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ABSTRACT 
 
Hyperspectral images contain a huge number of spectral channels, which ensures high accuracy of 

analysis, but at the same time leads to problems associated with data redundancy, high computational load 

and decreased classification efficiency. In this paper, a method is proposed to integrate time series 

complexity analysis and fractal dimension (FD) to effectively reduce the dimensionality of hyperspectral 

data. Each pixel is considered as a time series characterized by spectral complexity, which allows 

identifying the most informative parts of the spectrum. Fractal dimension is used to quantify the complexity 

of spectral features and select significant channels. The proposed approach allows preserving critical 

information while minimizing losses during dimensionality reduction. To evaluate the effectiveness of the 

method, a comparison of the classification accuracy using the support vector machine (SVM) algorithm 

was carried out before and after applying the proposed optimization procedure. Experimental results on 

real hyperspectral data show significant dimensionality reduction while maintaining or improving 

classification quality. 
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1. INTRODUCTION 
 

Hyperspectral image is a dataset containing spatial and spectral characteristics of objects, making 

it an important tool in various fields such as agriculture, ecology, geology and remote sensing [1]. 

However, the high dimensionality and complexity of hyperspectral data create significant 

difficulties in their analysis and classification. Traditional methods of spectrum processing are 

often unable to fully take into account the dynamic and structural complexity of signals, which 

can reduce the accuracy of classification and interpretation of data [2]. 

 

To solve these problems, time series analysis methods are widely used to identify hidden patterns 

and features of signals. In particular, Permutation Entropy (PE) is a powerful tool for assessing 

the complexity of time series, reflecting the degree of order or chaos of spectral signals [3]. In 
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addition, the fractal dimension (FD) serves as a measure of structural complexity and self-

similarity, which allows for a more profound characterization of the geometric properties of 

spectra[3]. In addition, the fractal dimension (FD) serves as a measure of structural complexity 

and self-similarity, which allows for a more profound characterization of the geometric properties 

of spectra [4]. This study aims to integrate time series complexity analysis using permutation 

entropy and fractal dimension estimation to optimize the classification process of hyperspectral 

data. The proposed approach allows improving feature extraction by taking into account both 

dynamic and structural aspects of spectra, which contributes to increasing the accuracy and 

reliability of classification. The paper examines the application of this technique on a real 

hyperspectral dataset and the effectiveness of the support vector machine (SVM) model [5]. 

 

2. MATERIALS AND METHODS 
 

The purpose of this study is: 

 

2.1. Description of hyperspectral data [6]; 

2.2. Time series complexity analysis [7]; 

2.3. Estimation of fractal dimension [8]; 

2.4. Feature selection algorithm [9]; 

2.5. Classification and evaluation (SVM) [10]. 

 

2.1. Description of Hyperspectral Data 
 

Hyperspectral data are three-dimensional arrays consisting of two spatial dimensions (image 

width and height) and one spectral dimension (light intensity over a wide range of wavelengths). 

Each pixel in the image has its own spectrum, which can be used to analyze and identify various 

materials, vegetation types, and other objects. 

 

Hyperspectral imaging is a data collection and analysis technology based on measuring 

electromagnetic radiation in a variety of narrow spectral bands extending across the entire visible 

and infrared spectrum (sometimes the ultraviolet spectrum) [11]. Unlike conventional 

photography, which records information in only a few wide bands (for example, the red, green, 

and blue channels), hyperspectral photography divides electromagnetic radiation into hundreds or 

even thousands of narrow spectral bands (Fig. 1) [12]. 

 

 
 

Fig. 1. Spectral bands 
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The electromagnetic spectrum describes all types of light, from very long radio waves, 

microwaves, infrared radiation, visible light, ultraviolet rays, and X-rays to very short gamma 

rays, most of which the human eye cannot see (Fig.) [13]. 

 

 
 

Fig. 2. Hyperspectral imaging captures wavelengths from 250 to 15,000 nm and thermal infrared radiation. 

 

Hyperspectral images have high spectral but low spatial resolution, while multispectral images 

are characterized by high spatial but low spectral resolution. Data fusion studies have 

demonstrated that combining multi- and hyperspectral data allows for more accurate object 

classification. [14]. 

 

Hyperspectral sensors collect data as a set of images, each image in the set representing a 

narrowband range of wavelengths of the electromagnetic spectrum, also known as a spectral 

band. These images are combined to form a 3D hyperspectral data cube for processing and 

analysis. The hyperspectral cube contains spectral data in one dimension and spatial data in the 

other two, which can be used to create a detailed pixel-by-pixel chemical and spatial map (Fig 3) 

[15]. 

 

 
Fig 3. Hyperspectral data cube 

 

The spatial and spectral characteristics of the obtained hyperspectral data are characterized by the 

information contained in its pixels [16]. Each pixel is a vector of values that define the intensities 
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at a particular location (𝑥, 𝑦 spatial coordinates) in different z ranges. The vector is known as the 

pixel spectrum, and it defines the spectral signature of the pixel located at (𝑥, 𝑦), i.e. the data 

stored in the pixel provides information about its spectrum over the entire range of the sensor 

used [17]. Pixel spectra are important characteristics in the analysis of hyperspectral data. But 

these pixel spectra are distorted by a number of factors (sensor noise, atmospheric effects, low 

resolution, etc.) (Fig. 4). 

 

 
 

Fig. 4. Pixel space of hyperspectral data 

 

Satellite images obtained using hyperspectral sensors are not as widely available as multispectral 

ones, due to the small number of spacecrafts with appropriate sensors on board and the high cost 

of the images obtained. [18].  

 

Advantages of hyperspectral data: 

 

1. More spectral bands. 

2. Better object discrimination ability 

3. More accurate chemical composition analysis 

4. Wider scope of use 

 

Despite its advantages, hyperspectral data also has a number of disadvantages: 

 

1. High demands on computing power 

2. Expensive equipment 

3. Limited spatial resolution of images 

4. Expertise is required to interpret the data. 

 

Hyperspectral images containing 𝑁 pixels and 𝐵 spectral channels (bands) were used as the initial 

data. Each pixel 𝑥𝑖 is represented as a vector of spectral values [19]: 

 

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐵], 𝜖 ℝ
𝐵, 𝑖 = 1,2,… ,𝑁    (1) 

 

Thus, the hyperspectral image can be represented as a matrix 𝑋 𝜖 ℝ𝑁𝑥𝐵. 

 

2.2. Time Series Complexity Analysis 
 

Time series analysis is a set of mathematical and statistical methods of analysis designed to 

identify the structure of time series and to forecast them [20]. his includes, in particular, 

regression analysis methods. Identifying the structure of a time series is necessary in order to 

construct a mathematical model of the phenomenon that is the source of the analyzed time series. 

Forecasting future values of a time series is used for effective decision making [21]. 
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Fig. 5. Example of a time series 

 

Time series consist of two elements: 

 

− the time period for which or as of which numerical values are given; 

− numerical values of a particular indicator, called series levels. 

 

Time series are classified according to the following criteria: 

 

− according to the form of the level’s representation; 

− the series of absolute indicators; 

− relative indicators; 

− average values. 

− by the number of indicators for which levels are determined at each point in time: one-

dimensional and multidimensional time series; 

− by the nature of the time parameter: instantaneous and interval time series. In 

instantaneous time series, levels characterize the values of the indicator as of certain 

points in time. In interval series, levels characterize the value of the indicator for 

certain periods of time. An important feature of interval time series of absolute values 

is the possibility of summing their levels. Individual levels of the moment series of 

absolute values contain elements of repeated counting. This makes summing up the 

levels of moment series meaningless; 

− according to the distance between dates and time intervals, equidistant ones are 

distinguished — when the registration dates or the end of periods follow each other at 

equal intervals, and incomplete (unequally spaced) ones — when the principle of equal 

intervals is not respected; 

− by missing values: full and incomplete time series; 

− time series can be deterministic and random: the former are obtained based on the 

values of some random function (a series of consecutive data on the number of days in 

months); the latter is the result of the realization of some random variable; 

− depending on the presence of the main trend, stationary series are distinguished, in 

which the average value and variance are constant, and non-stationary ones containing 

the main trend of development. 
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Each pixel is considered as a time series consisting of intensity values in different spectral bands. 

To estimate the complexity of the time series, the permutation Entropy (PE) proposed by Band 

and Pompe is used. [22]: 

 

𝑃𝐸(𝑥𝑖) = ∑ 𝑝𝑖 log 𝑝𝑗
𝑛!
𝑗=1      (2) 

 

where: 

 

− 𝑝𝑗 is the probability of occurrence of each of 𝑛! possible permutations of length 𝑛 in the series 

in the series 𝑥𝑖; 
− 𝑛 is the order of permutation 𝑛 𝜖 𝑍. 

 

This indicator is used to identify areas of the spectrum that contain a complex and, therefore, 

informative structure. 
 

 
 

Fig 6. Parameters of the informative structure 

 

2.3. Estimation of Fractal Dimension 
 

Fractal dimension is one of the ways to determine the size of a set. In metric space, it is called the 

fractal dimension of an 𝑛-dimensional set and has several varieties. They are calculated as 

follows [23]. 

Fractal (Hausdorff, box-counting) dimensions are calculated using the formula 

𝑑 = lim
𝜀→0

ln𝑁(𝜀)

ln
1

𝜀

       (3) 

where, 𝑁(𝜀) s the minimum number of cubes with side 𝜀, required to cover the entire complex. 

The measurement is defined as an exponent of the degree of d in 𝑁(𝜀)∞
1

𝜀𝑑
 (Fig. 7). 
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Fig 7. Hausdorff, box-counting dimension 

 

a) Border block selection: 𝑁(𝜀)∞
1

𝜀
, 𝑑 = 1, 

b) Division of total volume blocks: 𝑁(𝜀)∞
1

𝜀2
, 𝑑 = 2.  

 

Another fractal dimension method is the shoreline method 
 

The length of the coastline is measured in 𝑙, then the measured length is calculated using the 

formula (4): 

𝐿 = 𝛥𝑙−𝛼 , 𝛥 = 𝑐𝑜𝑛𝑠𝑡      (4) 

 

 
Fig 8. The total length of the coastline 

 

Fig. 8, demonstrating traditional ideas about geometry, forms a scale in accordance with 

predictable, understandable and familiar ideas about the space in which they are located. For 

example, take a line, divide it into three equal parts, and then each part will be three times smaller 

than the length of the original line. The same thing happens on the plane. If you measure the area 

of a square, and then measure the area of a square by 
1

3
 the length of the side of the original 

square, it will be 9 times smaller than the area of the original square [24]. This measurement can 

be determined mathematically using the rule of measurement according to the formula (5): 

 

𝑁∞𝜀−𝐷       (5) 
 

where, 𝑁 is the number of parts, ɛ is the dimensional coefficient, 𝑁 is the dimensional 

coefficient, ∞ is the fractal dimension, means the proportion in this sign. This scaling rule 

confirms the traditional scaling rules of geometry, since for a line 𝑁 = 3, when 𝜀 =
1

3
, then 𝐷 =

1, and for squares, because 𝑁 = 9, when 𝜀 =
1

3
, 𝐷 = 2. The same rule applies to fractal 

geometry, but it is less intuitive. To calculate the unit length of a fractal line, at first glance, 

reduce the scale by three times, in this case 𝑁 = 3,when 𝜀 =
1

3
 and we get the value of formula 

(5) by changing formula (6): 
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log𝜀 𝑁 = −𝐷
log𝑁

log 𝜀
      (6) 

 

 
 

Fig. 9. Traditional representation of geometry in measurements and scale definition 

 

2.4. Feature Selection Algorithm 
 

Feature selection algorithms are methods used in machine learning and data mining to select the 

most relevant features from a set of input data [25]. This is done to optimize the model, reduce 

complexity and improve performance.  

 

Main categories of feature selection algorithms: 

 

Filters: 

− Assess the importance of each feature independently of the model using metrics such as 

correlation coefficient, mutual information, Fisher criterion and others;  

− Examples: Pearson Correlation Coefficient, Feature Importance Assessment with 

LightGBM;  

− Advantages: Fast, independent of model type;  

− Disadvantages: May not take into account interactions between features.  

 

Wrappers: 

− Estimate the importance of features based on the performance of a model trained on different 

subsets of features;  

− Examples: Sequential Feature Elimination, Direct Feature Selection (Forward Selection); 

− Advantages: Takes into account the relationships between features;  

− Disadvantages: Computationally expensive.  

 

Embedded Methods: 

− Feature selection occurs as part of the model training process, for example when using 

regularization;  

− Examples: L1 regularization (Lasso), L2 regularization;  

− Advantages: Computationally less expensive than wrappers;  

− Disadvantages: May be specific to the model type.  
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Hybrid methods: 

 

− Combines approaches of filters, wrappers and built-in methods.  

 

Reducing overfitting: 

 

− Feature selection can help avoid overfitting the model on data specific to the current dataset. 

− Examples of feature selection algorithms [26]. 

 

mRMR (Minimal Redundancy Maximum Relevance): 

 

− Maximizes the mutual information between features and the target variable while 

minimizing the mutual information between the selected features.  

 

Evolutionary selection of traits (EFS): 

 

− Using evolutionary algorithms to find the optimal subset of features.  

−  

Recursive Feature Elimination (RFE): 

 

− Iterative feature removal based on model-estimated importance.  

−  

Forward Selection: Step-by-step addition of features that improve the quality of the model [27].  

 

− The proposed method combines complexity analysis and fractal dimension; 

− For each pixel 𝑥𝑖 the permutation entropy 𝑃𝐸(𝑥𝑖) is calculated; 

− Spectral channels with the highest 𝑃𝐸values are aggregated; 

− For each 𝑘 channel, the 𝐷𝑘 fractal dimension is calculated; 

− The channels are rated by 𝐷𝑘, and the 𝑀 channels with the highest values are selected; 

− A reduced matrix of features 𝑋′𝜖 ℝ𝑁𝑥𝑀 is formed, where 𝑀 ≪ 𝐵. 

 

 
Fig 10. Feature selection 
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2.5. Classification and Evaluation (Support Vector Machine) 
 

Support Vector Machine (SVM) is a machine learning algorithm that is used for classification 

and regression tasks. The main idea of SVM is to find the optimal separating hyperplane in a 

multidimensional space that separates objects of different classes as much as possible [28]. 

 

In the case of a classification problem, SVM seeks to find a hyperplane such that the distance 

from it to the nearest points of the training sample (support vectors) is maximal. These support 

vectors are the data points that are closest to the hyperplane and play a key role in determining 

the position of the hyperplane. 

 

The main SVM methodologies include the following: 

 

− SVM for the Linearly Inseparable Case; 

− SVM with nonlinear kernels 

− Probabilistic assessment of the quality of models; 

 

SVM for the Linearly Inseparable Case [29]. 

 

Set the simplest linear model of the form: 

 

𝑎(𝑥) = 𝑠𝑖𝑔𝑛(ω 𝑇 − 𝑏) = sign((ω, x) − b) = sign(ω ∗ x − b)   (7) 

 

There are three ways, but all of them mean a linear combination of the parameter vector 𝜔with 

the image 𝑥 and adding a −𝑏 offset. At the output, the model produces values, 𝑎(𝑥)є{−1;+1}. 
Next, assume that the training sample consists of linearly separable images (then, this case 

generalizes to linearly inseparable). Then the width of the strip will be determined by the location 

of the boundary vectors x in the feature space. In general, images in training samples are rarely 

linearly separable. 

 

Therefore, with a linearly inseparable sample, it will not be possible to find parameters 𝜔 and 𝑏, 

that would satisfy the linear constraints on the offsets: 

 

𝑀𝑖(𝜔, 𝑏) ≥ 1,        𝑖 = 1,2, … , 𝑙     (8) 

 

When allowing the classifier to make a mistake by a certain value (slack variables), 𝜉𝑖 ≥ 0, 𝑖 =
1,2,… , 𝑙 for each 𝑖-th image, 𝑀𝑖(𝜔, 𝑏) ≥ 1 − 𝜉𝑖 , where   𝑖 = 1,2, … , 𝑙, the values of slack 

variables can still be perceived as a penalty for violating the original inequality. If all 𝜉𝑖 →
+∞,then any weights can be taken, for example 0, and then the optimization problem will be 

solved. Here it is allowed to make mistakes, but the magnitude of this error should be as small as 

possible, that is, it is necessary to find such 𝜔 and 𝑏, that 𝜉𝑖 → 0, where 𝑖 = 1,2, … , l, this 

condition can be taken into account in the minimization algorithm, writing it as follows: 

 

{

1

2
||𝜔||2 + 𝐶 ∑ 𝜉𝑖

𝜔,𝑏,𝜉
→   𝑚𝑖𝑛𝑙

𝑖=1

𝑀𝑖(𝜔, 𝑏) ≥ 1 − 𝜉𝑖 ,    𝑖 = 1,2, … , 𝑙
𝜉𝑖 ≥ 0,             𝑖 = 1,2,… , 𝑙

      (9) 

 

where, 𝐶 is a hyperparameter that determines the degree of minimization of values {𝜉𝑖}. 
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All the obtained equivalent optimization problems are considered for the general case of a 

linearly inseparable sample. Now here we can rewrite the last two inequalities in the system as: 

 

{
𝜉𝑖 ≥ 1 −𝑀𝑖(𝜔, 𝑏),     𝑖 = 1,2,… , 𝑙
𝜉𝑖 ≥ 0,                          𝑖 = 1,2, … , 𝑙

     (10) 

 

And, since the solution to the problem of finding the minimum of the coefficients ω and b has 

been obtained, then in this inequality it is logical to choose equality, that is: 

 

{
𝜉𝑖 = 1 −𝑀𝑖(𝜔, 𝑏)
𝜉𝑖 = 0                     

⇒ 𝐿𝑖(𝜔, 𝑏) = max(0,1 − 𝑀𝑖(𝜔, 𝑏)) ,    𝑖 = 1,2, … , 𝑙  (11) 

 

This expression is also written like this: 

 

𝐿𝑖(𝜔, 𝑏) = (1 −𝑀𝑖(𝜔, 𝑏))+,    𝑖 = 1,2, … , 𝑙    (12) 

 

As a result, the original system becomes equivalent to an unconstrained minimization problem: 

 

𝐶 ∑ (1 −𝑀𝑖(𝜔, 𝑏))+ +
1

2
||𝜔||2

𝑤,𝑏
→ 𝑚𝑖𝑛𝑙

𝑖=1     (13) 

 

or, when divided by parameter 𝐶, available: 

 

∑ (1 −𝑀𝑖(𝜔, 𝑏))+ +
1

2𝐶
||𝜔||2

𝜔,𝑏
→ 𝑚𝑖𝑛𝑙

𝑖=1     (14) 

 

The optimization problem for the support vector method was obtained using system (9), and from 

it we arrived at an algorithm for finding the parameters ω and b using formula (14). Conventional 

gradient methods are not suitable for minimizing this functional here, since the loss function here 

is continuous but not smooth (derivatives do not exist at the inflection point)[30]. As an option, 

you can use subgradient methods, that is, calculate the derivative according to the rule: 

 

𝛻𝐽(𝜔, 𝑏) = 𝛻(1 −𝑀𝑖(𝜔, 𝑏)) = {
−1, 𝐽(𝜔, 𝑏) < 1,
0, 𝐽(𝜔, 𝑏) ≥ 1

    (15) 

 

But initially, the solution to the problem of optimization of the support vector method was 

reduced to solving system (9). That is, the problem of quadratic programming, minimization of 

the coefficients 𝜔 under linear constraints in the form of inequalities. This approach leads to 

fairly effective numerical methods and in addition, allows us to select objects (observations) on 

the basis of which the coefficients 𝜔 and 𝑏 are calculated. This is interesting additional 

information about the structure of the training set [31]. As a result, we come to the conclusion 

that the coefficients ω are calculated using the following formula: 

 

𝜔 = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖
ℎ
𝑖=1       (16) 

 

where, 𝜆𝑖 are some coefficients that are also calculated during the solution of this optimization 

problem. 

 

SVM with nonlinear kernels. The coefficients 𝜔 of the linear binary classifier in formula (1), in 

the support vector machine will be calculated using formula (10), where {𝜆𝑖} are some 

coefficients [32]. Moreover, non-zero coefficients {𝜆𝑖} ≠ 0 correspond to support or error vectors 
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(outliers). If we combine formulas (1) and (10), we get the general formula (17) of the linear 

classifier model: 

 

𝜔 = 𝑠𝑖𝑔𝑛(∑ 𝜆𝑖𝑦𝑖(𝑥𝑖, 𝑥) − 𝑏)
ℎ
𝑖=1 )    (17) 

 

here, the sum is taken not for all objects, but only for reference ones, for which {𝜆𝑖} ≠ 0.  

 

The classifier computes the weighted sum of the scalar products of the support vectors {𝑥𝑖}𝑖=1
ℎ  

with some input vector x, subtracts the bias 𝑏, and determines the sign. Graphically it looks like 

this: 

 

 
 

Fig 11. The classifier calculates the weighted sum of the scalar products of the support vectors 

 

Let 𝑥1, 𝑥2, 𝑥3, 𝑥4 be a linearly separable sample with four boundary vectors. For simplicity, the 

bias will be set to zero (b = 0). Then for an arbitrary vector x the following linear combination 

will be calculated: 

 

𝜆𝑖(𝑥1, 𝑥) + 𝜆2(𝑥2, 𝑥) − 𝜆3(𝑥3, 𝑥) − 𝜆4(𝑥4, 𝑥)   (18) 

 

Or, it can be written in this form. First, the support vectors for the first and second classes of 

images are summed: 

 

{
𝜔+ = 𝜆1𝑥1 + 𝜆2𝑥2
𝜔− = 𝜆3𝑥3 + 𝜆4𝑥4

      (19) 

 

then, the classifier assigns a sign to the projection of the vector 𝑥,(𝑤+, 𝑥) − (𝑤−, 𝑥),  and 

produces its decision: 

 

𝑎(𝑥) = 𝑠𝑖𝑔𝑛((𝜔+, 𝑥) − (𝜔−, 𝑥))    (20) 

 

Formula (20) interprets the work of a linear binary classifier in the support vector machine. 

SVM with nonlinear kernels. Formula (17) of the linear classifier model is reduced to the 

following form: 

 

(𝑥𝑖, 𝑥) = (𝑥𝑖
𝑇 , 𝑥),            𝑖 = 1,2, … , ℎ    (21) 

Formula (21) is squared: 

 

(𝑥𝑖, 𝑥)
2 = (𝑥𝑖

𝑇𝑥)2,            𝑖 = 1,2,… , ℎ    (22) 
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For the specified transformation and a number of other nonlinear transformations, the solution of 

the system by the Karush-Kuhn-Tucker method using the Lagrange function remains unchanged 

[33]. 

 

Now consider a function K(𝑥, 𝑥 ′), which is a kernel (suitable for the SVM problem) if and only if 

it is symmetric: K(𝑥, 𝑥 ′) = K(𝑥, 𝑥 ′) and non-negative definite: 

 

∬K(𝑥, 𝑥 ′)𝑔(𝑥)𝑔(𝑥 ′)𝑑𝑥𝑑𝑥 ′ ≥ 0     (23) 

for any 𝑔:𝑋 → ℝ. 

 

This function K(𝑥, 𝑥′) = K(𝑥, 𝑥′) and it will be written for two-dimensional vectors: 𝑢 =
[𝑢1, 𝑢2]

𝑇 , 𝑣 = [𝑣1, 𝑣2]
𝑇 ,   from here it will turn out 𝐾(𝑢, 𝑣) = (𝑢, 𝑣)2 = (𝑢1𝑣1 + 𝑢2𝑣2)

2 =

𝑢1
2𝑣1
2 + 2𝑢1𝑣1𝑢2𝑣2 + 𝑢2

2𝑣2
2 = ([[𝑢1

2, 𝑢2
2, √2𝑢1𝑢2]])

𝑇
, ([[𝑣1

2, 𝑣2
2, √2𝑣1𝑣2]])

𝑇
. That is, squaring 

the scalar product of two-dimensional vectors is analogous to the scalar product of three-

dimensional vectors [34, 35]: 

 

{
𝛹(𝑢) = ([[𝑢1

2, 𝑢2
2, √2𝑢1𝑢2]])

𝑇

𝛹(𝑣) =  ([[𝑣1
2, 𝑣2

2, √2𝑣1𝑣2]])
𝑇     (24) 

 

 The function 𝛹(𝑥) forms a new three-dimensional feature space in which the usual linear 

support vector machine algorithm begins to operate. But from the position of the original two-

dimensional feature space, we obtain polynomial functions of level two [36]. Moreover, the 

polynomials here are not arbitrary, but consist only of homonyms of degree two (there are no 

terms of lower degrees here). Separating hyperplanes for different types of kernels: 

 

 
Fig. 12. Separating hyperplanes for different types of kernels (liner, poly, rbf). 

 

Here, linear is the usual scalar product, poly is the polynomial kernel formed by functional 

transformations of the form: 

{
K(𝑥, 𝑥′) = (𝑥, 𝑥′)𝑑

K(𝑥, 𝑥′) = ((𝑥, 𝑥′) + 1)
𝑑     (25) 

rbf – radial cores defined by the expression: 

K(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝜆||𝑥 − 𝑥′||2)    (26) 

core of the species: 

 

K(𝑥, 𝑥′) = 𝑡ℎ(𝑘1(𝑥, 𝑥
′) − 𝑘0),      𝑘1, 𝑘1 ≥ 0  (27) 

 

On its basis, an analogue of a two-layer neural network with sigmoid activation functions is 

obtained. 
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SVM as a two-layer neural network. SVM can be represented as the following computational 

structure on a two-layer neural network [37]. Since the output of the model for arbitrary kernels is 

calculated using formula (11), a two-layer neural network is formed. 

 

 
 

Fig. 13. Two-layer neural network on the SVM model 

 

On the hidden layer, the convolutions of the input vector 𝑥 with the support vectors 𝑥1, … , 𝑥ℎ are 

calculated taking into account the selected kernel 𝐾(𝑥, 𝑥′). Then, all these values are multiplied 

by the weighting coefficients 𝜆1𝑦1, … , 𝜆ℎ𝑦ℎ, summed up and passed through the signed activation 

function. Moreover, SVM immediately determines the required number of neurons in the hidden 

layer and, of course, the values of the weight coefficients.  

 

Methods of kernel synthesis. In conclusion, you can learn simple rules for synthesizing kernels 

for the support vector machine. The main approaches include the following: 

 

− 𝐾(𝑥, 𝑥′) = (𝑥, 𝑥′) − the scalar multiplications; 

− 𝐾(𝑥, 𝑥′) = 1 − constant; 

− 𝐾(𝑥, 𝑥′) = 𝐾1(𝑥, 𝑥
′)𝐾2(𝑥, 𝑥

′) − multiplication of kernels (suitable for SVM); 

− 𝐾(𝑥, 𝑥′) = (𝛹(𝑥),𝛹(𝑥′)),ꓯ 𝛹: 𝑋 → ℝ − function application; 

− 𝐾(𝑥, 𝑥′) = 𝛼1𝐾1(𝑥, 𝑥
′) + 𝛼2𝐾2(𝑥, 𝑥

′),      𝛼1, 𝛼2 > 0 − the sum of the cores. 

 

3. RESULT 
 

The results of the application of the proposed method for reducing the dimension of hyperspectral 

data based on the analysis of the complexity of time series and fractal dimension (FD). All 

experiments were conducted using a hyperspectral dataset from the platform. 

https://www.kaggle.com /, containing 𝑁 =  31344 pixels and 𝐵 = 105  spectral channels. For 

each pixel of the image 𝑥𝑖 𝜖 ℝ
𝐵 the entropy of permutations was calculated using the formula (2) 

 

а) Time series in pixels (spectrum) 
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b) Preferential entropy (𝑃𝐸) 

 

 
Fig14. а) time series in pixels (spectrum), б) preferential entropy (𝑃𝐸) 

 

− High PE values correspond to spectral values with a complex and informative structure. 

−  

− Spectral ranges with the highest average entropy across all pixels were identified. 

The result: about 35-40 spectral channels showed high complexity and were selected for the next 

stage. 

 

For each selected spectral channel k, the fractal dimension was calculated using the formula 

(3,4,5,6). 

 

 
 

Fig 15. Fractal dimension 

 

Linear regression on a logarithmic scale was used for 𝜀 𝜖 [0.90, 0.93]. Result: 35-40 channels 

with the highest 𝐷𝑘, values corresponding to the highest structural complexity were selected. 

 

The classification was used SVM with an RBF core. The assessment was based on metrics: 

− Accuracy, F1-score, Precision, Recall. 
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Table 1 

 
SVM Classification Report 

 precision recall f1-score support 

1 0.91 0.93 0.92 321 

2 0.81 0.83 0.82 381 

3 0.91 0.83 0.87 326 

4 0.93 0.84 0.89 400 

5 0.88 0.99 0.93 373 

6 0.86 0.89 0.87 360 

7 0.85 0.81 0.83 374 

8 0.96 0.90 0.93 367 

9 0.98 0.99 0.99 497 

10 0.92 0.99 0.95 398 

     

accuracy   0.90 3797 

macroavg 
0.90 0.90 0.90 3797 

weighted 

avg 
0.90 0.90 0.90 3797 

 

 
Fig 16. Confusion matrix 

 

The proposed method showed a better classification quality compared to PCA and complete data. 

Reducing the dimension by more than 90% has allowed for faster learning and lower computing 

costs. Using the GPU gave an almost 10-fold acceleration of calculations compared to the CPU. 

 

4. ANALYSIS  
 

The conducted analysis confirmed the effectiveness of the combined approach using permutation 

entropy (PE) and fractal dimension (FD) for the selection of informative features in hyperspectral 
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data. PE allowed us to identify pixels with high spectral complexity, which contributes to 

improved classification. FD accurately identified spectral channels with a pronounced texture 

structure, providing a more informed choice of features. The combined use of these metrics 

allowed us to reduce the dimensionality by more than 90% without losing classification quality. 

The method showed an advantage over traditional approaches, preserving the physical 

interpretability of features. Despite the high computational load, the use of GPU provided 

acceptable processing time. 

 

5. DISCUSSION 
 

The proposed method of integrating permutation entropy and fractal dimension analysis has 

shown high efficiency in classifying hyperspectral data. Unlike traditional dimensionality 

reduction (e.g. PCA), this approach preserves the physical meaning of spectral features and 

provides improved interpretability. Experiments confirmed that PE and FD-based features can 

improve the classification accuracy of SVM while reducing the data dimensionality by 80–90%. 

Despite the computational cost, the GPU implementation provides high performance, making the 

method suitable for practical application. 

 

6. CONCLUSION 
 

In this paper, a new method for dimensionality reduction of hyperspectral data based on the 

integration of time series complexity analysis and fractal dimension estimation was developed 

and investigated. The proposed approach allows for the efficient identification of the most 

informative spectral channels, taking into account both the local complexity of each pixel and the 

global structural characteristics of the spectrum. 

 

Experimental results on real hyperspectral data have shown that the method significantly reduces 

the dimensionality of the original data (up to 90%) without significant loss, and often with 

improved classification accuracy compared to classical methods such as PCA. The use of parallel 

computing on GPUs allowed for faster processing, making the method applicable to real-time 

tasks. 

 

Thus, the integration of complexity analysis and fractal dimension represents a promising tool for 

optimizing hyperspectral images and improving the efficiency of their subsequent analysis and 

classification. In the future, it is planned to expand the method using other complexity measures 

and deep learning for even more accurate feature selection. 
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