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provide a robust framework for logically and intuitively supporting decision-making processes and repre-
senting causal relationships. Their capacity to handle the inherent vagueness and uncertainty of real-world
scenarios enables a more natural and flexible approach to problem-solving. Due to their intrinsic adaptabil-
ity and learning capabilities derived from sub-symbolic AI, FCMs are particularly suited for applications
demanding high levels of interpretability and explainability.
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1 Introduction

In the constantly shifting realm of AI, two primary paradigms have surfaced, each charac-
terized by its unique method for modeling intelligence and addressing problems. Symbolic
AI, on one end of the spectrum, uses explicit symbols and rules to represent knowledge,
mirroring the logical frameworks of human reasoning. Conversely, sub-symbolic AI opts
for a less transparent but more potent method, learning directly from data and embody-
ing patterns and statistical relationships that underlie intelligence in ways often elusive to
human understanding [1]. Although these paradigms appear contradictory, they represent
AI’s dual avenues to emulate or exceed human cognitive functions. A deeper exploration
into their strengths and weaknesses reveals a compelling story—one indicating that AI’s
future might not hinge on one paradigm prevailing over the other but rather on their
combined strengths [2].

Symbolic AI uses symbol manipulation and logical operations to accomplish tasks,
resolve problems, and make decisions. This method, pivotal in the early triumphs of AI
research, thrives in areas where rules are explicit and outcomes are foreseeable. Its trans-
parency and traceability, where each decision follows a precise, logical sequence, are pre-
cious in fields requiring explainability and adherence to regulatory norms. Yet, symbolic
AI’s inflexibility, dependence on comprehensive rule sets, and challenges in encoding com-
monsense knowledge restrict its effectiveness in complex, commonsense scenarios marked
by ambiguity and uncertainty [3]. Symbolic AI is fundamentally a logic-based field, tradi-
tionally relying on classical (usually monotonic) logic and positing that this logical pro-
cessing underpins machine intelligence. For example, considering this paradigm, querying
”What is an apple?” would yield responses defining an apple as ”a fruit,” ”having red,
yellow, or green color,” or ”bearing a roundish shape.” These attributes are termed sym-
bolic because they utilize symbols (like color, shape, and type) to describe the apple.
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From the 1950s to the 1980s, this paradigm was the predominant approach in AI. Regard-
ing the implementation of symbolic AI, one of the oldest yet still the most popular logic
programming languages is Prolog (its roots are in first-order logic) [4].

In contrast, sub-symbolic AI, encompassing neural networks and deep learning, adopts
a markedly different methodology. By learning from extensive datasets, sub-symbolic AI
constructs an internal representation of the world, excelling in areas such as pattern recog-
nition, language processing, and predictive modeling, often outperforming human capabil-
ities. However, this efficiency comes at the expense of transparency, leading to the ”black
box” issue, where the rationale behind a model’s decisions remains obscure and challeng-
ing to explain. The fundamental premise of the sub-symbolic approach is that a model’s
success hinges on its ability to derive an influential model from limited data. Instead of
using transparent, human-understandable relationships, this paradigm employs complex,
less interpretable mathematical formulas to tackle problems. Among the most prevalent
sub-symbolic AI models are neural networks, ensemble models, regression models, decision
trees, and support vector machines, which are frequently encountered in developing ma-
chine learning models. During the 80s, the sub-symbolic AI paradigm took over symbolic
AI’s position as the leading subfield [5].

The dichotomy between symbolic and sub-symbolic AI has led to a vibrant discourse
on the future direction of AI research and application. Within this discourse, Fuzzy Cog-
nitive Maps (FCMs) emerge as a fascinating hybrid technique, combining the explicit
knowledge representation of symbolic AI with the adaptability and learning capabilities of
sub-symbolic AI [6]. FCMs leverage fuzzy logic to manage ambiguity and map out complex
systems using networks of concepts and causal links, effectively bridging the deterministic
symbol-based world and the probabilistic realm of sub-symbolic learning. As we approach a
new epoch in AI development, synthesizing symbolic and sub-symbolic methodologies can
potentially unleash novel capabilities. By combining symbolic AI’s clear interpretability
and structured knowledge representation with the dynamic learning abilities and adapt-
ability of sub-symbolic AI, we can establish the groundwork for more advanced, flexible,
and reliable AI systems [7]. This article delves into the distinct strengths and limitations
of both symbolic and sub-symbolic AI, spotlights FCMs as a leading example of hybrid
AI approaches, and envisions a future where AI’s fullest potential is achieved through the
seamless integration of these two paradigms [8]. In doing so, we may find that the future
of AI is not a question of either/or but a confluence of both, harnessing the best of what
each approach has to offer.

The rest of this paper is organized as follows. Sec. 2 presents the origins and notable
cases of this classical approach to AI. Sec. 3 refers to theoretical conceptions in Machine
Learning. Sec. 4 presents the idea of the need for suitable explanations offered by these sys-
tems. Sec. 5 digs deep into why AI’s future should contain more traceable and interpretable
models. Sec. 6 holds the idea of merging both symbolic and subsymbolic approaches. Sec.
7 highlights the well-known Artificial Neural Networks’ relevance in connectionist com-
puting. Sec. 8 introduces a paradigm aiming to benefit from symbolic and subsymbolic
AI. Last, Sec. 9 serves as a reflection and to understand the need for new and more AI
models that are solid computationally and transparent to human understanding.

2 The ”Good Old-Fashioned” AI

Symbolic AI, or ”Good Old-Fashioned Artificial Intelligence,” refers to a branch of AI
research and development emphasizing symbolic representations of problems, logic, and
search. This approach to AI relies on manipulating symbols and expressions to perform
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tasks, solve problems, and model the world. The following report delves into symbolic AI’s
origins, notable case studies, advantages, and disadvantages.

2.1 Origins

Symbolic AI traces its roots back to the mid-20th century, with foundational work by
figures such as Alan Turing, John McCarthy, and Marvin Minsky. Turing’s conceptualiza-
tion of the Turing machine and the Turing test laid the groundwork for thinking about
machines that could simulate human intelligence. In the 1950s and 1960s, John McCarthy,
often considered one of the fathers of AI, coined the term ”artificial intelligence” and
introduced the concept of using symbolic logic to represent and solve problems. Marvin
Minsky’s work on frames and knowledge representation further advanced the development
of symbolic AI. The period from the 1950s to the late 1980s is often considered the golden
age of symbolic AI, during which researchers focused on developing systems that could
reason about the world using symbolic logic. This era saw the creation of expert systems,
among the first commercial applications of AI. These systems used rules and databases of
knowledge to make inferences and provide advice in specialized domains such as medicine
and engineering. This approach to AI relies on manipulating symbols and using predefined
rules to solve problems akin to human deductive reasoning. During this period, symbolic
AI achieved significant milestones, such as the development of expert systems that could
mimic the decision-making abilities of human experts in specific fields and natural lan-
guage processing that could interpret and generate human-like text based on structured
logic and grammar rules [9].

However, the approach led to the AI winter—a period of reduced funding and interest
in AI research—because it struggled to scale with complexity and could not handle real-
world ambiguity. Symbolic AI systems required extensive manual labor to create and
maintain their rule-based systems, and they were brittle, often failing outside narrowly
defined scenarios. They also struggled with learning from data, which became increasingly
important as the volume of digital data grew. As a result, the limitations of symbolic AI
became apparent, leading to disillusionment and a shift towards other paradigms, such as
machine learning and neural networks, which promised greater flexibility and adaptability.

2.2 Notable Case Studies

– MYCIN: Developed in the early 1970s at Stanford University, MYCIN was an expert
system designed to diagnose bacterial infections and recommend antibiotics. It was one
of the first successful demonstrations of symbolic AI in medicine, using a rule-based
system to make decisions [10].

– SHRDLU: Created by Terry Winograd in the 1970s, SHRDLU was a natural language
understanding system that could interact with a user in English to move blocks around
a virtual world. It demonstrated the potential of symbolic AI for understanding and
manipulating language and objects in a constrained environment.

– Deep Blue: Although primarily known for its chess-playing ability, IBM’s Deep Blue
represents a blend of symbolic AI (in terms of chess strategy and positions represented
symbolically) and brute-force computation. In 1997, Deep Blue famously defeated
world chess champion Garry Kasparov, showcasing the potential of AI in complex
decision-making.

2.3 Advantages of Symbolic AI

Exploring symbols and applying logical rules to mimic human reasoning offer several dis-
tinct advantages, such as interpretability and transparency. It is well-suited for domains
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where decision-making processes, such as legal or regulatory settings, must be clear and
justifiable. Symbolic AI excels in handling complex problem-solving within constrained
parameters, leveraging its rule-based systems to perform tasks that require strict adher-
ence to predefined rules and logical structures. Additionally, because it operates based on
explicit rules, it can be easier to debug and modify than other AI paradigms. Let’s break
it down as follows:

– Explainability: One of the primary advantages of symbolic AI is its inherent explain-
ability. Because decisions are made through explicit logical rules, it is easier to under-
stand and trace symbolic AI systems’ reasoning processes than more opaque models
like deep neural networks.

– Efficiency in Domain-Specific Knowledge: Symbolic AI systems excel in domains where
knowledge can be clearly defined and encoded in rules. This makes them particularly
useful for expert medicine, law, and engineering systems.

– Handling Logical Reasoning and Complex Problems: Symbolic AI is well-suited for
tasks that involve complex problem-solving and logical reasoning, where clear rules
and relationships can be established.

2.4 Disadvantages of Symbolic AI

While symbolic AI has played a pivotal role in the development of artificial intelligence, it
also comes with notable drawbacks. One of the primary limitations is its inability to learn
from data autonomously. Unlike machine learning models that adapt and improve over
time by analyzing vast amounts of data, symbolic AI requires explicit programming of
rules and logic, making it less flexible and scalable in dynamic environments. This rigid-
ity often leads to systems that can fail when encountering scenarios not pre-envisaged
by the developers, limiting their applicability in complex, real-world situations where un-
predictability is typical [11]. Additionally, the maintenance and updating of symbolic AI
systems can be labor-intensive, as it involves manual adjustments to the rule base whenever
new knowledge or corrections are needed. This makes it less efficient for tasks that require
continual learning or adaptation, such as language processing and pattern recognition in
continuously evolving datasets. For example:

– Knowledge Acquisition Bottleneck: One of the major challenges of symbolic AI is the
knowledge acquisition bottleneck. Encoding expert knowledge into rules and symbols
is time-consuming and requires significant expertise. This makes scaling symbolic AI
systems difficult.

– Lack of Flexibility: Symbolic AI systems are often criticized for lacking flexibility and
adaptability. They struggle with handling uncertainty, learning from new data, and
performing in unstructured environments [12].

– Limited Perception and Learning: Unlike their machine learning counterparts, symbolic
AI systems have limited abilities to learn from data or perceive complex patterns
without explicitly programmed knowledge. This limits their applicability in tasks that
require significant generalization or data-driven learning.

2.5 Summing-up

Symbolic AI has been pivotal in shaping the development of the AI field. Its focus on logic,
explicit knowledge representation, and symbolic reasoning has driven substantial progress
in replicating certain facets of human intelligence. Despite its contributions, the limitations
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of symbolic AI, particularly its lack of scalability, flexibility, and adaptive learning capabil-
ities, have prompted the exploration of alternative methods, such as machine learning and
neural networks. Nonetheless, the advantages of symbolic AI, including its explainability
and effectiveness in specific contexts, continue to make it a valuable area for both study
and practical application [13]. Emerging hybrid approaches that integrate the strengths of
symbolic AI with those of machine learning show promise in addressing both paradigms’
drawbacks. As the AI landscape evolves, the principles of symbolic AI are likely to remain
influential in shaping the development and understanding of intelligent systems.

3 Sub-symbolic AI

Sub-symbolic AI marks a distinct paradigm in AI research, deviating from the traditional
symbolic methodology. While symbolic AI depends on well-defined symbols and rules to
represent and process knowledge, sub-symbolic AI delves into the foundational mechanisms
of intelligence. This approach seeks to emulate the subconscious patterns and thought
processes, frequently taking cues from the operations of the human brain and biological
systems. This report investigates the origins, critical case studies, benefits, and drawbacks
of sub-symbolic AI, providing a comprehensive overview of its role and impact in the field.

3.1 Origins of Sub-symbolic AI

The origins of sub-symbolic AI can be traced back to the early days of AI research. How-
ever, it gained significant momentum in the 1980s with the resurgence of neural networks
and the development of algorithms that could learn from data. The limitations of sym-
bolic AI (particularly its inability to handle ambiguous or incomplete information and
to learn from raw data) motivated researchers to explore alternative models that could
mimic the brain’s ability to learn and generalize from experiences. The advent of connec-
tionism, which emphasizes the role of neural networks and parallel distributed processing
in cognitive functions, marked a pivotal shift towards sub-symbolic AI.

Sub-symbolic AI gained prominence in the 1980s and continues to thrive today, mainly
contributing to the resurgence and expansion of AI research and applications after the AI
winters. This shift was driven by the ability of sub-symbolic approaches to learn directly
from data, allowing them to adapt to new tasks without requiring explicit programming of
rules. Unlike symbolic AI, sub-symbolic AI excels in handling ambiguity, noisy data, and
complex pattern recognition, making it ideal for tasks like image and speech recognition,
which are prevalent in today’s digital landscape. The development of backpropagation
and the increase in computational power facilitated the training of deep neural networks,
leading to groundbreaking advances in fields such as autonomous driving, language trans-
lation, and personalized recommendations. Furthermore, the advent of big data provided
the necessary fuel for these algorithms to learn and improve continuously. The success of
sub-symbolic AI rekindled interest and investment in AI and broadened its applicability
across various sectors, marking a significant leap from the limitations of the earlier AI
approaches.

3.2 Notable Case Studies

– Deep Learning for Image Recognition: Convolutional Neural Networks (CNNs), a class
of deep neural networks, have revolutionized image recognition. A landmark moment
was when AlexNet, a CNN designed by Alex Krizhevsky, Ilya Sutskever, and Geof-
frey Hinton, won the ImageNet Large Scale Visual Recognition Challenge in 2012,
significantly outperforming traditional image recognition methods.
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– Natural Language Processing (NLP): Sub-symbolic AI has dramatically improved the
ability of machines to understand and generate human language. Google’s BERT (Bidi-
rectional Encoder Representations from Transformers) and OpenAI’s GPT (Generative
Pre-trained Transformer) series are prime examples of how deep learning models can
grasp complex language patterns, enabling breakthroughs in translation, summariza-
tion, and question-answering systems.

– AlphaGo: Developed by DeepMind, AlphaGo is a program that defeated the world
champion Go player in 2016. It used deep neural networks and reinforcement learning
to master a game known for its complexity and strategic depth, a feat previously
thought to be decades away [14].

3.3 Advantages of Sub-symbolic AI

Sub-symbolic AI, primarily represented by machine learning and neural networks, offers
several significant benefits that have fueled its widespread adoption. This approach excels
in learning from and adapting to large volumes of data without explicit rule-based pro-
gramming, making it highly effective for complex pattern recognition applications such
as image and speech analysis. Sub-symbolic AI can generalize from past experiences to
handle novel situations, a critical capability in dynamic environments like financial mar-
kets or autonomous vehicle navigation. Its proficiency in processing unstructured data
also enables practical applications in natural language processing and personalized user
experiences, enhancing technologies like chatbots and recommendation systems. The scal-
ability of sub-symbolic AI systems also stands out, as they can improve continuously with
additional data, driving advancements in fields from healthcare diagnostics to customer
service automation. This learning capability increases efficiency and fosters innovation by
unlocking new data interpretation and utilization possibilities. More in detail, we list the
following:

– Learning from Data: One of the most significant advantages of sub-symbolic AI is
its ability to learn directly from data without explicit programming. This makes it
incredibly powerful in handling complex, high-dimensional data such as images, speech,
and text.

– Generalization: Sub-symbolic AI models, particularly deep learning networks, can gen-
eralize, meaning they can perform well on unseen data after training on a sufficiently
large and representative dataset. This ability to generalize from examples is closer to
human learning and is a key strength of sub-symbolic AI.

– Handling Ambiguity and Uncertainty: Unlike symbolic AI, sub-symbolic AI is adept
at dealing with ambiguity and incomplete information. Neural networks, for instance,
can make probabilistic predictions and decisions even in uncertain or incomplete data
[15].

3.4 Disadvantages of Sub-symbolic AI

Despite its impressive capabilities, sub-symbolic AI also presents several drawbacks. One
of the most significant issues is the ”black box” nature of these systems, where the decision-
making processes are often opaque, making it difficult to trace how conclusions are drawn.
This lack of transparency can be problematic in critical applications such as medical di-
agnosis or judicial decisions where accountability is essential. Additionally, sub-symbolic
AI requires vast data to train effectively, which can introduce biases if the data is not
carefully curated. These biases can perpetuate and even amplify existing prejudices in
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automated decisions. Sub-symbolic AI systems are also computationally intensive, requir-
ing significant resources for training and operation, which can limit their accessibility and
increase environmental impacts due to high energy consumption. Lastly, these systems are
susceptible to adversarial attacks where slight, often imperceptible, inputs can deceive the
AI into making erroneous decisions, posing security risks, especially in security-sensitive
areas. Let’s wrap up some of them:

– Opacity (Black-Box Problem): A significant drawback of sub-symbolic AI, especially
deep neural networks, is its lack of transparency. These models are often described as
”black boxes” because it is difficult to understand how they arrive at specific decisions
or predictions, complicating efforts to debug or explain their behavior [16].

– Data and Computational Requirements: Training sub-symbolic AI models, particularly
deep learning networks, requires vast data and significant computational resources.
This can make cutting-edge AI research and applications inaccessible to organizations
with limited resources [17].

– Overfitting and Generalization Issues: While sub-symbolic AI models are good at gen-
eralizing from data, they can also be prone to overfitting, where they perform well on
training data but poorly on new, unseen data. To mitigate this risk, careful design,
regularization techniques, and validation strategies are required [18].

3.5 Summing-up

Sub-symbolic AI has emerged as a powerful approach to AI, offering capabilities that
surpass traditional symbolic methods in many areas, particularly those involving com-
plex pattern recognition, learning from data, and generalization [19]. The achievements of
deep learning and neural networks have highlighted sub-symbolic AI’s capacity to address
issues that were once deemed unsolvable. Nevertheless, the difficulties associated with
interpretability, the substantial data and resource demands, and the risk of overfitting
underscore the necessity for continuous research and development in this area. The future
of AI seems to be leaning towards a hybrid methodology that integrates the strengths of
both symbolic and sub-symbolic AI. Such an approach would combine symbolic systems’
clear transparency and structured knowledge representation with sub-symbolic models’
robust learning abilities and flexibility.

4 Explainable AI

Explainable AI (XAI) encompasses methodologies and techniques designed to make AI
system outputs transparent and understandable to human users. XAI strives to develop
a collection of machine learning models that not only maintain high-performance levels
in terms of accuracy but also enhance their explainability. This allows human users to
understand, trust, and manage artificial intelligence systems more effectively. The goal is
to foster an environment where AI tools can be reliable and transparent partners in various
applications. This report delves into the origins, significant case studies, benefits, and
drawbacks of explainable AI. It also highlights how the symbolic AI paradigm, known for
its clear interpretability and robust reasoning capabilities, facilitates the easy tracing of the
logic behind specific outcomes, thereby supporting the principles of XAI. Yet, expressing
the entire relation structure, even in a particular domain, is difficult [20]. Symbolic AI
models often struggle to encompass all possibilities without considerable effort. In contrast,
sub-symbolic AI paradigms yield highly effective models that can be developed and trained
with less effort relative to their accuracy performance. Nonetheless, a significant limitation
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of sub-symbolic models lies in the transparency of their decision-making processes. The
reliance on high-performing yet opaque models is problematic, particularly in sensitive
areas where clear reasoning is crucial for outcomes, such as judicial decisions, military
operations, and financial loan approvals. This highlights a critical need for models that
perform well and provide understandable and traceable decision paths [21].

4.1 Origins of Explainable AI

The idea of XAI isn’t a recent innovation but dates back to the early stages of AI research.
Interest in XAI has surged recently as increasingly complex machine learning models, like
deep learning, have become widespread. These models are often described as ”black boxes”
because their decision-making processes are not transparent. The growing demand for ex-
plainability is driven by concerns about accountability, fairness, transparency, and the
need to meet regulatory requirements, such as those specified in the European Union’s
General Data Protection Regulation, which mandates a right to explanation [9]. Histori-
cally, AI systems were more interpretable because they predominantly employed symbolic
AI methods, such as rule-based systems, where the rationale behind decisions could be
quickly followed and comprehended. As the field shifted towards more powerful but less
interpretable models, the demand for techniques to make these models explainable grew
[22].

4.2 Notable Case Studies

1. Healthcare Diagnosis: AI models are increasingly used to diagnose diseases from medical
imaging. Researchers have developed XAI systems that can identify specific features in
imaging data that lead to their diagnosis, providing doctors with insights into why the AI
system made a particular diagnosis. This not only aids in validating the AI’s conclusions
but also enhances the doctor’s understanding and trust in the tool. 2. Financial Services
for Loan Approval: AI models evaluate loan applications in the financial sector. XAI can
be crucial in explaining why a loan was approved or denied, ensuring compliance with reg-
ulations against discriminatory practices, and helping applicants understand what factors
influenced the decision. 3. Criminal Justice Risk Assessment Tools: Tools like COMPAS
(Correctional Offender Management Profiling for Alternative Sanctions) have been used
to assess the likelihood of reoffending. XAI methods can help uncover, explain, and correct
biases in such predictive models, ensuring fair and transparent decision-making.

4.3 Advantages of Explainable AI

– Increased Trust and Confidence: Explainability builds trust among users and stake-
holders by transparentizing decision-making. When users understand how an AI system
arrives at its conclusions, they are more likely to trust it.

– Improved Model Debugging and Validation: XAI techniques enable developers to iden-
tify and correct errors or biases in AI models. Developers can make targeted adjust-
ments to improve performance and fairness by understanding the factors influencing
model decisions.

– Regulatory Compliance: Many industries are subject to regulations that require deci-
sions made by automated systems to be explainable. XAI facilitates compliance with
such regulations, enabling AI solutions deployed in highly regulated sectors like finance
and healthcare.
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– Ethical and Fair Decision-Making: Explainable AI can help identify and mitigate bi-
ases in AI models, promoting more ethical and fair decision-making processes. This
is particularly important in applications with significant social implications, such as
criminal justice and employment.

4.4 Disadvantages of Explainable AI

– Potential Reduction in Model Performance: Sometimes, making a model more explain-
able may require simplifying its architecture or using less complex algorithms, which
can reduce accuracy or performance [23].

– Complexity and Resource Requirements: Developing explainable AI models can be
more complex and resource-intensive than traditional models. It requires additional
efforts in design, implementation, and validation to ensure that explanations are mean-
ingful and accurate.

– Risk of Oversimplification: There is a risk that the explanations provided by XAI
systems might oversimplify the underlying processes, potentially leading to misunder-
standings or misplaced trust in the AI system’s capabilities.

– Security and Privacy Concerns: Explaining how AI systems work might inadvertently
reveal sensitive information about the data or the model itself, posing security and
privacy risks [24].

4.5 Summing-up

XAI marks a pivotal development in meeting AI systems’ transparency, trust, and compre-
hension needs. As AI increasingly permeates critical sectors of society, the significance of
explainability is set to escalate. The key challenge involves balancing the demand for com-
plex, high-performing AI models and the necessity for transparency and understandability.
While symbolic AI models inherently offer explainability, sub-symbolic AI models typi-
cally do not. Addressing this issue involves two main approaches: XAI, which focuses on
enhancing model explainability by creating inherently more comprehensible models for hu-
man users, and Neuro-Symbolic Computation (NSC), which seeks to merge sub-symbolic
learning algorithms with symbolic reasoning techniques to develop high-performing AI
models that also possess reasoning capabilities [25]. This dual strategy is essential for ad-
vancing AI in a way that aligns with ethical standards and societal expectations. Future
developments in XAI will likely focus on innovative approaches to maintaining or enhanc-
ing model performance while providing clear, accurate, and helpful explanations [26]. As
the field evolves, it will also be essential to develop standardized metrics for explainability
and ensure that explanations are accessible and understandable to all users, regardless of
their technical background. Ultimately, the success of explainable AI will depend on its
ability to foster trust and collaboration between humans and machines, enable more in-
formed decision-making, and ensure that AI systems align with societal values and ethical
principles [27].

5 Interpretable AI

Interpretable AI is dedicated to creating comprehensible models and algorithms for human
users. This approach ensures that individuals can follow and understand an AI system’s
decisions, predictions, or classifications. Interpretable AI is vital in sensitive and critical
areas where grasping the logic behind AI decisions is fundamental for building trust,
ensuring compliance, and facilitating continual improvement. This report explores the
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origins, significant case studies, benefits, and drawbacks of interpretable AI, highlighting
its importance and the challenges it faces in integrating transparency with advanced AI
functionality [10].

Interpretable AI is considered more advanced than explainable AI due to its inher-
ent transparency and clarity in decision-making processes. Interpretable AI models are
designed to be inherently understandable, often using more straightforward or structured
frameworks that allow direct insight into how inputs are transformed into outputs. This
contrasts with explainable AI, which typically involves complex models like deep neural
networks that require additional explanation layers or techniques to make their operations
understandable. The critical advantage of interpretable AI is its ability to provide intu-
itive explanations directly from the model’s structure. It ensures stakeholders can trust
and verify the AI’s decisions without needing auxiliary tools or methods. This intrinsic
understandability is crucial in fields where decisions must be accurate and justifiable, such
as healthcare and finance, making interpretable AI more transparent and potentially more
reliable in sensitive applications [28].

5.1 Origins of Interpretable AI

The roots of interpretable AI stretch back to the field’s inception when more straight-
forward, rule-based systems were standard. These systems were inherently interpretable,
allowing users to trace the AI’s logical steps to a conclusion. However, as AI research
evolved, particularly with the development of more complex models like deep neural net-
works, the emphasis shifted toward enhancing performance, often at the expense of in-
terpretability. The increasing use of AI systems in critical domains such as healthcare,
finance, and criminal justice has reemphasized the need for interpretability. Stakeholders
in these areas require AI to make decisions and provide explanations that are understand-
able to humans. This necessity has catalyzed the advancement of new techniques and
spurred research efforts to make even the most sophisticated models interpretable [29].

5.2 Notable Case Studies

– Healthcare Diagnosis and Treatment: AI systems are increasingly used to diagnose
diseases and recommend treatments. For instance, models that predict cardiovascular
diseases based on patient data must be interpretable so that healthcare providers
can understand the reasoning behind the predictions. This ensures trust and allows
healthcare professionals to make informed decisions.

– Financial Services Compliance and Decision-Making: In finance, AI models are used
for credit scoring, fraud detection, and automated trading. Interpretability in these
models helps users understand the factors influencing decisions, ensuring compliance
with regulatory standards and building customer trust.

– Criminal Justice and Bail Decisions: AI is used to assess the risk of recidivism and
inform bail and sentencing decisions. Using interpretable AI models in this context is
crucial for fairness, transparency, and accountability, allowing for scrutinizing decisions
that significantly impact individuals’ lives.

5.3 Advantages of Interpretable AI

– Trust and Transparency: Interpretable AI fosters trust from users by making the
decision-making process transparent. When stakeholders understand how decisions are
made, they are more likely to trust and accept AI solutions.
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– Improved Decision-Making: Interpretability allows users to verify the correctness of the
AI’s reasoning, leading to more informed and better decision-making. This is especially
important in domains where decisions have significant consequences [30].

– Regulatory Compliance: Many industries are subject to regulations that require deci-
sions to be explainable. Interpretable AI facilitates compliance with such regulations,
avoiding potential legal and financial penalties.

– Error Detection and Model Improvement: By understanding how an AI system makes
decisions, developers and users can identify errors or biases in the model, leading to
continuous improvement of AI systems.

– Ethical Considerations: Interpretable AI can help identify and mitigate biases in AI
systems, promoting fairness and ethical decision-making.

5.4 Disadvantages of Interpretable AI

– Potential Trade-off Between Interpretability and Performance: Sometimes, making a
model more interpretable may require simplifying its architecture or using less complex
algorithms, potentially leading to decreased accuracy or performance.

– Complexity in Interpretation: Achieving true interpretability can be challenging for
complex models. Even when interpretations are provided, they may be difficult for
non-experts to understand, limiting their usefulness.

– Risk of Misinterpretation: There’s a risk that interpretations provided by AI systems
might be misunderstood by users, leading to incorrect conclusions or decisions based
on those interpretations [31].

– Time and Resource Intensive: Developing interpretable AI models can require addi-
tional time and resources. Designing models that balance interpretability and perfor-
mance involves extra effort in model selection, development, and validation [32].

5.5 Summing-up

Interpretable AI is essential for the responsible implementation of AI technologies, par-
ticularly in sensitive and high-stakes areas. It fulfills the critical need for transparency,
trust, and ethical practices within AI systems. As AI progresses and becomes more in-
grained in various societal aspects, the demand for interpretable models is expected to
grow, pushing the limits of current research and development efforts [33]. Future progress
in interpretable AI will focus on resolving the existing compromises between performance
and interpretability, establishing standardized interpretation criteria, and generating more
accessible explanations. These advancements will help ensure that AI systems are robust,
effective, and congruent with societal values and ethical standards, thereby enhancing the
acceptance and integration of AI technologies across diverse sectors [34].

6 The merge of both approaches

The intersection of symbolic and sub-symbolic AI presents a compelling and promising
research area within AI. It merges symbolic AI’s explicit reasoning and interpretability
with the learning capabilities and adaptability of sub-symbolic AI, particularly neural
networks. This hybrid approach aims to address the limitations that each method faces
when used alone, facilitating the development of AI systems that are both powerful and
understandable. This report delves into the origins, significant case studies, benefits, and
drawbacks of blending symbolic and sub-symbolic AI highlighting how this intersection
drives the evolution of more effective and user-friendly AI technologies [35].
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6.1 Origins

The dichotomy between symbolic and sub-symbolic AI traces back to the early phases
of AI research. Initially, symbolic AI was predominant, focusing on logic and rule-based
systems. In contrast, sub-symbolic AI, which became prominent with machine learning
and neural networks, emphasizes learning directly from data and recognizing patterns. The
concept of merging these two approaches emerged from recognizing their complementary
strengths and weaknesses. Symbolic AI excels in complex reasoning and explicit knowledge
representation, while sub-symbolic AI is adept at processing raw data and learning from
experience. This synergy presented a strong case for their integration, suggesting a unified
approach that could leverage both advantages to overcome their limitations [31].

6.2 Notable Case Studies

– Neuro-Symbolic AI for Visual Question Answering (VQA): Research projects have
combined neural networks with symbolic reasoning to improve VQA systems, which
answer questions about images. These hybrid systems use neural networks to interpret
visual data and symbolic systems to reason about the content, enabling more accurate
and interpretable answers.

– Commonsense Reasoning: Projects like OpenAI’s GPT-3 have integCommonsenselic
reasoning to enhance the model’s ability to perform commonsense reasoning tasks.
These systems can better understand human-like responses by embedding symbolic
representations within a neural framework.

– Robotics and Planning: Combining symbolic AI for high-level planning and decision-
making with sub-symbolic AI for perception and motion control has led to more versa-
tile and efficient robots. This approach allows robots to navigate and interact with their
environment in a more human-like manner, adapting to new tasks and environments
through learning.

6.3 Advantages

– Enhanced Reasoning and Generalization: Integrating symbolic and sub-symbolic AI
can lead to systems that learn from data and apply logical reasoning to generalize
beyond their training data. This results in more flexible and capable AI systems [36].

– Improved Interpretability and Transparency: Symbolic components can provide clear
explanations for the decisions made by sub-symbolic models, addressing one of the
major drawbacks of purely sub-symbolic AI systems.

– Efficient Learning and Knowledge Representation: Symbolic AI can encode domain
knowledge that guides the learning process of sub-symbolic models, making them more
efficient and effective in learning from data. Conversely, sub-symbolic models can dis-
cover patterns and relationships that can be formalized into symbolic knowledge.

– Flexibility and Adaptability: Hybrid systems can adapt to new tasks and environ-
ments more readily by leveraging the learning capabilities of sub-symbolic AI with the
structured knowledge representation of symbolic AI.

6.4 Disadvantages

– Complexity in Integration: Combining symbolic and sub-symbolic AI involves signifi-
cant challenges, including integrating disparate representations and reasoning mecha-
nisms. This complexity can make the development of hybrid systems more challenging
and resource-intensive.
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– Scalability Issues: The scalability of hybrid AI systems can be limited by the symbolic
component, which may not easily handle the vast amounts of data that sub-symbolic
models can process [37].

– Limited Understanding of Integration Mechanisms: The field is still exploring the most
effective ways to integrate symbolic and sub-symbolic AI. This includes challenges
in combining learning and reasoning, representing knowledge, and ensuring that the
systems are robust and reliable.

6.5 Summing-up

The intersection of symbolic and sub-symbolic AI offers significant potential for advancing
the field of AI. By melding the strengths of both approaches, researchers and practitioners
are working to develop AI systems that not only have the power to learn from extensive
data sets but also possess the capability to reason, generalize, and articulate their deci-
sions in ways that are understandable to humans. This hybrid approach aims to produce
AI that is both robust in its analytical abilities and transparent enough to ensure trust
and accountability, marking a pivotal evolution in the development of intelligent systems.
This hybrid approach represents a step towards more sophisticated, versatile, and trust-
worthy AI systems that can be effectively applied in various domains, from healthcare and
finance to autonomous systems [15]. Realizing the full potential of the intersection be-
tween symbolic and sub-symbolic AI involves surmounting significant challenges, such as
integrating diverse AI paradigms, ensuring scalability, and devising effective mechanisms
to meld learning with reasoning. Continued research and experimentation are essential
for pushing the boundaries of what’s currently possible and achieving the aim of creat-
ing AI systems that are both intelligent and interpretable. As the field progresses, the
fusion of symbolic and sub-symbolic AI is anticipated to be instrumental in developing
next-generation AI systems. These systems are expected to tackle complex problems with
unparalleled efficiency and effectiveness, marking a crucial advancement in AI technology.

7 From ANN (sub-symbolic) to Rules (symbolic)

Humans excel at understanding and applying rules due to our cognitive ability to process
abstract concepts, reason deductively, and learn from specific examples. This proficiency is
deeply rooted in our linguistic and social development, where understanding and following
rules are essential for communication and societal functioning. In contrast, networks and
other decision-making models often rely on statistical patterns and data-driven learning,
which can obscure decisions’ underlying logic and rationale. While these models excel at
identifying patterns and making predictions from large datasets, they lack the human-like
capacity to grasp and reason through abstract rules and principles intuitively. This fun-
damental difference makes rule-based systems more aligned with human logic, facilitating
easier comprehension, troubleshooting, and modification by human operators.

Extracting rules from Artificial Neural Networks (ANNs) is essential for making these
models more transparent and their decisions more understandable to humans. This involves
converting the complex, non-linear relationships the network has learned into rules that
people can easily understand. We will look at a detailed example showing how to derive
rules from an ANN trained on a primary dataset to predict loan approvals based on various
applicant features.
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7.1 Background

Consider a financial institution that has developed an ANN to assess loan applications.
The ANN inputs include applicant features, such as Age, Income, Credit Score, and Em-
ployment Status, and it outputs a binary decision: Approve or Deny. Despite the ANN’s
high accuracy, the decision-making process is opaque, making it difficult for loan officers
to justify decisions to applicants or to ensure compliance with regulatory standards. The
institution seeks to extract interpretable rules from the ANN to address this.

7.2 ANN Architecture

The ANN in this example is a simple feedforward network with one hidden layer. The
input layer has four neurons corresponding to the applicant features. The hidden layer has
a few neurons (say five for simplicity) using ReLU (Rectified Linear Unit) as the activation
function [20]. The output layer has one neuron and uses a sigmoid activation function to
output a probability of loan approval.

7.3 Rule Extraction Process

The rule extraction process involves several steps designed to translate the ANN’s learned
weights and biases into a set of if-then rules that replicate the network’s decision-making
process as closely as possible:

– Simplification: The first step involves simplifying the ANN to make the rule extraction
more manageable. This could include pruning insignificant weights (shallows values)
and neurons that have little impact on the output based on sensitivity analysis.

– Discretization: Since ANNs deal with continuous inputs and hidden layer activations,
a discretization process is applied to convert these continuous values into categorical
ranges. For instance, age might be categorized into ’Young’, ’Middle-aged’, and ’Old’;
Income into ’Low’, ’Medium’, and ’High’; Credit Score into ’Poor’, ’Fair’, ’Good’, and
’Excellent’; and Employment Status into ’Unemployed’ and ’Employed’.

– Activation Pattern Analysis: Next, the activation patterns of the neurons in the hidden
layer are analyzed for each input pattern. This involves feeding various combinations of
the discretized input variables into the simplified network and observing which neurons
in the hidden layer are activated for each combination. An activation threshold is
defined to determine whether a neuron is considered activated.

– Rule Generation: Based on the activation patterns observed, rules are generated to
replicate the ANN’s decision process. Each rule corresponds to a path from the input
layer through the activated hidden neurons to the output decision. For example:
• If (Age is Young) and (Income is High) and (Credit Score is Good) and (Employ-

ment Status is Employed), then Approve Loan.
• If (Age is Middle-aged) and (Credit Score is Poor), then Deny Loan.

This step involves identifying which combinations of input features and hidden neuron
activations lead to loan approval or denial, effectively translating the ANN’s complex
decision boundaries into more interpretable formats.

– Rule Refinement and Validation: The initial set of rules may be too complex or too
numerous for practical use. Rule refinement techniques simplify and consolidate the
rules without significantly reducing their accuracy in replicating the ANN’s decisions.
The refined rules are then validated against a test dataset to accurately reflect the
ANN’s behavior. This may involve adjusting the regulations based on misclassifications
or applying techniques to handle exceptions and edge cases.

Advanced Computing: An International Journal (ACIJ), Vol.15, No.5, September 2024

14



After applying the rule extraction process to our hypothetical ANN, we might end up
with a set of simplified, human-readable rules such as:

– Rule 1: If (Income is High) and (Credit Score is Excellent), then Approve Loan.

– Rule 2: If (Employment Status is Unemployed) and (Credit Score is Poor or Fair),
then Deny Loan.

– Rule 3: If (Age is Old) and (Income is Low) and (Employment Status is Employed),
then Deny Loan.

These rules provide clear criteria derived from the ANN’s learned patterns, making
the decision-making process transparent and justifiable.

7.4 Advantages and Challenges

Advantages:

– Transparency: The extracted rules make the ANN’s decisions transparent and under-
standable to humans.

– Compliance: Clear rules can help ensure compliance with regulatory requirements for
explainable AI.

– Trust: Understanding how decisions are made can increase user trust in the AI system.

Challenges:

– Complexity: The rule extraction process can be complex, especially for deep or highly
non-linear networks [38].

– Approximation: The extracted rules approximate the ANN’s decision process and may
not capture all nuances.

– Scalability: Extracting rules from large, deep neural networks with many inputs and
hidden layers can be challenging and may result in many complex rules [39].

7.5 Summing-up

Modern large language models (LLMs) [40], such as those based on the Transformer ar-
chitecture, implement ANNs in their backend primarily through deep learning techniques.
These models consist of layers of interconnected neurons, each capable of performing cal-
culations using input data and generating output that feeds into subsequent layers. The
Transformer models, a subset of ANNs, utilize attention mechanisms that allow the model
to weigh the importance of different words in a sentence regardless of their distance from
each other in the text. This ability to manage long-range dependencies within text is cru-
cial for understanding and generating human-like language. The training of these models
involves backpropagation, where errors are used to adjust the weights of the connections
between neurons across many layers, optimizing the model’s performance on language
tasks. This architecture enables LLMs to excel in various language processing tasks by
capturing complex patterns in large volumes of text data.

Extracting rules from ANNs provides a method for rendering AI decisions more trans-
parent, understandable, and justifiable. Although the process poses challenges, especially
in complex networks, it is a vital move toward AI’s responsible and ethical use. Making AI
systems more interpretable helps build trust with users, ensures adherence to regulatory
standards, and offers important insights into how decisions are made.
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8 Fuzzy Cognitive Maps

The pendulum in AI is swinging back from purely statistical approaches toward integrat-
ing structured knowledge. FCMs emerge as a compelling solution that bridges the gap be-
tween symbolic AI’s highly structured, rule-based reasoning and the pattern-driven, data-
intensive approaches of sub-symbolic AI. FCMs incorporate elements of both paradigms,
utilizing a graph-based representation to model complex systems and their behaviors
through concepts and causal relationships akin to symbolic AI [41]. Yet, they also in-
tegrate aspects of fuzzy logic, allowing for handling uncertainty and imprecision in a more
characteristic of sub-symbolic AI. This hybrid approach enables FCMs to model systems
dynamically and adaptively, capturing both the structured knowledge of expert systems
and the adaptive learning capabilities of neural networks [42]. The need for FCMs arises
from the challenges faced by purely symbolic or sub-symbolic systems when dealing with
real-world applications that require both interpretability and flexibility. In domains like
healthcare, environmental management, and strategic planning, decisions must be made
with a clear understanding of causal relationships and an accommodation for uncertainties
and ambiguities inherent in real-world data. FCMs address these needs by providing a cog-
nitively intuitive framework capable of learning from empirical data. This dual strength
makes FCMs particularly valuable for scenarios where stakeholders must navigate complex
decision-making environments. This allows for a balance of precise rule-based logic and
adaptive, data-driven inference [43].

8.1 Origins

Bart Kosko introduced the concept of FCMs in the 1980s as an extension of cognitive
maps. Cognitive maps, developed by Axelrod, were diagrams that represented beliefs and
their interconnections [44]. Kosko’s introduction of fuzziness to these maps allowed for the
representation of causal reasoning with degrees of truth rather than binary true/false val-
ues, thus capturing the uncertain and imprecise nature of human knowledge and decision-
making processes. FCMs combine elements from fuzzy logic, introduced by Lotfi A. Zadeh,
with the structure of cognitive maps to model complex systems.

8.2 Structure and Functionality

FCMs are graph-based representations where nodes represent concepts or entities within
a system, and directed edges depict the causal relationships between these concepts. Each
edge is assigned a weight that indicates the relationship’s strength and direction (positive
or negative) [45]. This structure closely mirrors that of artificial neural networks, particu-
larly in how information flows through the network and how activation levels of concepts
are updated based on the input they receive, akin to the weighted connections between
neurons in neural networks [46].

However, unlike typical neural networks that learn from data through backpropagation
or other learning algorithms, the weights in FCMs are often determined by experts or de-
rived from data using specific algorithms designed for FCMs. The concepts in FCMs can
be activated like neurons, with their states updated based on fuzzy causal relations, allow-
ing for dynamic modeling of system behavior over time. Integrating structured knowledge
graphs with distributed neural network representations offers a promising path to aug-
mented intelligence. We get the flexible statistical power of neural networks that predict,
classify, and generate based on patterns—combined with the formalized curated knowl-
edge encoding facts, logic, and semantics via knowledge graphs [47]. Table 1 provides a
high-level comparison of both approaches.
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While both serve as models for simulating complex systems and decision-making pro-
cesses, they differ significantly in their structure and functionality. FCMs utilize a graph-
based approach with nodes representing concepts and edges depicting causal relationships,
which lends itself to high interpretability and the ability to handle uncertainty through
fuzzy logic. This suits FCMs for scenarios requiring transparent reasoning and adaptabil-
ity to nuanced changes. In contrast, ANNs comprise layered nodes connected by weights,
focusing on pattern recognition and classification through a data-driven, often opaque pro-
cess known as backpropagation. While ANNs excel in tasks involving large datasets and
require the identification of patterns or trends, their ”black box” nature can make them
less suitable for applications where understanding the basis of decisions is crucial. Despite
these differences, both models leverage connectivity and iterative learning, underscoring
their utility in dynamic and complex problem-solving environments [48].

Table 1. Simple comparison of FCMs ANNs

Feature Fuzzy Cognitive Maps (FCMs) Artificial Neural Networks (ANNs)

Structure Graph-based, nodes represent concepts Layered nodes (neurons) connected by
weights

Data Handling Manages uncertainty and imprecision with
fuzzy logic

Processes numerical inputs using activa-
tion functions

Learning Method Heuristic updates based on expert knowl-
edge and data

Backpropagation and other gradient-based
methods

Interpretability High, due to transparent causal relation-
ships

Low, often considered ”black boxes”

Application Areas Complex decision-making, strategic plan-
ning

Pattern recognition, classification tasks

Adaptability Adjusts to new information through causal
reinforcement

Learns from large datasets to improve ac-
curacy

Rule Integration Integrates explicit rules and relationships Learns rules implicitly through training
data

8.3 Case Studies

FCMs have been applied across various domains, demonstrating their versatility and ef-
fectiveness as a hybrid AI tool:

– Decision Support Systems: FCMs model complex decision-making processes, integrat-
ing expert knowledge and data-driven insights to support decisions in healthcare, en-
vironmental management, and business strategy.

– Predictive Modeling: In healthcare, FCMs model the progression of diseases or the
impact of treatments, incorporating medical expertise and patient data to predict
outcomes and support personalized medicine [49].

– System Analysis and Design: FCMs help analyze and design complex systems, such as
socio-economic systems or ecosystems, by modeling the interactions between various
factors and predicting the impact of changes or interventions.

– Healthcare Management: FCMs have been employed to model and predict patient
outcomes in healthcare settings. For example, an FCM can be developed to understand
the complex interplay between patient symptoms, treatment options, and possible
outcomes, aiding medical professionals in decision-making [50].
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– Environmental and Ecological Systems: In environmental studies, FCMs have been
used to model the impact of human activities on ecosystems, allowing for the simula-
tion of various scenarios based on different policies or interventions. This application
showcases the strength of FCMs in handling systems where data may be scarce or
imprecise [51].

– Business and Strategic Planning: FCMs assist in strategic planning and decision-
making within business contexts by modeling the relationships between market forces,
company policies, and financial outcomes, offering a tool for scenario analysis and
strategy development [52].

8.4 Advantages

The hybrid nature of FCMs offers several advantages:

– Interpretability and Transparency: The symbolic representation of concepts and causal
relationships in FCMs provides clarity and understandability, facilitating communica-
tion with experts and stakeholders and supporting explainable AI.

– Flexibility and Adaptability: FCMs can be easily updated with new knowledge or
data, allowing them to adapt to changing conditions or insights. This makes them
particularly valuable in fields where knowledge evolves rapidly.

– Handling of Uncertainty: Using fuzzy values to represent causal strengths enables
FCMs to deal effectively with uncertainty and ambiguity, providing more nuanced
and realistic modeling of complex systems [53].

– Integration of Expert Knowledge and Data-Driven Insights: FCMs uniquely combine
expert domain knowledge with learning from data, bridging the gap between purely
knowledge-driven and purely data-driven approaches.

– Interpretability: The graphical representation of FCMs, similar to semantic nets, allows
for straightforward interpretation and understanding of the modeled system, making
it accessible to experts and stakeholders without deep technical knowledge of AI.

– Flexibility: FCMs can incorporate quantitative and qualitative data, effectively han-
dling uncertainty and imprecision through fuzzy logic. This flexibility makes them
suitable for a wide range of applications.

– Dynamic Modeling Capability: FCMs can simulate the dynamic behavior of systems
over time, providing valuable insights into potential future states based on different
inputs or changes in the system [54].

8.5 Limitations

Despite their advantages, FCMs also face several challenges:

– Complexity with Large Maps: As the number of concepts and relationships in an
FCM increases, the map can become complex and challenging to manage, analyze,
and interpret [32].

– Learning and Optimization: While FCMs can learn from data, adjusting the fuzzy val-
ues of causal relationships can be computationally intensive and require sophisticated
optimization techniques, especially for large and complex maps [55].

– Quantification of Expert Knowledge: Translating expert knowledge into precise fuzzy
values for causal relationships can be challenging and may introduce subjectivity, re-
quiring careful validation and sensitivity analysis [56].

– Subjectivity in Model Construction: The reliance on expert knowledge for constructing
FCMs can introduce subjectivity, especially in determining the strength and direction
of causal relationships between concepts.
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– Complexity with Large Maps: As the number of concepts increases, the FCM can
become complex and challenging to manage and interpret, potentially requiring so-
phisticated computational tools for simulation and analysis.

– Limited Learning Capability: While FCMs can be adjusted or trained based on data to
some extent, they lack the deep learning capabilities of more advanced neural networks,
which can autonomously learn complex patterns from large datasets [57].

8.6 FCMs as a Hybrid AI Approach

There is momentum toward hybridizing connectionism and symbolic approaches to AI
to unlock potential opportunities for an intelligent system to make decisions. This hybrid
approach is gaining ground; FCMs embody a hybrid AI approach through their integration
of symbolic and sub-symbolic elements:

– Symbolic Components: The concepts and causal connections in FCMs are symbolic,
explicitly representing entities and their interrelations. This aligns with the symbolic
AI paradigm, where knowledge is structured and interpretable, allowing for reasoning
and inference based on explicit rules and relationships [58].

– Sub-symbolic Components: The strengths of the causal relationships in FCMs are rep-
resented by fuzzy values, which are learned and adjusted based on data or expert input,
much like the weights in neural networks. This learning capability and the use of fuzzy
logic to handle uncertainty and ambiguity mirror the characteristics of sub-symbolic
AI, which learns from patterns in data without requiring explicit programming.

FCMs offer a compelling hybrid approach to AI, combining the symbolic representa-
tion of knowledge with sub-symbolic learning and reasoning; they bridge a crucial gap
between symbolic AI’s interpretability and structured knowledge representation and the
adaptability and data-driven learning of sub-symbolic AI. Their applications across diverse
domains underscore their versatility and potential to address complex problems by inte-
grating human-like reasoning with machine learning. The challenges FCMs face, including
complexity management and the quantification of expert knowledge, highlight areas for
further research and development. As AI continues to evolve towards more integrated
and versatile models, FCMs stand as a testament to the potential of hybrid approaches
to combine the strengths of symbolic and sub-symbolic AI, offering a pathway to more
intelligent, understandable, and adaptable AI systems [59].

8.7 Summing-up

FCMs offer a robust framework for modeling and analyzing complex systems, blending the
best symbolic and sub-symbolic AI by integrating fuzzy logic, graph theory, and neural
network-like dynamics. While FCMs provide a powerful tool for understanding system
behaviors and decision-making processes, their effectiveness is contingent upon accurately
representing causal relationships and managing map complexity. Future developments in
FCMs aim to enhance their learning capabilities, reduce subjectivity in their construction,
and improve scalability, further solidifying their role as a valuable tool in complex system
analysis and decision support across various domains [60].

9 Conclusion and reflection

Both symbolic and sub-symbolic AI approaches effectively address complex problems,
but each excels in different contexts. Symbolic AI is particularly well-suited for expert
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or knowledge-based systems that require human input and domain-specific expertise. In
contrast, sub-symbolic AI is ideal for tasks requiring continuous learning, such as natural
language processing, speech recognition, and image recognition. Therefore, evaluating the
specific requirements and constraints of the problem is crucial before choosing an approach.
The success of an AI application largely depends on selecting a strategy that aligns best
with the problem’s demands. The ongoing debate between proponents of symbolic AI and
sub-symbolic AI reflects deep-rooted differences in their perceived capabilities. Advocates
for symbolic AI argue that it is the only path to accurate intelligence and understanding,
emphasizing its reliance on human-like cognitive processes such as reasoning and logic.
They contend that sub-symbolic AI, primarily based on statistical algorithms, falls short
in its ability to reason abstractly and produce genuinely intelligent behavior. Conversely,
supporters of sub-symbolic AI believe it provides a more adaptable and robust framework
for achieving intelligence, drawing on its ability to mimic brain processes and handle the
intricacies of real-world scenarios. Sub-symbolic AI’s capacity to learn from experience
and adapt over time, without extensive hand-coding, is a significant advantage.

The debate between symbolic and sub-symbolic AI is unlikely to be resolved swiftly,
as both paradigms offer distinct advantages and limitations. The choice between them
depends on the particular needs of the application. However, a deeper understanding
of the arguments for each approach can fuel progress in developing more sophisticated
and effective AI systems. Integrating symbolic and sub-symbolic approaches is crucial
when creating AI systems. Symbolic AI shines in scenarios that demand logical reasoning
and problem-solving capabilities that can be articulated through rules and symbols. On
the other hand, sub-symbolic AI is superior in domains where pattern recognition and
experiential learning are critical, such as speech recognition, image recognition, and natural
language processing. One significant benefit of leveraging both approaches is their potential
to create hybrid models, which enhance the efficacy of solving complex problems. For
example, sub-symbolic AI can be utilized for feature extraction in image recognition tasks,
while symbolic AI can handle classification duties.

Understanding the strengths and limitations of each approach and using them in tan-
dem can forge more comprehensive and intelligent AI systems. These systems can sur-
mount the challenges posed by relying solely on one AI approach. While symbolic AI,
with its rule-based systems, is effective in environments where problem-solving processes
are rule-intensive and well-defined, sub-symbolic AI thrives in more ambiguous settings
where patterns and data-driven insights come into play. Symbolic AI requires expert input
to craft precise rules, whereas sub-symbolic AI leverages vast datasets to learn and adapt.
Moreover, symbolic AI’s deterministic and transparent nature allows for accurate track-
ing of decisions, an advantage in applications where explainability is critical. In contrast,
sub-symbolic AI often operates as a ”black box,” where the internal workings and decision-
making processes are not easily discernible, posing challenges in situations requiring clear
audit trails. Ultimately, the choice between symbolic and sub-symbolic AI hinges on the
specific needs of the application and the project’s goals. Employing both complementary
can address a broader range of challenges and enhance AI systems’ overall functionality
and adaptability.
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4. G. Nápoles, F. Hoitsma, A. Knoben, A. Jastrzebska, and M. Leon, “Prolog-based agnostic explanation
module for structured pattern classification,” Information Sciences, vol. 622, p. 1196–1227, Apr. 2023.

5. W. Saeed and C. Omlin, “Explainable ai (xai): A systematic meta-survey of current challenges and
future opportunities,” Knowledge-Based Systems, vol. 263, p. 110273, 2023.
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21. G. Nápoles, J. L. Salmeron, W. Froelich, R. Falcon, M. Leon, F. Vanhoenshoven, R. Bello, and K. Van-
hoof, “Fuzzy cognitive modeling: Theoretical and practical considerations,” in Intelligent Decision
Technologies 2019: Proceedings of the 11th KES International Conference on Intelligent Decision Tech-
nologies (KES-IDT 2019), Volume 1, pp. 77–87, Springer Singapore, 2020.

22. S. S Band, A. Yarahmadi, C.-C. Hsu, M. Biyari, M. Sookhak, R. Ameri, I. Dehzangi, A. T. Chronopou-
los, and H.-W. Liang, “Application of explainable artificial intelligence in medical health: A systematic
review of interpretability methods,” Informatics in Medicine Unlocked, vol. 40, p. 101286, 2023.

23. J. Wang, Z. Peng, X. Wang, C. Li, and J. Wu, “Deep fuzzy cognitive maps for interpretable multivariate
time series prediction,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 9, pp. 2647–2660, 2021.

24. N. Martinez, M. Leon, and Z. Garcia, “Features selection through fs-testors in case-based systems
of teaching-learning,” in Mexican International Conference on Artificial Intelligence, pp. 1206–1217,
Springer, 2007.

Advanced Computing: An International Journal (ACIJ), Vol.15, No.5, September 2024

21
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winner of the Cuban Academy of Sciences National Award for the Most Relevant Research
in Computer Science. Dr. Leon obtained his PhD in Computer Science at Hasselt Univer-
sity, Belgium, previously having studied computation (Master of Science and Bachelor of
Science) at Central University of Las Villas, Cuba.

Advanced Computing: An International Journal (ACIJ), Vol.15, No.5, September 2024

23




