6) 

 

where:   1 ( , , ),i i ik F x y z                      

              1 ( , , ),i i im G x y z
      

  
1 1

2 ( , , ),
2 2 2

i i i

k mh
k hF x y z               

1 1
2 ( , , )

2 2 2
i i i

k mh
m hG x y z    , 

3 1 2 1 2

1 1
( , (3 ), (3 )),

4 16 16
i i i

h
k hF x y k k z m m         

3 1 2 1 2

1 1
( , (3 ), (3 ))

4 16 16
i i i

h
m hG x y k k z m m      , 

3 3
4 ( , , ),

2 2 2
i i i

k mh
k hF x y z                     3 3

4 ( , , )
2 2 2

i i i

k mh
m hG x y z    , 

5 2 3 4 2 3 4

3 1 1
( , ( 3 6 9 ), ( 3 6 9 ))

4 16 16
i i i

h
k hF x y k k k z m m m          , 

5 2 3 4 2 3 4

3 1 1
( , ( 3 6 9 ), ( 3 6 9 ))

4 16 16
i i i

h
m hG x y k k k z m m m          , 
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6 1 2 3 4 5 1 2 3 4 5

1 1
( , ( 4 6 12 8 ), ( 4 6 12 8 ))

7 7
i i ik hF x h y k k k k k z m m m m m            , 

6 1 2 3 4 5 1 2 3 4 5

1 1
( , ( 4 6 12 8 ), ( 4 6 12 8 )).

7 7
i i im hG x h y k k k k k z m m m m m             

 

In the determination of the parameters, since the terms are up to 5( )O h be compared, the 

truncation error is 6( )O h and the order of method is 5( )O h  [11 - 13].  

 

The method is given in Eq. (6) is applied on Eq. (3) for 0i  , 
0

( . 0)
i

i e x x  , So that, it is 

necessary to modify  the given second-order singular initial value problems at 0i  , as follow: 

 

Modification at Singular 

 

The fifth-order Runge Kutta method given in Eq. (6) cannot be used for the stated problem 

at 0i  , since it is not defined at 0x x . Hence we have a modified form on Eq. (1) at the 

singular point 0 0x x  as:  

 

          0 0 0 0
0

( ) lim ( ) ( , ) ( )
x

y x y x f x y g x
x





    .

 
 

Using L. Hospital’s Rule of limit evaluation, we obtain: 

 

     0 0 0 0(1 ) ( ) ( , ) ( )y x f x y g x      at 0 0x x  ,     

   0 0 0 0

1
( ) ( ( ) ( , )),

1
y x g x f x y


  


  for 1   . 

 

Thus, from the relations
i i

y z  , the above equation re-written as: 

 

  0 0 0 0

1
( ( , )), (0) .

1
z g f x y z 


   

            (7) 

 

Now, by applying Eq. (6) on Eq. (3) for 0i   and on Eq. (7) for 0i   , we can find stable and 

more accurate approximate solutions for the proposed problem. 

 

3. STABILITY ANALYSIS 

 

The problem in Eq. (1) is reduced into Eq. (3) and let take the second equation from Eq. (3), then 

we have: 
 

       ( , , ), (0)i i i iz G x y z z    ,          (8) 

 

where  ( , , ) ( , )i i i i i i i

i

G x y z g z f x y
x


   . 
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The nonlinear function Eq. (8) can be linearized by expanding the function G in Taylor series 

about the point 0 0 0( , , )x y z and truncating it after the first term as: 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( , , ) ( ) ( , , )

( ) ( , , ) ( ) ( , , ).

G
z G x y z x x x y z

x

G G
y y x y z z z x y z

y z


    



 
  

 

    (9) 

 

By the differentiation rules of the function of several variables Eq. (9) can be written as: 
 

0 0 0 0 0 0 0 0 02
0 00

0 0 0 0 0

0

( , ) ( )( ( , ))

( ) ( , ) ( )( ).

f
z g z f x y x x g z z x y

x x xx

f
y y x y z z z

y x

  
 





         




    


 

 

Using Eq. (12) and substitution, we get:   
 

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

1 1
( ( ( , ))) ( , ) ( )( ( ( ( , )))
1 2 1

1
( ( ( , ))) ( , )) ( ) ( , )
1

1
( )( ( ( , ))).

1

f
z g g f x y f x y x x g g x y

x

f f f
g x y x y y y x y

x x y

f
z z g x y

x


   

 

   


 



         

  

  
    

   


   

 

 

 

This can be re-written in the form of:  

 

     z z c   ,           (10) 

where   0 0 0

1
( ( ( , ))
1

f
g x y

x
  




  

 
, 

             

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1
( , ) ( )( ( (

1

1
( , )) ( , )) ( ) ( , ) ( ( ( , )) ,

1

c g z f x y x x g g

f f f f
x y x y y y x y g x y z

x x y x

  


    


        


   
    

    

 

 

Which is linear in the variable z, since dividing both sides of Eq. (10) by  , we obtain  

z c
z

 


   and let ,

c
u z


  then we have: 

     
c

z u


   .                       (11) 

 

Substituting Eq. (11) into Eq. (10), we get the following:  
c c

u u c
 

   
      

   
 

   

  u u  ,            (12) 
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which is called the linear test equation for the non-linear Eq. (8). The solution of the test 
equation, Eq. (8) is: 

 

   
0
( )h nu u e  ,         (13) 

 

where 
0

u is constant. 

 

Now, by applying Eq. (5) on Eq. (12), we have: 
 

 1 ,ik hu
         

 2

1
(1 ),

2
ik hu h  

        
2 2 3 3

3 ,
4 32

i i i

h h
k h u u u

 
    

2 2 3 3

4 (1 ),
2 8 64

i

h h h
k hu

  
     

2 2 3 3 4 4 5 5

5

3 9 21 9
,

4 32 256 1024
i i i i ik hu h u h u h u h u        

 

2 2 3 3 4 4 5 5 6 6

6

1 15 15 9

2 112 224 896
i i i i i ik hu h u h u h u h u h u            

 

By substituting the values of 1 3 6andk k k  into  

 1 1 3 4 5 6

1
(7 32 12 32 7 )

90
i iu k k k k ku        ,  

 

We obtain: 

 

      1 ( )i iu E h u   ,         (14) 

 

where:  2 2 3 3 4 4 5 5 6 61 1 1 1
.

6 24 120

1
( )

0
1

282 1
h h h hh hE h           

 

 
 

The errors in numerical computation don’t grow, if the propagation error tends to zero or if at 

least bounded, [13]. Now, from Eq. (13), it is easily observed, the exact value of ( )iu x increases 

for the constant 0   and decreases for 0   with the factor of 
he
. While from Eq. (14) the 

approximate value of iu increases or decreases with the factor of E ( h). If 0h  , 

then 1he  ; So the fifth-order Runge Kutta method is relatively stable. If 0h  , (i.e., 0  ) 

then the fifth-order Runge Kutta method is stable in the interval of  5.604 0.h    
 

4. NUMERICAL EXAMPLES AND RESULTS 

 

To demonstrate the applicability of the methods, three model singular initial value problems have 
been considered. These examples have been chosen because they have been widely discussed in 

the literature and their solutions are available for comparison. 
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Example 1:  Consider the singular initial value problem: 
 

          
22

2(2 3) 0, 0 1y y x y x
x

       ,       (15) 

 

subject to the initial conditions: (0) 1, (0) 0y y   and its exact solution is given as 
2

( ) xy x e  

 
Table 1: The comparison of pointwise relative errors at 0.1h   for Example 1. 

 

 Exact Solution Pointwise relative errors 

x   Method [4] 
Our method 

(RK5) 

0.1 1.010050167084168 0.0007 2.2109e-05 

0.2 1.040810774192388 0.0013 6.6993e-05 

0.3 1.094174283705210 0.0003 7.9959e-05 

0.4 1.173510870991810 0.0134 8.5615e-05 

0.5 1.284025416687741 0.0026 8.8478e-05 

0.6 1.433329414560340 0.0021 9.0031e-05 

0.7 1.632316219955379 0.0085 9.0904e-05 

0.8 1.896480879304951 0.0041 9.1408e-05 

0.9 2.247907986676471 0.0087 9.1714e-05 

1.0 2.718281828459046 0 9.1923e-05 
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u
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e
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c
a
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o
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o
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Numerical Solution

Exact Solution

 
Figure 1: The Relationship between the Exact and Numerical solutions for Example 1. 

 

Example 2: Consider the non-linear singular initial value problem: 
 

         2
2

4(2 ) 0, 0 1
y

yy y e e x
x

       ,         (16) 

 

with the initial conditions (0) 0, (0) 0y y  . Its exact solution is 2( ) 2log(1 )y x x   .
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Table 2: The comparison of Maximum Absolute errors for Example 2. 

 

N  Method [8] Our method (RK5) 

8 4.5110e-04 3.5374e-04 

16 1.0863e-04 2.5646e-05 

32 3.0001e-05 1.7753e-06 

64 7.1538e-06 1.1832e-07 

128 1.2981e-06 7.7075e-09 

256 4.3423e-07 4.9457e-10 

 

Table 3: Pointwise Absolute errors for Example 2 at different values of mesh length h . 

 

x  0.1h   0.02h   0.01h   0.001h   

0.1 4.4016e-05 2.9774e-07 2.0257e-08 2.1701e-12 

0.2 1.3151e-04 3.1078e-07 2.0126e-08 2.0735e-12 

0.3 1.5161e-04 2.9602e-07 1.8848e-08 1.9144e-12 

0.4 1.5196e-04 2.6984e-07 1.7012e-08 1.7132e-12 

0.5 1.4290e-04 2.3772e-07 1.4876e-08 1.4879e-12 

0.6 1.2890e-04 2.0307e-07 1.2625e-08 1.2544e-12 

0.7 1.1251e-04 1.6827e-07 1.0391e-08 1.0258e-12 

0.8 9.5351e-05 1.3488e-07 8.2663e-09 8.0946e-13 

0.9 7.8442e-05 1.0388e-07 6.3049e-09 6.1151e-13 

1.0 6.2402e-05 7.5743e-08 4.5336e-09 4.3521e-13 
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h = 0.1

h = 0.05

h = 0.001

 
Figure 2: Relative pointwise errors decrease as the mesh size decreases for Example 2. 

 

Example 3: Consider the following Lane–Emden equation: 

 

                          
52

0, 0 1y y y x
x

      ,       (17) 

With the initial conditions (0) 1, (0) 0y y  ; whose exact solution is: 
2

1
( )

(1 )
3

y x
x





.
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Table 4: The comparison of pointwise relative errors at 0.1h   for Example 3. 

 

x  Exact solution 
Pointwise Relative errors 

Method [4] Our method (RK5) 

0.1 9.9834e-01 0.0002 1.8472e-06 

0.2 9.9340e-01 0.0001 5.6146e-06 

0.3 9.8533e-01 0.0046 6.6915e-06 

0.4 9.7435e-01 0.0032 7.0461e-06 

0.5 9.6077e-01 0.0076 7.0582e-06 

0.6 9.4491e-01 0.0038 6.8632e-06 

0.7 9.2715e-01 0.0032 6.5281e-06 

0.8 9.0784e-01 0.0002 6.0945e-06 

0.9 8.8736e-01 0.0044 5.5917e-06 

1.0 8.6603e-01 0.0009 5.0421e-06 
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Figure 3: Absolute errors decrease as the number of mesh size h decreases for Example 3. 

  

5. DISCUSSION AND CONCLUSION 

 

In this paper, the fifth-order Runge Kutta method has been presented for solving the second-order 

singular initial value problems. First, after the given interval or domain is discretized, the 
problem is reduced into a system of two first-order initial value problems, and then the obtained 

system is solved by using the fifth-order Runge Kutta method.  Its stability analysis has been 

established and the method is stable in the interval of 5.604 0h   . To validate the 

applicability of the proposed method, model examples have been considered and solved for 

different values of mesh sizes. As it can be observed from the numerical results presented in 

Tables 1 - 4 and graphs (Figure 1), the present method approximates the exact solution very well 
and compared with the numerical results presented by Susmita and Chakraverty [4] and 

Shiralashetti et al., [8]. Furthermore, it observed from Tables 1, 2, and 4, the approximate 

solution presented in this paper is more accurate than the approximate solutions presented by the 
mentioned kinds of literature. Generally, all the pointwise absolute errors, pointwise relative 

errors, and maximum absolute errors decrease rapidly as the number of mesh size h decreases, 

and the graphs (Figs. 2 and 3) reflect that the pointwise relative and absolute errors decrease 
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rapidly as the number of mesh size decreases. Thus, the fifth-order Runge Kutta method is a 
stable, more accurate, and convergent method to find the approximate solution of the second-

order singular initial value problems. 
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