
Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

DOI:10.5121/acij.2026.17103 21

DECISION-ORIENTED AUDITING OF ENCRYPTION

AND KEY MANAGEMENT POLICIES BASED ON

CONSISTENCY, STABILITY, AND RISK METRICS

J. R. Baratov, A. N. Ulashev, T. T. Aynakulov

Department of Computer Science and Programming, Jizzakh Branch, National University

of Uzbekistan, Jizzakh, Uzbekistan

ABSTRACT

Auditing encryption and key management policies in modern web and server systems is complicated by

architectural complexity and continuous configuration change. Existing approaches largely rely on static
compliance checks or isolated metrics, providing limited support for actionable decision-making. This

paper proposes a decision-oriented framework that bridges metric-based auditing and practical security

governance. The framework relies on system-level abstractions of policy requirements and enforcement

evidence, and maps consistency, conflict, stability, and risk metrics to discrete decision outcomes. A

bounded and non-intrusive satisfaction function supports partial compliance, heterogeneous evidence, and

conservative handling of missing data without accessing cryptographic key material. In addition, a risk-

aware remediation prioritization algorithm ranks policy requirements by urgency and architectural impact.

Scenario-based evaluation demonstrates improved interpretability of audit results and supports proactive,

risk-aware remediation planning.

KEYWORDS

Encryption policy auditing, key management, decision-oriented security auditing, policy–enforcement

consistency, configuration drift, risk-aware remediation, satisfaction functions, system-level security

metrics

1. INTRODUCTION

The widespread adoption of encryption and centralized key management mechanisms has

become a fundamental requirement for securing modern web and server systems. Contemporary

software architectures rely on transport-layer encryption, encrypted storage, and dedicated key

management services to protect sensitive data and meet regulatory and organizational security
requirements. Consequently, policies governing cryptographic algorithms, protocol versions, key

lengths, and key lifecycles have grown increasingly complex and system-specific [1, 2, 5].

Although comprehensive standards and guidelines are provided by organizations such as NIST,

ISO/IEC, and ENISA, practical enforcement of encryption and key management policies remains

error-prone [1–7]. Empirical studies consistently report widespread misconfigurations, use of
deprecated cryptographic parameters, and inconsistent policy enforcement across real-world

systems, including environments that nominally satisfy compliance requirements [12, 13]. These

problems are intensified by continuous system evolution, frequent configuration changes, and the

layered structure of modern software architectures.

Most existing approaches to encryption policy auditing rely on static compliance checks or

checklist-based validation against predefined requirements [3–5]. While effective at detecting

https://airccse.org/journal/acij/vol17.html
https://doi.org/10.5121/acij.2026.17103

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

22

isolated violations at a specific point in time, such methods provide limited insight into internal
policy coherence, cross-layer enforcement mismatch, or temporal behavior under configuration

drift. As a result, systems may appear compliant while exhibiting structurally inconsistent or

unstable enforcement patterns that remain undetected by traditional audits.

To overcome the limitations of binary compliance assessment, recent research has emphasized

quantitative security metrics and automated auditing techniques [16–19]. However, metric-based

approaches often lack clear semantic interpretation: numerical values are reported without
explicit mapping to operational decisions or remediation priorities. In addition, temporal aspects

such as configuration drift, delayed key rotation, or gradual weakening of cryptographic settings

are rarely modeled explicitly, leading either to overreaction to transient deviations or failure to
detect systematic policy erosion [18, 21].

This paper addresses these challenges by proposing a decision-oriented framework for auditing

encryption and key management policies in dynamic software systems. The proposed approach
integrates system-level audit metrics with a formal decision model that maps quantitative

observations to discrete, interpretable audit outcomes. Consistency, conflict, stability, and risk

metrics are jointly analyzed to distinguish acceptable configurations, early warning conditions,
configuration drift, and critical misconfigurations. A formally defined satisfaction function

enables partial compliance assessment without accessing cryptographic key material, while a

risk-aware remediation prioritization algorithm translates audit decisions into actionable
guidance.

The main contributions of this work are summarized as follows:

1. a system-level abstraction of encryption and key management policies and their enforcement

evidence suitable for continuous auditing [1, 2, 7];

2. a decision-oriented interpretation model that transforms audit metrics into discrete
operational states, enabling clear and reproducible audit outcomes [16, 19];

3. a formal satisfaction function design supporting heterogeneous evidence, partial compliance,

and conservative handling of missing data [18, 21];

4. a risk-aware remediation prioritization algorithm that ranks policy violations according to
urgency, temporal instability, and architectural impact [12, 17];

5. a scenario-based evaluation demonstrating the advantages of decision-oriented auditing over

metric-only interpretation.

The remainder of this paper is organized as follows. Section 2 reviews related work on

encryption policy enforcement, security metrics, and automated auditing. Section 3 introduces the
system model and formal abstractions. Section 4 defines system-level audit metrics, while

Section 5 presents the decision-oriented audit model. Section 6 formalizes the satisfaction

function design, and Section 7 introduces the remediation prioritization algorithm. Section 8

evaluates the proposed framework through representative scenarios, followed by discussion and
conclusions in Sections 9 and 10.

2. RELATED WORKS

Research on encryption and key management policy auditing spans several complementary

domains, including cryptographic standards, empirical studies of misconfiguration, security

metrics, and automated compliance frameworks. This section reviews representative work in

these areas and highlights the limitations that motivate the proposed decision-oriented approach.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

23

2.1. Cryptographic Standards and Policy Guidance

International standards and recommendations issued by organizations such as NIST, ISO/IEC,

ENISA, and IETF define accepted cryptographic algorithms, protocol versions, key lengths, and
key lifecycle practices [1–7]. These documents establish authoritative policy baselines and play a

critical role in regulatory compliance and organizational security governance.

However, standards primarily specify what should be enforced rather than how enforcement

should be audited in complex, evolving systems. They provide limited guidance on quantifying

partial compliance, analyzing internal policy coherence, or interpreting temporal changes in

enforcement. Consequently, audits based solely on standards often reduce policy assessment to
binary compliance outcomes.

2.2. Empirical Studies of Cryptographic Misconfiguration

Extensive empirical research demonstrates that cryptographic misconfiguration remains

widespread in real-world systems. Large-scale measurement studies of TLS deployments and PKI
infrastructures report persistent use of deprecated protocols, weak configurations, and

inconsistent certificate management practices [12, 13]. Developer-focused studies further reveal

frequent misuse of cryptographic APIs due to complexity and insufficient tooling support [14,
15].

While these studies provide strong evidence of the prevalence and impact of cryptographic policy
violations, they are largely descriptive. They identify misconfigurations but do not propose

systematic frameworks for continuous auditing, metric aggregation, or decision-oriented

interpretation across heterogeneous system components.

2.3. Security Metrics and Risk Assessment

Security metrics have been widely proposed as a means of moving beyond qualitative or

checklist-based security assessments [16–19]. Surveys and systematic reviews catalog numerous

metrics for evaluating system security and risk exposure.

Despite their analytical value, most metrics are reported in isolation and lack explicit semantic

interpretation. Numerical values are rarely mapped to operational decisions or remediation

priorities, and temporal aspects such as configuration drift and gradual degradation are often
treated implicitly. This limits the practical usefulness of metric-based approaches in continuous

auditing scenarios.

2.4. Policy Compliance and Automated Auditing Frameworks

Research on automated compliance checking explores formal representations of security policies
and their enforcement [20]. Process-based and model-driven approaches improve automation by

verifying rule satisfaction against observed system behavior.

However, these approaches typically focus on point-in-time compliance and do not address
partial satisfaction, cross-layer enforcement conflicts, or remediation prioritization under resource

constraints. As a result, automated audits may produce extensive violation reports without clear

guidance on urgency or operational impact.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

24

2.5. Key Management Systems and Cloud Environments

The adoption of centralized key management services in cloud platforms introduces additional

complexity into encryption policy enforcement. Vendor documentation describes configuration
options and operational practices for cloud-based KMS solutions [22–24], but these sources are

platform-specific and do not provide system-agnostic auditing models.

Moreover, cloud environments amplify temporal dynamics through frequent automated updates,

making it difficult for existing auditing approaches to distinguish controlled policy evolution

from unintended configuration drift.

2.6. Research Gap and Positioning of This Work

The reviewed literature reveals a gap between quantitative measurement and actionable

interpretation in encryption and key management policy auditing. Standards define requirements

without audit semantics; empirical studies expose problems without decision frameworks;

metrics quantify properties without operational meaning; and automated audits detect violations
without prioritization.

This work addresses this gap by introducing a decision-oriented auditing framework that
integrates system-level metrics, formal satisfaction semantics, temporal analysis, and risk-aware

remediation prioritization. By explicitly mapping audit metrics to discrete decision states and

actionable guidance, the proposed approach supports consistent and interpretable security
governance in dynamic software systems.

Fig. 1. Decision-oriented encryption and key management policy auditing framework

Fig. 1 Overview of the proposed decision-oriented framework for auditing encryption and key
management policies. Policy requirements and heterogeneous enforcement evidence are

normalized and evaluated using satisfaction functions, aggregated into system-level metrics,

interpreted through a decision model, and translated into prioritized remediation actions.

3. SYSTEM MODEL AND POLICY ABSTRACTION

This section introduces the formal system model and abstraction layers used throughout the

paper. The objective is to establish a precise representation of encryption and key management
policies, their enforcement artifacts, and the temporal audit context, while remaining independent

of specific platforms or implementations.

3.1. System Architecture Model

We consider a software system as a composition of interacting architectural layers that
collectively enforce encryption and key management policies. Let

ℒ = {ℓ1, ℓ2, … , ℓ𝑚} (1)

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

25

denote the finite set of architectural layers, such as application, transport, storage, and key
management layers.

Each layer ℓ ∈ ℒexposes a set of configuration interfaces and runtime artifacts through which

cryptographic enforcement is realized. This layered abstraction reflects modern system

architectures and aligns with common security standards and deployment practices [1, 3, 5].

3.2. Policy Requirement Model

Encryption and key management policies are formalized as a set of atomic policy requirements.

Let

𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑛} (2)
denote the set of policy requirements applicable to the system.

Each policy requirement 𝑝𝑖 ∈ 𝒫is represented as a tuple

𝑝𝑖 = ⟨ℓ(𝑝𝑖), 𝜏(𝑝𝑖), 𝜅(𝑝𝑖), 𝑤𝑖⟩, (3)

where ℓ(𝑝𝑖) ∈ ℒdenotes the architectural layer to which the requirement applies, 𝜏(𝑝𝑖)specifies
the requirement type (e.g., algorithm selection, key length, protocol version, key rotation

interval), 𝜅(𝑝𝑖)defines the formal constraint associated with the requirement, and

𝑤𝑖 ∈ (0,1]denotes its relative importance.
This abstraction enables policy requirements derived from standards such as NIST and ISO/IEC

to be represented uniformly, regardless of their source or scope [1, 2, 5, 7].

3.3. Enforcement Artifact Model

Policy enforcement is observed through concrete system artifacts, including configuration files,

runtime metadata, management APIs, and audit logs. Let

ℰ = {𝑒1, 𝑒2, … , 𝑒𝑘} (4)

denote the set of enforcement artifacts collected during an audit.

Each artifact 𝑒𝑗 ∈ ℰis associated with one or more policy requirements and is abstracted as a

normalized attribute vector

𝑒𝑗 = ⟨𝑣𝑗,1, 𝑣𝑗,2, … , 𝑣𝑗,𝑚𝑗
⟩. (5)

Normalization ensures that heterogeneous evidence sources—such as TLS configuration

parameters, key metadata from key management systems, or protocol negotiation results—can be

compared against policy constraints in a uniform manner [4, 22–24].

3.4. Policy–Enforcement Mapping

The relationship between policy requirements and enforcement artifacts is modeled as a mapping

ℳ ⊆ 𝒫 × ℰ, (6)

where (𝑝𝑖 , 𝑒𝑗) ∈ ℳindicates that artifact 𝑒𝑗provides enforcement evidence for requirement 𝑝𝑖.

This mapping is many-to-many: a single policy requirement may be enforced by multiple

artifacts across different layers, and a single artifact may contribute evidence for multiple

requirements. Such multiplicity is characteristic of real-world systems and is a common source of
policy–enforcement inconsistency [12, 18].

3.5. Temporal Audit Model

To capture system dynamics, audits are performed at discrete time points. Let

𝒯 = {𝑡1 , 𝑡2, …  } (7)
denote the ordered set of audit times.

At each time 𝑡 ∈ 𝒯, a snapshot of enforcement artifacts ℰ𝑡 ⊆ ℰis collected, producing a time-

indexed policy–enforcement mapping ℳ𝑡 . This temporal model enables analysis of configuration

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

26

drift, delayed key rotation, and gradual policy erosion, which are typically invisible to point-in-
time audits [18, 21].

3.6. Scope and Assumptions

The proposed system model makes several deliberate assumptions. First, audit access is limited to

configuration data and metadata; cryptographic key material is never accessed or inspected
directly, in line with best practices and regulatory constraints [2, 7]. Second, policy requirements

are assumed to be explicitly defined and externally available, for example through organizational

security policies or regulatory baselines. Third, the model assumes that enforcement artifacts can

be normalized into comparable representations, although the specific extraction mechanisms are
system-dependent.

These assumptions ensure that the model remains broadly applicable while preserving audit
safety and deployability.

3.7. Role of the Model in the Overall Framework

The abstractions introduced in this section form the foundation for all subsequent analysis. Policy

requirements, enforcement artifacts, and their temporal relationships are used in Section 4 to
define system-level audit metrics. These metrics are then interpreted through the decision model

in Section 5, grounded by satisfaction functions in Section 6, and ultimately translated into

prioritized remediation actions in Section 7.

4. SYSTEM-LEVEL AUDIT METRICS

This section defines the quantitative metrics used to evaluate encryption and key management

policy enforcement at the system level. Building on the policy, enforcement, and temporal
abstractions introduced in Section 3, the metrics capture structural alignment, mismatch, temporal

behavior, and risk exposure in a unified and bounded form suitable for decision-oriented auditing.

4.1. Local Satisfaction and Requirement Aggregation

Let 𝑝𝑖 ∈ 𝒫denote a policy requirement and ℰ𝑡(𝑝𝑖) ⊆ ℰ𝑡the set of enforcement artifacts

associated with 𝑝𝑖at time 𝑡. Using the satisfaction function 𝜎(𝑝𝑖 , 𝑒𝑗) ∈ [0,1](formalized later in

Section 6), the local satisfaction of requirement 𝑝𝑖at time 𝑡is defined as

𝜎𝑡(𝑝𝑖) =
1

|ℰ𝓉 (𝑝𝑖)|
∑ 𝜎(𝑝𝑖 , 𝑒𝑗)𝑒𝑗∈ℰ𝓉 (𝑝𝑖) ,  𝜎𝑡(𝑝𝑖) ∈ [0,1] (8)

where 𝑤𝑖denotes the relative importance of requirement 𝑝𝑖.

This aggregation preserves requirement-level weighting while preventing artifact multiplicity

from disproportionately influencing satisfaction.

4.2. Global Consistency Metric

The global consistency metric quantifies the degree of structural alignment between policy

requirements and observed enforcement across the entire system. At time 𝑡, consistency is

defined as the normalized weighted average of local satisfactions:

𝐶𝑡 =
∑ 𝑤𝑖𝑝𝑖∈𝒫 ⋅𝜎𝑡(𝑝𝑖)

∑ 𝑤𝑖𝑝𝑖∈𝒫
, 𝐶𝑡 ∈ [0,1]. (9)

Higher values indicate stronger policy–enforcement alignment, with explicit support for partial

compliance.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

27

4.3. Conflict Metric
While consistency captures alignment, it does not explicitly quantify the extent of mismatch. To

address this, the conflict metric is defined as the complement of consistency:

𝐹𝑡 = 1 − 𝐶𝑡 , 𝐹𝑡 ∈ [0,1]. (10)
This formulation provides a direct measure of aggregated policy–enforcement conflict, enabling

auditors to reason about the severity of mismatches without collapsing results into binary

outcomes.

4.4. Temporal Stability Metric

Modern systems evolve continuously, making temporal analysis essential. The stability metric

captures changes in enforcement between consecutive audit snapshots.

Let 𝜎𝑡(𝑝𝑖)and 𝜎𝑡−1(𝑝𝑖)denote the local satisfaction of requirement 𝑝𝑖at times 𝑡and 𝑡 − 1,

respectively. Temporal stability is defined as

𝑆𝑡 = 1 −
∑ 𝑤𝑖𝑝𝑖∈𝒫 ⋅∣𝜎𝑡(𝑝𝑖)−𝜎𝑡−1(𝑝𝑖)∣

∑ 𝑤𝑖𝑝𝑖∈𝒫
, 𝑆𝑡 ∈ [0,1]. (11)

Lower values indicate temporal instability, including configuration drift.

4.5. Risk Metric

To support decision-making and remediation prioritization, audit metrics must be interpretable in

terms of risk. The system-level risk metric aggregates requirement-level exposure as a function of

satisfaction and importance:

𝑅𝑡 =
∑ 𝑤𝑖𝑝𝑖∈𝒫 ⋅(1−𝜎𝑡(𝑝𝑖))

∑ 𝑤𝑖𝑝𝑖∈𝒫
, 𝑅𝑡 ∈ [0,1]. (12)

This formulation reflects the intuition that highly important requirements with low satisfaction
contribute disproportionately to overall risk [16, 19].

4.6. Layer-Aware Metric Decomposition

Given the layered system model introduced in Section 3.1, metrics can be decomposed by

architectural layer. Let 𝒫ℓ ⊆ 𝒫denote the set of requirements associated with layer ℓ ∈ ℒ. Layer-
specific consistency is defined as

𝐶𝑡
(ℓ)

=
∑ 𝑤𝑖𝑝𝑖∈𝒫ℓ

⋅𝜎𝑡(𝑝𝑖)

∑ 𝑤𝑖𝑝𝑖∈𝒫ℓ

. (13)

Layer-aware metrics enable localized diagnosis and support targeted remediation strategies,
particularly in systems where enforcement responsibilities are distributed across teams or services

[12, 22–24].

4.7. Metric Properties and Interpretability

All proposed metrics are bounded within the unit interval, ensuring comparability and numerical
stability. Consistency and risk metrics are monotonic with respect to satisfaction, while stability

explicitly captures temporal variation. Importantly, metric definitions are independent of specific

cryptographic algorithms or platforms, relying solely on abstracted policy and enforcement
representations.

These properties make the metrics suitable inputs for the decision model introduced in Section 5,

where they are mapped to discrete audit outcomes and remediation strategies.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

28

Table 1. Summary of system-level audit metrics, their interpretation, and usage within the proposed

framework.

Metric Range Interpretation Used in

Sections

Consistency (C) [0,1] Degree of alignment between policy requirements and

observed enforcement

4, 5

Conflict (F) [0,1] Aggregated policy–enforcement mismatch 4, 5

Stability (S) [0,1] Temporal consistency between consecutive audit

snapshots

4, 5, 8

Risk (R) [0,1] Weighted exposure based on requirement importance

and satisfaction

4, 7

All metrics are normalized to [0, 1]. 𝐶: consistency; 𝐹: conflict; 𝑆: temporal stability; 𝑅: risk.
“Used in Sections” indicates the primary sections where each metric is formally defined or

operationally applied.

5. DECISION-ORIENTED AUDITING MODEL

5.1. Decision Space and Audit Outcome States

Existing encryption and key management policy auditing approaches typically report numerical

metrics without explicitly defining how such values should be interpreted in operational terms.

Consequently, audit results often lack clear guidance on whether a system state is acceptable,
requires attention, or demands immediate remediation. To address this limitation, this section

introduces a decision-oriented audit model that formally maps system-level audit metrics to a

finite and interpretable decision space.

Let an audit snapshot observed at time 𝑡be represented by the metric tuple

M𝑡 = ⟨𝐶𝑡 , 𝐹𝑡 , 𝑆𝑡 , 𝑅𝑡⟩, (14)

where 𝐶𝑡 ∈ [0,1]denotes global policy consistency, 𝐹𝑡 ∈ [0,1]denotes aggregated policy–

enforcement conflict, 𝑆𝑡 ∈ [0,1]denotes temporal stability between consecutive audit snapshots,

and 𝑅𝑡 ∈ [0,1]denotes the normalized audit risk.

Decision Space Definition

The decision space is defined as a finite set of mutually exclusive audit outcome states:

𝒟 = {Acceptable, Warning, Critical, Drift}. (15)

Each element of 𝒟represents a qualitatively distinct operational condition of the audited system.
In particular, this classification explicitly distinguishes between static policy violations and

temporally evolving misconfigurations, a distinction not captured by metric-only auditing

approaches.

Metric-to-Decision Mapping Function

Let 𝜃𝐶 , 𝜃𝐹 , 𝜃𝑆, 𝜃𝑅 ∈ (0,1)denote configurable decision thresholds. The mapping from audit
metrics to decision outcomes is formalized by the decision function

𝛿(M𝑡): M𝑡 → 𝒟. (16)

An audit snapshot is classified as Acceptable if the following condition holds:

𝐶𝑡 ≥ 𝜃𝐶   ∧ 𝑅𝑡 ≤ 𝜃𝑅   ∧ 𝑆𝑡 ≥ 𝜃𝑆. (17)

A Warning state is assigned when the system remains largely compliant but exhibits early signs of

instability:

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

29

𝐶𝑡 ≥ 𝜃𝐶 ∧  𝑅𝑡 ≤ 𝜃𝑅   ∧  𝑆𝑡 < 𝜃𝑆. (18)
A snapshot is classified as Critical whenever a significant policy–enforcement mismatch or

elevated risk is detected:

𝐶𝑡 < 𝜃𝐶   ∨  𝑅𝑡 > 𝜃𝑅   ∨  𝐹𝑡 > 𝜃𝐹 . (19)

Finally, a Drift condition is identified when the inequality in Equation (18) persists across
multiple consecutive audit snapshots, indicating sustained configuration evolution rather than

transient deviation:

∃ 𝑘 ≥ 2 s.t 𝑆𝑡−𝑖 < 𝜃𝑆, 𝑖 = 0, … , 𝑘 − 1. (20)

Interpretation and Operational Significance

The proposed decision-oriented formulation transforms abstract audit metrics into discrete,
interpretable system states that directly support operational decision-making. By explicitly

separating warning conditions from long-term drift, the model reduces false positives and enables

more precise remediation planning.

Moreover, the bounded nature of all metrics and thresholds ensures reproducibility across audit

environments while remaining independent of system-specific implementation details.

5.2. Threshold-Based Classification and Decision Rules

While the audit metrics introduced in Section 4 provide quantitative insight into policy–

enforcement alignment, operational security auditing requires interpretable and actionable

outcomes. To this end, the proposed framework employs a threshold-based decision interpretation
that maps continuous metric values to a finite set of operational audit states.

An audit snapshot observed at time t is represented by the metric vector

𝑀𝑡 = ⟨𝐶𝑡 , 𝐹𝑡 , 𝑆𝑡 , 𝑅𝑡⟩, (21)

where consistency, conflict, stability, and risk capture complementary aspects of policy
enforcement. Rather than interpreting these values in isolation, they are jointly evaluated against

configurable decision thresholds reflecting organizational risk tolerance and regulatory

requirements.

Based on this interpretation, the audit outcome space is defined as a finite set of decision states:

Acceptable, Warning, Critical, and Drift. An Acceptable state corresponds to high policy

consistency, low risk, and stable enforcement over time. A Warning state indicates early signs of
degradation, typically manifested as reduced temporal stability while overall compliance and risk

remain within acceptable bounds. A Critical state is triggered whenever significant policy–

enforcement mismatch or elevated risk is detected, requiring immediate remediation.

Temporal behavior plays a central role in distinguishing transient deviations from sustained

degradation. Short-term instability may arise from benign configuration updates or maintenance
activities and should not automatically trigger aggressive remediation. In contrast, persistent

instability observed across consecutive audit snapshots is interpreted as configuration drift,

signaling gradual and potentially unintentional erosion of policy enforcement. By incorporating

temporal persistence into decision interpretation, the framework avoids overreacting to isolated
fluctuations while ensuring that long-term degradation is detected in a timely manner.

Importantly, this decision-oriented interpretation explicitly separates metric computation from
decision semantics. Metrics remain continuous and system-agnostic, while decision thresholds

can be adjusted to reflect evolving organizational policies or external standards. This separation

ensures reproducibility of audit results and enables consistent operational decision-making across

heterogeneous systems.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

30

Overall, the proposed threshold-based decision interpretation transforms raw audit metrics into
discrete, semantically meaningful system states. This approach enables auditors and security

operations teams to clearly distinguish acceptable configurations, early warning conditions,

sustained configuration drift, and critical misconfigurations, thereby supporting timely and

proportionate remediation actions.

6. SATISFACTION FUNCTION DESIGN FOR POLICY–ENFORCEMENT

EVALUATION

Audit metrics and decision rules defined in previous sections rely on the accurate quantification
of the degree to which observed enforcement artifacts satisfy formal policy requirements. This

quantification is captured by the satisfaction function, which transforms heterogeneous and

partially observable enforcement evidence into bounded numerical values suitable for

aggregation and decision-making. This section formalizes the design principles, mathematical

properties, and operator-level constructions of the satisfaction function 𝜎(𝑝, 𝑒).

6.1. Role and Requirements of the Satisfaction Function

Let 𝑝 ∈ 𝒫denote a policy requirement and 𝑒 ∈ ℰdenote an associated enforcement artifact. The

satisfaction function

𝜎: 𝒫 × ℰ → [0,1] (22)

quantifies the extent to which 𝑒satisfies 𝑝.

For use in system-level auditing and decision-oriented analysis, 𝜎(𝑝, 𝑒)must satisfy the following

requirements:

First, boundedness: all outputs must lie within the closed interval [0, 1], enabling aggregation

across heterogeneous requirements.

Second, semantic monotonicity: stronger enforcement must not yield lower satisfaction values.
Third, partial satisfaction support: deviations from policy must be captured gradually rather than

collapsed into binary outcomes.

Fourth, non-intrusiveness: satisfaction must be computable without accessing cryptographic key

material, relying solely on configuration and metadata.

These requirements ensure that 𝜎(𝑝, 𝑒)serves as a reliable interface between low-level

enforcement observations and high-level audit decisions.

6.2. Formal Satisfaction Semantics

Let a policy requirement 𝑝be represented as a tuple

𝑝 = ⟨type, constraint, scope⟩, (23)

where type denotes the requirement category (e.g., key length, protocol version), constraint

defines acceptable values, and scope specifies the architectural layer to which the requirement

applies.

Similarly, let an enforcement artifact 𝑒be represented by the extracted attribute vector

𝑒 = ⟨𝑣1, … , 𝑣𝑚⟩, (24)

obtained through normalization of configuration files, runtime metadata, or management APIs.

The satisfaction value 𝜎(𝑝, 𝑒)is computed by comparing 𝑒against the constraint defined by 𝑝,

using operators tailored to the requirement type.

6.3. Operator Classes for Common Encryption Policy Requirements

Encryption and key management policy requirements exhibit heterogeneous structural properties,

including numeric thresholds, ordered discrete values, set-based constraints, and temporal

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

31

conditions. To ensure generality while preserving interpretability, the proposed satisfaction
function employs a small set of operator classes, each tailored to a common category of

cryptographic policy requirements.

For numeric threshold requirements, such as minimum key length or iteration count, satisfaction
is computed as a normalized ratio between the observed value and the required minimum. This

formulation yields full satisfaction when policy requirements are met or exceeded and penalizes

under-enforcement proportionally:

𝜎(𝑝, 𝑒) = min (1,
𝑣obs

𝑣req
) (25)

where 𝑣obsdenotes the observed value and 𝑣reqdenotes the required minimum.

Ordered discrete requirements arise in domains where configurations can be ranked according to

cryptographic strength, such as protocol versions or algorithm classes. In this case, satisfaction is

defined as the ratio of the observed rank to the required rank, ensuring monotonicity with respect
to cryptographic strength:

𝜎(𝑝, 𝑒) =
rank (𝑣obs)

rank (𝑣req)
, 0 < 𝜎 ≤ 1, (26)

Set-based requirements are used to express constraints over collections of acceptable or required

configurations, for example cipher suite selections. Partial compliance is captured using
normalized set similarity, reflecting the degree of overlap between observed and required

configurations:

𝜎(𝑝, 𝑒) =
∣𝐸obs∩𝐸req∣

∣𝐸obs∪𝐸req∣
. (27)

Temporal requirements, such as key rotation intervals or certificate validity periods, require

explicit modeling of time-dependent deviation. Satisfaction for temporal constraints is therefore

defined using an exponential decay function that penalizes increasing delay beyond the required
threshold:

𝜎(𝑝, 𝑒) = exp (−𝜆 ⋅ max (0, 𝑡obs − 𝑡req)), (28)

where the parameter 𝜆controls the severity of temporal penalties.

6.4. Handling Missing and Uncertain Evidence

In practical audit settings, enforcement evidence may be incomplete or partially observable. To
avoid overestimating compliance, missing evidence is treated conservatively.

Let 𝑒 = ∅denote missing or inaccessible enforcement data. The satisfaction function is then

defined as

𝜎(𝑝, ∅) = 𝜎min, 𝜎min ∈ (0,1), (29)

where 𝜎minis a configurable lower bound reflecting uncertainty rather than explicit violation.

This approach preserves audit continuity while discouraging unjustified compliance inflation.

6.5. Satisfaction Aggregation and Weighting

For a policy requirement 𝑝𝑖associated with multiple enforcement artifacts 𝑒𝑗 ∈ ℰ(𝑝𝑖), local

satisfaction is defined as

𝜎(𝑝𝑖) =
∑ 𝑤𝑖𝑒𝑗∈ℰ(𝑝𝑖) ⋅𝜎(𝑝𝑖,𝑒𝑗)

𝑤𝑖⋅∣ℰ(𝑝𝑖)∣
, (30)

where 𝑤𝑖denotes the relative importance of requirement 𝑝𝑖.

This aggregation preserves requirement-level weighting while avoiding disproportionate
influence of artifact multiplicity.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

32

6.6. Properties of the Satisfaction Function

The proposed satisfaction function design satisfies the following properties:

Boundedness follows directly from operator definitions.
Continuity holds for numeric and temporal operators, ensuring smooth response to gradual

changes.

Monotonicity is preserved with respect to enforcement strength.
Non-intrusiveness is guaranteed by construction, as no cryptographic secrets are accessed.

These properties collectively ensure that satisfaction values are suitable inputs for the decision

model defined in Section 5.

7. RISK-AWARE REMEDIATION PRIORITIZATION ALGORITHM

While the decision-oriented audit model identifies the operational state of a system, effective

security governance requires transforming decisions into prioritized remediation actions. In
complex web and server environments, remediation resources are limited, and not all policy

violations or instabilities can be addressed simultaneously. This section introduces a risk-aware

remediation prioritization algorithm that ranks audit findings based on their impact, urgency, and

architectural relevance.

7.1. From Decision Outcomes to Remediation Objectives

Let an audit snapshot at time 𝑡yield a decision outcome

𝑑𝑡 = 𝛿(M𝑡) ∈ 𝒟, (31)

as defined in Section 5. The objective of remediation prioritization is to determine an ordered set
of policy requirements

𝒫𝑡
↑ = ⟨𝑝(1), 𝑝(2), … , 𝑝(𝑛)⟩, (32)

where the ordering reflects decreasing remediation priority.
Remediation is triggered for decision states Warning, Critical, and Drift, while Acceptable states

require no immediate corrective action.

7.2. Requirement-Level Risk Decomposition

Global risk metrics obscure the contribution of individual policy requirements. To enable fine-
grained remediation, global risk is decomposed into requirement-level components.

Let 𝑅𝑡(𝑝𝑖) ∈ [0,1]denote the risk contribution associated with policy requirement 𝑝𝑖at time 𝑡,

computed as

𝑅𝑡(𝑝𝑖) = 𝑤𝑖 ⋅ (1 − 𝜎(𝑝𝑖)), (33)

where 𝑤𝑖denotes the relative importance of requirement 𝑝𝑖, and 𝜎(𝑝𝑖)is the aggregated

satisfaction defined in Equation (30).

This formulation ensures that highly important requirements with low satisfaction are assigned
higher remediation urgency.

7.3. Incorporating Temporal Instability and Conflict

Risk alone is insufficient to capture remediation urgency in dynamic systems. Temporal

instability and structural conflict must also be considered.

Let 𝑆𝑡(𝑝𝑖)denote the local stability of requirement 𝑝𝑖, and let 𝐹𝑡(𝑝𝑖)denote its conflict

contribution. A composite urgency score is defined as

𝑈𝑡(𝑝𝑖) = 𝛼 ⋅ 𝑅𝑡(𝑝𝑖) + 𝛽 ⋅ (1 − 𝑆𝑡(𝑝𝑖)) + 𝛾 ⋅ 𝐹𝑡(𝑝𝑖), (34)

where 𝛼, 𝛽, 𝛾 ≥ 0are tunable weighting coefficients satisfying 𝛼 + 𝛽 + 𝛾 = 1.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

33

This formulation balances immediate risk, temporal degradation, and structural mismatch in a
unified prioritization metric.

7.4. Layer-Aware Prioritization Strategy

Encryption and key management policies span multiple architectural layers, including

application, transport, storage, and key management services. Remediation actions targeting
different layers exhibit varying operational costs and systemic impact.

Let ℓ(𝑝𝑖) ∈ ℒdenote the architectural layer associated with requirement 𝑝𝑖. A layer-adjusted

priority score is defined as

𝑈𝑡(𝑝𝑖) = 𝑈𝑡(𝑝𝑖) ⋅ 𝜆ℓ(𝑝𝑖), (35)

where 𝜆ℓis a layer-specific amplification factor reflecting remediation complexity or criticality.

This adjustment enables strategic remediation planning by emphasizing layers with higher

systemic risk exposure.

7.5. Prioritization Algorithm

The remediation prioritization process is formalized by the following algorithmic workflow.
Input:

Audit snapshot M𝑡, requirement set 𝒫, satisfaction values 𝜎(𝑝𝑖), stability values 𝑆𝑡(𝑝𝑖), conflict

values 𝐹𝑡(𝑝𝑖).
Output:

Ordered remediation list 𝒫𝑡
↑.

1. For each 𝑝𝑖 ∈ 𝒫, compute 𝑅𝑡(𝑝𝑖)using Equation (33).

2. Compute urgency score 𝑈𝑡(𝑝𝑖)using Equation (34).

3. Apply layer adjustment using Equation (35).

4. Sort all 𝑝𝑖in descending order of 𝑈𝑡(𝑝𝑖).

5. Output the ordered list 𝒫𝑡
↑.

This algorithm is deterministic, interpretable, and compatible with automated remediation
pipelines.

7.6. Decision-Dependent Remediation Policies

The aggressiveness of remediation actions depends on the decision outcome 𝑑𝑡.

For Critical states, immediate remediation is recommended for the top-ranked requirements. For
Drift states, remediation may be scheduled or combined with enhanced monitoring. For Warning

states, corrective actions may be deferred pending trend confirmation.

This decision-dependent strategy prevents overreaction to transient deviations while ensuring
timely response to severe violations.

7.7. Discussion and Practical Implications

The proposed remediation prioritization algorithm transforms audit results into an actionable

security management instrument. By integrating risk, stability, conflict, and architectural context,
it supports informed decision-making under resource constraints.

Importantly, the algorithm avoids black-box optimization or learning-based heuristics, preserving

transparency and auditability—properties essential in regulated environments.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

34

8. CASE STUDY AND SCENARIO-BASED EVALUATION

This section evaluates the proposed decision-oriented auditing and remediation framework

through controlled scenarios representative of modern web and server systems. The objective is

to demonstrate how the proposed metrics, decision rules, and prioritization algorithm jointly

enable accurate interpretation of audit results and effective remediation planning under both static
and dynamic conditions.

8.1. Experimental Setup

The evaluation environment models a multi-layer software system comprising application,

transport, storage, and key management components. Each layer enforces a subset of encryption
and key management policy requirements defined over protocol versions, cryptographic

parameters, and key lifecycle properties.

Audit snapshots are collected at discrete time points, producing metric vectors M𝑡as defined in

Equation (5.1-1). Satisfaction values 𝜎(𝑝𝑖), stability metrics 𝑆𝑡(𝑝𝑖), and conflict indicators

𝐹𝑡(𝑝𝑖)are computed using the methods introduced in Sections 6 and 5, respectively. Threshold

values are fixed across scenarios to ensure comparability.

8.2. Scenario Definitions

Three evaluation scenarios are considered, each designed to highlight a distinct operational

condition commonly encountered in practice.

Scenario A: Stable and Compliant Configuration

In this scenario, all policy requirements are satisfied or exceeded, and no significant

configuration changes occur over time. Observed satisfaction values remain close to unity, and
temporal stability is high across all requirements.

Formally, for all 𝑡and 𝑝𝑖,

𝜎(𝑝𝑖) ≈ 1, 𝑆𝑡(𝑝𝑖) ≥ 𝜃𝑆, (36)

resulting in a global decision outcome of Acceptable. The remediation prioritization algorithm
produces an empty or low-priority remediation list, confirming that no corrective action is

required.

Scenario B: Gradual Configuration Drift

This scenario models unintentional degradation, such as delayed key rotation or incremental

weakening of cryptographic parameters. Satisfaction values decrease gradually while remaining

above compliance thresholds, and stability metrics consistently fall below 𝜃𝑆.

For a subset of requirements 𝒫𝑑 ⊂ 𝒫,

𝜎(𝑝𝑖) ↘, 𝐶𝑡 ≥ 𝜃𝐶 , 𝑆𝑡 < 𝜃𝑆, 𝑝𝑖 ∈ 𝒫𝑑 . (37)

The decision model correctly classifies this condition as Drift. The remediation prioritization
algorithm ranks drifting requirements according to urgency scores defined in Equation (34),

enabling proactive intervention before critical violations emerge.

Scenario C: Acute Misconfiguration Event
The third scenario introduces a sudden policy violation, such as the use of deprecated protocol

versions or disabled key rotation. Satisfaction values drop sharply, and conflict and risk metrics

exceed their respective thresholds.
Formally,

∃ 𝑝𝑗 ∈ 𝒫  s.t.  𝜎(𝑝𝑗) ≪ 1  ∨  𝑅𝑡(𝑝𝑗) > 𝜃𝑅 . (38)

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

35

The decision model assigns a Critical state, and the remediation algorithm prioritizes the
offending requirement at the top of the remediation list. This outcome demonstrates the

framework’s ability to distinguish acute violations from gradual degradation.

8.3. Decision Outcomes, Remediation Prioritization, and Interpretation

Across all evaluated scenarios, including the illustrative case study, the decision-oriented audit
model produced outcomes consistent with expected operational behavior. Stable configurations

were classified as Acceptable, early instability as Warning, and acute policy violations as Critical.

Decision transitions occurred only under sustained threshold violations, confirming the suitability

of the proposed model for continuous auditing rather than point-in-time assessment.

The illustrative case study further demonstrates how decision outcomes emerge from the joint

interpretation of consistency, stability, and risk metrics. In particular, the key rotation requirement
at the key management layer was classified as Drift due to reduced temporal stability across audit

snapshots, despite remaining within nominal consistency bounds. This highlights the ability of

the decision model to distinguish gradual policy erosion from acute misconfiguration—a
distinction not observable through static compliance checks.

Remediation prioritization results align with these decision outcomes. The proposed prioritization

algorithm ranked policy requirements according to risk contribution, temporal instability, and
architectural impact. Requirements associated with key management and other lower

architectural layers consistently received higher priority due to their systemic influence on overall

security posture. In contrast, requirements classified as Acceptable were deprioritized, while Drift
conditions were elevated for proactive remediation before escalation into critical violations.

Compared to metric-only auditing approaches, the proposed framework provides clearer and
more actionable outcomes. By explicitly mapping audit metrics to discrete decision states and

prioritized remediation actions, the framework reduces interpretive ambiguity and improves the

operational usefulness of audit results. Metric values that appear acceptable in isolation can thus

be contextualized within temporal behavior and architectural impact, enabling more consistent
and informed decision-making by auditors and security operations teams.

The evaluation focuses on controlled scenarios, including the compact illustrative case study, to
isolate decision behavior and avoid confounding factors. While real-world systems may exhibit

greater scale and complexity, the scenarios capture representative patterns of stability,

configuration drift, and misconfiguration commonly observed in operational environments.

Threats to validity include simplified system modeling and fixed decision thresholds; however,
these limitations do not affect the qualitative conclusions regarding decision interpretability,

temporal sensitivity, and remediation effectiveness.

9. DISCUSSION

This section discusses the implications, strengths, and limitations of the proposed decision-

oriented auditing framework, and analyzes potential threats to validity. The discussion

emphasizes how the framework advances current practice beyond metric-only auditing while
maintaining transparency and auditability.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

36

9.1. Practical Implications for Auditors and Security Operations

The proposed framework transforms encryption and key management audits from passive

compliance assessments into actionable decision-support processes. By explicitly mapping audit
metrics to discrete decision states and prioritized remediation actions, the framework reduces

interpretive ambiguity and shortens response times in operational environments.

For auditors, the decision space introduced in Section 5 provides a clear semantic interpretation

of audit outcomes, enabling consistent reporting and governance alignment. For security

operations teams, the remediation prioritization algorithm in Section 7 offers a structured

mechanism to allocate limited resources based on quantified risk, temporal instability, and
architectural impact.

Importantly, the framework supports continuous auditing without requiring intrusive access to

cryptographic secrets, making it suitable for regulated and production environments.

9.2. Advantages over Metric-Only and Compliance-Driven Approaches

Unlike traditional audits that report isolated metric values or binary compliance flags, the

proposed approach integrates metrics into a coherent decision model. This integration enables
differentiation between transient deviations, gradual drift, and acute misconfigurations—

distinctions that are critical for effective remediation planning but are typically absent in

checklist-based audits.

Furthermore, the explicit separation between metric computation and decision interpretation

allows organizations to adjust decision sensitivity through threshold calibration without

redefining metrics. This flexibility supports adaptation to evolving security standards and risk
appetites.

9.3. Interpretability and Transparency

A key design goal of the framework is interpretability. All decision outcomes and remediation

priorities are derived from deterministic rules and clearly defined thresholds. Unlike machine
learning–based approaches, the framework avoids opaque decision logic, ensuring that audit

results remain explainable to auditors, system owners, and regulatory bodies.

This transparency is particularly important in environments where audit findings must be
justified, documented, and reproduced across independent assessments.

This work has limitations related to threshold calibration and the use of scenario-based
evaluation. While the framework is designed to be system-agnostic, practical deployment

requires system-specific normalization mechanisms. Large-scale empirical validation is left for

future work.

9.4. Positioning within the Broader Research Landscape

Within the broader landscape of encryption and key management auditing research, this work

occupies a middle ground between purely theoretical metric frameworks and purely engineering-

focused audit tools. By combining formal metrics, decision semantics, and remediation logic, the
framework addresses a critical gap between analysis and action.

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

37

The discussion highlights that the primary contribution of this work is not the introduction of new
cryptographic metrics, but rather the systematic interpretation and operationalization of existing

metrics within a decision-oriented audit process.

10. CONCLUSION AND FUTURE WORK

This paper presented a decision-oriented framework for auditing encryption and key management

policies in dynamic web and server systems, addressing the gap between quantitative audit

metrics and actionable security decisions. Unlike traditional approaches focused on static
compliance checking or isolated metric reporting, the proposed framework systematically

transforms audit results into interpretable decision states and prioritized remediation actions.

The core contribution of this work lies in the integration of system-level metrics, decision
semantics, and remediation logic within a unified audit process. Consistency, conflict, stability,

and risk metrics are jointly interpreted through a threshold-based decision model, enabling

explicit differentiation between acceptable configurations, early warning conditions,
configuration drift, and critical misconfigurations. This decision model is grounded in a formally

defined satisfaction function that supports partial compliance, heterogeneous enforcement

evidence, and non-intrusive evaluation without accessing cryptographic key material.

A key strength of the proposed approach is its interpretability and transparency. All audit

outcomes and remediation priorities are derived from deterministic rules and configurable

thresholds, avoiding opaque or data-driven black-box mechanisms. This property makes the
framework suitable for regulated and production environments, where audit results must be

explainable, reproducible, and aligned with organizational security policies.

Scenario-based evaluation demonstrated that the framework effectively distinguishes between

transient deviations, gradual enforcement drift, and acute policy violations, while providing clear

remediation guidance based on quantified risk and temporal behavior. Compared to metric-only
auditing, the decision-oriented approach reduces ambiguity and improves the operational

usefulness of audit results.

Future work will focus on large-scale empirical validation across heterogeneous production
environments, adaptive calibration of decision thresholds, and integration with automated

remediation and orchestration platforms. These extensions aim to further enhance the practical

applicability and operational impact of decision-oriented auditing for encryption and key
management policies.

REFERENCES

[1] Barker, E. (2019). Transitioning the use of cryptographic algorithms and key lengths (NIST SP 800-

131A Rev. 2). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-

131Ar2

[2] Barker, E. (2020). Recommendation for key management – Part 1: General (NIST SP 800-57 Rev. 5).

National Institute of Standards and Technology.https://doi.org/10.6028/NIST.SP.800-57pt1r5

[3] Ross, R., Pillitteri, V., Dempsey, K., Riddle, M., & Guissanie, G. (2020). Security and privacy

controls for information systems and organizations (NIST SP 800-53 Rev. 5). NIST.

https://doi.org/10.6028/NIST.SP.800-53r5

[4] McKay, K. A., Cooper, M. S., Gallagher, J. F., & Padilla, S. W. (2019). Guidelines for the selection,
configuration, and use of TLS implementations (NIST SP 800-52 Rev. 2).

NIST.https://doi.org/10.6028/NIST.SP.800-52r2

[5] ISO/IEC. (2022). ISO/IEC 27002: Information security, cybersecurity and privacy protection —

Information security controls. ISO.https://www.iso.org/standard/75652.html

https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-52r2
https://www.iso.org/standard/75652.html

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

38

[6] ISO/IEC. (2022). ISO/IEC 27001: Information security management systems — Requirements.

ISO.https://www.iso.org/standard/82875.html

[7] European Union Agency for Cybersecurity. (2022). Algorithms, key sizes and parameters. ENISA.

[8] Rescorla, E. (2018). The Transport Layer Security (TLS) protocol version 1.3 (RFC 8446).

IETF.https://doi.org/10.17487/RFC8446
[9] Sheffer, Y., Holz, R., & Saint-Andre, P. (2022). Recommendations for secure use of TLS and DTLS

(RFC 9325). IETF. https://doi.org/10.17487/RFC9325

[10] Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied cryptography.

CRC Press.https://cacr.uwaterloo.ca/hac/

[11] Stallings, W. (2020). Cryptography and network security: Principles and practice (8th ed.).

Pearson.https://www.pearson.com/en-us/subject-catalog/p/cryptography-and-network-

security/P200000003295

[12] Holz, R., Braun, L., Kammenhuber, N., & Carle, G. (2011). The SSL landscape: A thorough analysis

of the X.509 PKI. Proceedings of the ACM Conference on Computer and Communications Security,

1–14.https://doi.org/10.1145/2046707.2046744

[13] Durumeric, Z., Kasten, J., Bailey, M., & Halderman, J. A. (2017). The security impact of HTTPS

interception. Network and Distributed System Security Symposium (NDSS).https://www.ndss-
symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/

[14] Acar, Y., Backes, M., Fahl, S., et al. (2016). Developers’ use of cryptography in practice. ACM

Conference on Usable Security and Privacy (SOUPS), 1–15.

[15] Krüger, S., Späth, J., Acar, Y., et al. (2017). CogniCrypt: Supporting developers in using

cryptography. IEEE Symposium on Security and Privacy, 1–16.

[16] Jaquith, A. (2007). Security metrics: Replacing fear, uncertainty, and doubt. Addison-Wesley.

[17] Pendleton, M., Garcia-Luna-Aceves, J. J., et al. (2016). A survey on systems security metrics. ACM

Computing Surveys, 49(4), 1–35.https://doi.org/10.1145/3005714

[18] Tøndel, I. A., Line, M. B., & Jaatun, M. G. (2014). Information security risk assessment: A

systematic review. Information and Software Technology, 56(8), 937–951.

[19] Sommestad, T., Karlzén, H., & Hallberg, J. (2013). The theory and practice of security risk
assessment. Computers & Security, 32, 1–13.

[20] Pasquale, L., & Spoletini, P. (2012). Process-based compliance for security policies. Requirements

Engineering, 17(2), 87–102.

[21] Sgandurra, D., & Lupu, E. (2024). Evolution of automated security assessment and compliance

techniques. ACM Computing Surveys, 56(2), 1–36.

[22] OASIS. (2022). Key Management Interoperability Protocol (KMIP) Specification

v2.0.https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html

[23] Amazon Web Services. (2023). AWS Key Management Service Developer

Guide.https://docs.aws.amazon.com/kms/

[24] Microsoft. (2023). Azure Key Vault security overview.https://learn.microsoft.com/en-us/azure/key-

vault/general/secure-key-vault

AUTHORS

Baratov Jasur was born on April 18, 1991, in the Republic of Uzbekistan. He

holds the academic title of Associate Professor and is currently affiliated with the
Department of Computer Science and Programming at the Jizzakh Branch of the

National University of Uzbekistan. His research interests focus on information

security, cryptographic policy auditing, encryption and key management systems,

security metrics, and decision-oriented security analysis for web and server-based

software systems. He is actively involved in both academic research and higher

education, with particular emphasis on system-level security modeling and practical

security governance.

Ulashev Asror was born on September 7, 1988, in the Republic of Uzbekistan. He
holds the academic title of Associate Professor and is currently affiliated with the

Department of Computer Science and Programming at the Jizzakh Branch of the

National University of Uzbekistan. His research interests include electronic

education (e-learning), digital learning platforms, educational information systems,

https://www.iso.org/standard/82875.html
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9325
https://cacr.uwaterloo.ca/hac/
https://www.pearson.com/en-us/subject-catalog/p/cryptography-and-network-security/P200000003295
https://www.pearson.com/en-us/subject-catalog/p/cryptography-and-network-security/P200000003295
https://doi.org/10.1145/2046707.2046744
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://doi.org/10.1145/3005714
https://docs.oasis-open.org/kmip/kmip-spec/v2.0/kmip-spec-v2.0.html
https://docs.aws.amazon.com/kms/
https://learn.microsoft.com/en-us/azure/key-vault/general/secure-key-vault
https://learn.microsoft.com/en-us/azure/key-vault/general/secure-key-vault

Advanced Computing: An International Journal (ACIJ), Vol.17, No.1, January 2026

39

and the application of information technologies in higher education.

Aynakulov Toxir was born on November 9, 1995, in the Republic of Uzbekistan.

He is currently working as an Assistant at the Department of Computer Science

and Programming, Jizzakh Branch of the National University of Uzbekistan. His
research interests include software development, programming technologies, and

the practical application of programming methods in educational and applied

software systems.

