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ABSTRACT

Auditing encryption and key management policies in modern web and server systems is complicated by
architectural complexity and continuous configuration change. Existing approaches largely rely on static
compliance checks or isolated metrics, providing limited support for actionable decision-making. This
paper proposes a decision-oriented framework that bridges metric-based auditing and practical security
governance. The framework relies on system-level abstractions of policy requirements and enforcement
evidence, and maps consistency, conflict, stability, and risk metrics to discrete decision outcomes. A
bounded and non-intrusive satisfaction function supports partial compliance, heterogeneous evidence, and
conservative handling of missing data without accessing cryptographic key material. In addition, a risk-
aware remediation prioritization algorithm ranks policy requirements by urgency and architectural impact.
Scenario-based evaluation demonstrates improved interpretability of audit results and supports proactive,
risk-aware remediation planning.
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1. INTRODUCTION

The widespread adoption of encryption and centralized key management mechanisms has
become a fundamental requirement for securing modern web and server systems. Contemporary
software architectures rely on transport-layer encryption, encrypted storage, and dedicated key
management services to protect sensitive data and meet regulatory and organizational security
requirements. Consequently, policies governing cryptographic algorithms, protocol versions, key
lengths, and key lifecycles have grown increasingly complex and system-specific [1, 2, 5].

Although comprehensive standards and guidelines are provided by organizations such as NIST,
ISO/IEC, and ENISA, practical enforcement of encryption and key management policies remains
error-prone [1-7]. Empirical studies consistently report widespread misconfigurations, use of
deprecated cryptographic parameters, and inconsistent policy enforcement across real-world
systems, including environments that nominally satisfy compliance requirements [12, 13]. These
problems are intensified by continuous system evolution, frequent configuration changes, and the
layered structure of modern software architectures.

Most existing approaches to encryption policy auditing rely on static compliance checks or
checklist-based validation against predefined requirements [3-5]. While effective at detecting
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isolated violations at a specific point in time, such methods provide limited insight into internal
policy coherence, cross-layer enforcement mismatch, or temporal behavior under configuration
drift. As a result, systems may appear compliant while exhibiting structurally inconsistent or
unstable enforcement patterns that remain undetected by traditional audits.

To overcome the limitations of binary compliance assessment, recent research has emphasized
guantitative security metrics and automated auditing techniques [16—19]. However, metric-based
approaches often lack clear semantic interpretation: numerical values are reported without
explicit mapping to operational decisions or remediation priorities. In addition, temporal aspects
such as configuration drift, delayed key rotation, or gradual weakening of cryptographic settings
are rarely modeled explicitly, leading either to overreaction to transient deviations or failure to
detect systematic policy erosion [18, 21].

This paper addresses these challenges by proposing a decision-oriented framework for auditing
encryption and key management policies in dynamic software systems. The proposed approach
integrates system-level audit metrics with a formal decision model that maps quantitative
observations to discrete, interpretable audit outcomes. Consistency, conflict, stability, and risk
metrics are jointly analyzed to distinguish acceptable configurations, early warning conditions,
configuration drift, and critical misconfigurations. A formally defined satisfaction function
enables partial compliance assessment without accessing cryptographic key material, while a
risk-aware remediation prioritization algorithm translates audit decisions into actionable
guidance.

The main contributions of this work are summarized as follows:

1. asystem-level abstraction of encryption and key management policies and their enforcement
evidence suitable for continuous auditing [1, 2, 7];

2. a decision-oriented interpretation model that transforms audit metrics into discrete
operational states, enabling clear and reproducible audit outcomes [16, 19];

3. aformal satisfaction function design supporting heterogeneous evidence, partial compliance,
and conservative handling of missing data [18, 21];

4. arisk-aware remediation prioritization algorithm that ranks policy violations according to
urgency, temporal instability, and architectural impact [12, 17];

5. ascenario-based evaluation demonstrating the advantages of decision-oriented auditing over
metric-only interpretation.

The remainder of this paper is organized as follows. Section 2 reviews related work on
encryption policy enforcement, security metrics, and automated auditing. Section 3 introduces the
system model and formal abstractions. Section 4 defines system-level audit metrics, while
Section 5 presents the decision-oriented audit model. Section 6 formalizes the satisfaction
function design, and Section 7 introduces the remediation prioritization algorithm. Section 8
evaluates the proposed framework through representative scenarios, followed by discussion and
conclusions in Sections 9 and 10.

2. RELATED WORKS

Research on encryption and key management policy auditing spans several complementary
domains, including cryptographic standards, empirical studies of misconfiguration, security
metrics, and automated compliance frameworks. This section reviews representative work in
these areas and highlights the limitations that motivate the proposed decision-oriented approach.
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2.1. Cryptographic Standards and Policy Guidance

International standards and recommendations issued by organizations such as NIST, ISO/IEC,
ENISA, and IETF define accepted cryptographic algorithms, protocol versions, key lengths, and
key lifecycle practices [1-7]. These documents establish authoritative policy baselines and play a
critical role in regulatory compliance and organizational security governance.

However, standards primarily specify what should be enforced rather than how enforcement
should be audited in complex, evolving systems. They provide limited guidance on quantifying
partial compliance, analyzing internal policy coherence, or interpreting temporal changes in
enforcement. Consequently, audits based solely on standards often reduce policy assessment to
binary compliance outcomes.

2.2. Empirical Studies of Cryptographic Misconfiguration

Extensive empirical research demonstrates that cryptographic misconfiguration remains
widespread in real-world systems. Large-scale measurement studies of TLS deployments and PKI
infrastructures report persistent use of deprecated protocols, weak configurations, and
inconsistent certificate management practices [12, 13]. Developer-focused studies further reveal
frequent misuse of cryptographic APIs due to complexity and insufficient tooling support [14,
15].

While these studies provide strong evidence of the prevalence and impact of cryptographic policy
violations, they are largely descriptive. They identify misconfigurations but do not propose
systematic frameworks for continuous auditing, metric aggregation, or decision-oriented
interpretation across heterogeneous system components.

2.3. Security Metrics and Risk Assessment

Security metrics have been widely proposed as a means of moving beyond qualitative or
checklist-based security assessments [16—-19]. Surveys and systematic reviews catalog numerous
metrics for evaluating system security and risk exposure.

Despite their analytical value, most metrics are reported in isolation and lack explicit semantic
interpretation. Numerical values are rarely mapped to operational decisions or remediation
priorities, and temporal aspects such as configuration drift and gradual degradation are often
treated implicitly. This limits the practical usefulness of metric-based approaches in continuous
auditing scenarios.

2.4. Policy Compliance and Automated Auditing Frameworks

Research on automated compliance checking explores formal representations of security policies
and their enforcement [20]. Process-based and model-driven approaches improve automation by
verifying rule satisfaction against observed system behavior.

However, these approaches typically focus on point-in-time compliance and do not address
partial satisfaction, cross-layer enforcement conflicts, or remediation prioritization under resource
constraints. As a result, automated audits may produce extensive violation reports without clear
guidance on urgency or operational impact.
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2.5. Key Management Systems and Cloud Environments

The adoption of centralized key management services in cloud platforms introduces additional
complexity into encryption policy enforcement. Vendor documentation describes configuration
options and operational practices for cloud-based KMS solutions [22—-24], but these sources are
platform-specific and do not provide system-agnostic auditing models.

Moreover, cloud environments amplify temporal dynamics through frequent automated updates,
making it difficult for existing auditing approaches to distinguish controlled policy evolution
from unintended configuration drift.

2.6. Research Gap and Positioning of This Work

The reviewed literature reveals a gap between quantitative measurement and actionable
interpretation in encryption and key management policy auditing. Standards define requirements
without audit semantics; empirical studies expose problems without decision frameworks;
metrics quantify properties without operational meaning; and automated audits detect violations
without prioritization.

This work addresses this gap by introducing a decision-oriented auditing framework that
integrates system-level metrics, formal satisfaction semantics, temporal analysis, and risk-aware
remediation prioritization. By explicitly mapping audit metrics to discrete decision states and
actionable guidance, the proposed approach supports consistent and interpretable security
governance in dynamic software systems.
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Fig. 1. Decision-oriented encryption and key management policy auditing framework

Fig. 1 Overview of the proposed decision-oriented framework for auditing encryption and key
management policies. Policy requirements and heterogeneous enforcement evidence are
normalized and evaluated using satisfaction functions, aggregated into system-level metrics,
interpreted through a decision model, and translated into prioritized remediation actions.

3. SYSTEM MODEL AND PoLICY ABSTRACTION

This section introduces the formal system model and abstraction layers used throughout the
paper. The objective is to establish a precise representation of encryption and key management
policies, their enforcement artifacts, and the temporal audit context, while remaining independent
of specific platforms or implementations.

3.1. System Architecture Model
We consider a software system as a composition of interacting architectural layers that

collectively enforce encryption and key management policies. Let
= {El' Ez, ,Km} (1)
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denote the finite set of architectural layers, such as application, transport, storage, and key
management layers.

Each layer £ € Z&xposes a set of configuration interfaces and runtime artifacts through which
cryptographic enforcement is realized. This layered abstraction reflects modern system
architectures and aligns with common security standards and deployment practices [1, 3, 5].

3.2. Policy Requirement Model

Encryption and key management policies are formalized as a set of atomic policy requirements.
Let

P= {pll D2, ---rpn} (2)
denote the set of policy requirements applicable to the system.
Each policy requirement p; € Pis represented as a tuple

pi = (C(p), T(pi), k(Pi), wi), 3)
where £(p;) € #enotes the architectural layer to which the requirement applies, t(p;)specifies
the requirement type (e.g., algorithm selection, key length, protocol version, key rotation
interval), (p;)defines the formal constraint associated with the requirement, and
w; € (0,1]denotes its relative importance.
This abstraction enables policy requirements derived from standards such as NIST and ISO/IEC
to be represented uniformly, regardless of their source or scope [1, 2, 5, 7].

3.3. Enforcement Artifact Model

Policy enforcement is observed through concrete system artifacts, including configuration files,
runtime metadata, management APls, and audit logs. Let

& ={eq, ey .., e} 4)
denote the set of enforcement artifacts collected during an audit.
Each artifact e; € &is associated with one or more policy requirements and is abstracted as a
normalized attribute vector

€j = (Uj,l' Uj,Z' ey Uj,m]')' (5)
Normalization ensures that heterogeneous evidence sources—such as TLS configuration
parameters, key metadata from key management systems, or protocol negotiation results—can be
compared against policy constraints in a uniform manner [4, 22-24].

3.4. Policy—-Enforcement Mapping

The relationship between policy requirements and enforcement artifacts is modeled as a mapping

MCP X E (6)
where (p;, ej) € #indicates that artifact e;provides enforcement evidence for requirement p;.
This mapping is many-to-many: a single policy requirement may be enforced by multiple
artifacts across different layers, and a single artifact may contribute evidence for multiple
requirements. Such multiplicity is characteristic of real-world systems and is a common source of
policy—enforcement inconsistency [12, 18].

3.5. Temporal Audit Model

To capture system dynamics, audits are performed at discrete time points. Let

T ={ty,ty, ... } @)
denote the ordered set of audit times.
At each time t € T, a snapshot of enforcement artifacts &; < &is collected, producing a time-
indexed policy—enforcement mapping -#;. This temporal model enables analysis of configuration
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drift, delayed key rotation, and gradual policy erosion, which are typically invisible to point-in-
time audits [18, 21].

3.6. Scope and Assumptions

The proposed system model makes several deliberate assumptions. First, audit access is limited to
configuration data and metadata; cryptographic key material is never accessed or inspected
directly, in line with best practices and regulatory constraints [2, 7]. Second, policy requirements
are assumed to be explicitly defined and externally available, for example through organizational
security policies or regulatory baselines. Third, the model assumes that enforcement artifacts can
be normalized into comparable representations, although the specific extraction mechanisms are
system-dependent.

These assumptions ensure that the model remains broadly applicable while preserving audit
safety and deployability.

3.7. Role of the Model in the Overall Framework

The abstractions introduced in this section form the foundation for all subsequent analysis. Policy
requirements, enforcement artifacts, and their temporal relationships are used in Section 4 to
define system-level audit metrics. These metrics are then interpreted through the decision model
in Section 5, grounded by satisfaction functions in Section 6, and ultimately translated into
prioritized remediation actions in Section 7.

4. SYSTEM-LEVEL AUDIT METRICS

This section defines the quantitative metrics used to evaluate encryption and key management
policy enforcement at the system level. Building on the policy, enforcement, and temporal
abstractions introduced in Section 3, the metrics capture structural alignment, mismatch, temporal
behavior, and risk exposure in a unified and bounded form suitable for decision-oriented auditing.

4.1. Local Satisfaction and Requirement Aggregation

Let p; € Pdenote a policy requirement and é&;(p;) S & the set of enforcement artifacts
associated with p;at time ¢. Using the satisfaction function o(p;,e;) € [0,1](formalized later in
Section 6), the local satisfaction of requirement p;at time tis defined as

1
or(py) = mzejegt(pi)ff(m,ej), o:(p;) € [0,1] (8)
where w;denotes the relative importance of requirement p;.

This aggregation preserves requirement-level weighting while preventing artifact multiplicity

from disproportionately influencing satisfaction.
4.2. Global Consistency Metric

The global consistency metric quantifies the degree of structural alignment between policy
requirements and observed enforcement across the entire system. At time t, consistency is

defined as the normalized weighted average of local satisfactions:
_ ZpepWirar(py)
C = S ,C, €10,1]. 9)
Higher values indicate stronger policy—enforcement alignment, with explicit support for partial

compliance.

26



Advanced Computing: An International Journal (AC1J), Vol.17, No.1, January 2026

4.3. Conflict Metric
While consistency captures alignment, it does not explicitly quantify the extent of mismatch. To
address this, the conflict metric is defined as the complement of consistency:

F,=1-C,F, €[0,1]. (10)
This formulation provides a direct measure of aggregated policy—enforcement conflict, enabling
auditors to reason about the severity of mismatches without collapsing results into binary
outcomes.

4.4. Temporal Stability Metric

Modern systems evolve continuously, making temporal analysis essential. The stability metric
captures changes in enforcement between consecutive audit snapshots.

Let o:(p;)and o;_;(p;)denote the local satisfaction of requirement p;at times tand t — 1,
respectively. Temporal stability is defined as

Y. | V=01 ()]
St =1— PLETWLZUI;t.(EilLiUt 1(P1) ,St € [0'1] (11)

Lower values indicate temporal instability, including configuration drift.

4.5. Risk Metric

To support decision-making and remediation prioritization, audit metrics must be interpretable in
terms of risk. The system-level risk metric aggregates requirement-level exposure as a function of
satisfaction and importance:

R, = Ypep wir(1-0¢(pi)

oo Re€l01] (12)

This formulation reflects the intuition that highly important requirements with low satisfaction
contribute disproportionately to overall risk [16, 19].

4.6. Layer-Aware Metric Decomposition

Given the layered system model introduced in Section 3.1, metrics can be decomposed by
architectural layer. Let P, € Pdenote the set of requirements associated with layer £ € &Z. Layer-
specific consistency is defined as
LpepWi-ot(Di)
Zpie?ﬁwi (13)
Layer-aware metrics enable localized diagnosis and support targeted remediation strategies,
particularly in systems where enforcement responsibilities are distributed across teams or services
[12, 22-24].

¢V =

4.7. Metric Properties and Interpretability

All proposed metrics are bounded within the unit interval, ensuring comparability and numerical
stability. Consistency and risk metrics are monotonic with respect to satisfaction, while stability
explicitly captures temporal variation. Importantly, metric definitions are independent of specific
cryptographic algorithms or platforms, relying solely on abstracted policy and enforcement
representations.

These properties make the metrics suitable inputs for the decision model introduced in Section 5,
where they are mapped to discrete audit outcomes and remediation strategies.
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Table 1. Summary of system-level audit metrics, their interpretation, and usage within the proposed

framework.
Metric Range Interpretation Used in
Sections
Consistency (C) [0,1] Degree of alignment between policy requirements and 4,5
observed enforcement
Conflict (F) [0,1] Aggregated policy—enforcement mismatch 4,5
Stability (S) [0,1] Temporal consistency between consecutive audit 4,5,8
snapshots
Risk (R) [0,1] Weighted exposure based on requirement importance 4,7
and satisfaction

All metrics are normalized to [0-1]. C: consistency; F: conflict; S: temporal stability; R: risk.
“Used in Sections” indicates the primary sections where each metric is formally defined or
operationally applied.

5. DECISION-ORIENTED AUDITING MODEL

5.1. Decision Space and Audit Outcome States

Existing encryption and key management policy auditing approaches typically report numerical
metrics without explicitly defining how such values should be interpreted in operational terms.
Consequently, audit results often lack clear guidance on whether a system state is acceptable,
requires attention, or demands immediate remediation. To address this limitation, this section
introduces a decision-oriented audit model that formally maps system-level audit metrics to a
finite and interpretable decision space.

Let an audit snapshot observed at time tbe represented by the metric tuple

M; = (Ct, Ft, St Re), (14)
where C; € [0,1]denotes global policy consistency, F; € [0,1]denotes aggregated policy—
enforcement conflict, S, € [0,1]denotes temporal stability between consecutive audit snapshots,
and R, € [0,1]denotes the normalized audit risk.

Decision Space Definition

The decision space is defined as a finite set of mutually exclusive audit outcome states:

D = {Acceptable, Warning, Critical, Drift}. (15)
Each element of Drepresents a qualitatively distinct operational condition of the audited system.
In particular, this classification explicitly distinguishes between static policy violations and
temporally evolving misconfigurations, a distinction not captured by metric-only auditing
approaches.

Metric-to-Decision Mapping Function

Let 6., 0F, 05,05 € (0,1)denote configurable decision thresholds. The mapping from audit
metrics to decision outcomes is formalized by the decision function

S(M):M; = D. (16)
An audit snapshot is classified as Acceptable if the following condition holds:

A Warning state is assigned when the system remains largely compliant but exhibits early signs of
instability:
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Ce=0cNR, <6g ANS; <6s. (18)
A snapshot is classified as Critical whenever a significant policy—enforcement mismatch or
elevated risk is detected:
C, <O0c VR, >0,V F>0g. (19)
Finally, a Drift condition is identified when the inequality in Equation (18) persists across
multiple consecutive audit snapshots, indicating sustained configuration evolution rather than
transient deviation:
3k >2stS5_;<6si=0,..,k—1. (20)

Interpretation and Operational Significance

The proposed decision-oriented formulation transforms abstract audit metrics into discrete,
interpretable system states that directly support operational decision-making. By explicitly
separating warning conditions from long-term drift, the model reduces false positives and enables
more precise remediation planning.

Moreover, the bounded nature of all metrics and thresholds ensures reproducibility across audit
environments while remaining independent of system-specific implementation details.

5.2. Threshold-Based Classification and Decision Rules

While the audit metrics introduced in Section 4 provide quantitative insight into policy—
enforcement alignment, operational security auditing requires interpretable and actionable
outcomes. To this end, the proposed framework employs a threshold-based decision interpretation
that maps continuous metric values to a finite set of operational audit states.
An audit snapshot observed at time t is represented by the metric vector

M, = (C¢, Fy, St Ry ), (21)
where consistency, conflict, stability, and risk capture complementary aspects of policy
enforcement. Rather than interpreting these values in isolation, they are jointly evaluated against
configurable decision thresholds reflecting organizational risk tolerance and regulatory
requirements.

Based on this interpretation, the audit outcome space is defined as a finite set of decision states:
Acceptable, Warning, Critical, and Drift. An Acceptable state corresponds to high policy
consistency, low risk, and stable enforcement over time. A Warning state indicates early signs of
degradation, typically manifested as reduced temporal stability while overall compliance and risk
remain within acceptable bounds. A Critical state is triggered whenever significant policy—
enforcement mismatch or elevated risk is detected, requiring immediate remediation.

Temporal behavior plays a central role in distinguishing transient deviations from sustained
degradation. Short-term instability may arise from benign configuration updates or maintenance
activities and should not automatically trigger aggressive remediation. In contrast, persistent
instability observed across consecutive audit snapshots is interpreted as configuration drift,
signaling gradual and potentially unintentional erosion of policy enforcement. By incorporating
temporal persistence into decision interpretation, the framework avoids overreacting to isolated
fluctuations while ensuring that long-term degradation is detected in a timely manner.

Importantly, this decision-oriented interpretation explicitly separates metric computation from
decision semantics. Metrics remain continuous and system-agnostic, while decision thresholds
can be adjusted to reflect evolving organizational policies or external standards. This separation
ensures reproducibility of audit results and enables consistent operational decision-making across
heterogeneous systems.
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Overall, the proposed threshold-based decision interpretation transforms raw audit metrics into
discrete, semantically meaningful system states. This approach enables auditors and security
operations teams to clearly distinguish acceptable configurations, early warning conditions,
sustained configuration drift, and critical misconfigurations, thereby supporting timely and
proportionate remediation actions.

6. SATISFACTION FUNCTION DESIGN FOR POLICY-ENFORCEMENT
EVALUATION

Audit metrics and decision rules defined in previous sections rely on the accurate quantification
of the degree to which observed enforcement artifacts satisfy formal policy requirements. This
quantification is captured by the satisfaction function, which transforms heterogeneous and
partially observable enforcement evidence into bounded numerical values suitable for
aggregation and decision-making. This section formalizes the design principles, mathematical
properties, and operator-level constructions of the satisfaction function o(p, ).

6.1. Role and Requirements of the Satisfaction Function

Let p € Pdenote a policy requirement and e € &denote an associated enforcement artifact. The
satisfaction function

o:P x&- [01] (22)
quantifies the extent to which esatisfies p.
For use in system-level auditing and decision-oriented analysis, a(p, e)must satisfy the following
requirements:
First, boundedness: all outputs must lie within the closed interval [0 1], enabling aggregation
across heterogeneous requirements.
Second, semantic monotonicity: stronger enforcement must not yield lower satisfaction values.
Third, partial satisfaction support: deviations from policy must be captured gradually rather than
collapsed into binary outcomes.
Fourth, non-intrusiveness: satisfaction must be computable without accessing cryptographic key
material, relying solely on configuration and metadata.
These requirements ensure that o(p,e)serves as a reliable interface between low-level
enforcement observations and high-level audit decisions.

6.2. Formal Satisfaction Semantics

Let a policy requirement pbe represented as a tuple

p = (type, constraint, scope), (23)
where type denotes the requirement category (e.g., key length, protocol version), constraint
defines acceptable values, and scope specifies the architectural layer to which the requirement
applies.
Similarly, let an enforcement artifact ebe represented by the extracted attribute vector

e =(vq1, ..., Un), (24)

obtained through normalization of configuration files, runtime metadata, or management APlIs.
The satisfaction value o(p, e)is computed by comparing eagainst the constraint defined by p,
using operators tailored to the requirement type.

6.3. Operator Classes for Common Encryption Policy Requirements

Encryption and key management policy requirements exhibit heterogeneous structural properties,
including numeric thresholds, ordered discrete values, set-based constraints, and temporal
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conditions. To ensure generality while preserving interpretability, the proposed satisfaction
function employs a small set of operator classes, each tailored to a common category of
cryptographic policy requirements.

For numeric threshold requirements, such as minimum key length or iteration count, satisfaction
is computed as a normalized ratio between the observed value and the required minimum. This
formulation yields full satisfaction when policy requirements are met or exceeded and penalizes
under-enforcement proportionally:

a(p,e) = min (1, Z"bs) (25)

req
where v, denotes the observed value and v, denotes the required minimum.
Ordered discrete requirements arise in domains where configurations can be ranked according to
cryptographic strength, such as protocol versions or algorithm classes. In this case, satisfaction is
defined as the ratio of the observed rank to the required rank, ensuring monotonicity with respect
to cryptographic strength:

o(p,e) = 2as) o 5 < q, (26)

rank(vreq)'
Set-based requirements are used to express constraints over collections of acceptable or required
configurations, for example cipher suite selections. Partial compliance is captured using
normalized set similarity, reflecting the degree of overlap between observed and required

configurations:
|EobsnEr

eql
o(p,e) = ,EobsUEre:,- (27)

Temporal requirements, such as key rotation intervals or certificate validity periods, require
explicit modeling of time-dependent deviation. Satisfaction for temporal constraints is therefore
defined using an exponential decay function that penalizes increasing delay beyond the required
threshold:

o(p,e) = exp(—l - max(0, tys — treq)), (28)
where the parameter Acontrols the severity of temporal penalties.

6.4. Handling Missing and Uncertain Evidence

In practical audit settings, enforcement evidence may be incomplete or partially observable. To
avoid overestimating compliance, missing evidence is treated conservatively.
Let e = @denote missing or inaccessible enforcement data. The satisfaction function is then
defined as

U(P; (Z)) = Omins Omin € (0'1)' (29)
where g,,;,is a configurable lower bound reflecting uncertainty rather than explicit violation.
This approach preserves audit continuity while discouraging unjustified compliance inflation.

6.5. Satisfaction Aggregation and Weighting

For a policy requirement p;associated with multiple enforcement artifacts e; € &(p;), local
satisfaction is defined as
YeiesppWiro(Diej)
o(p) =— wileol
where w;denotes the relative importance of requirement p;.
This aggregation preserves requirement-level weighting while avoiding disproportionate
influence of artifact multiplicity.

(30)
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6.6. Properties of the Satisfaction Function

The proposed satisfaction function design satisfies the following properties:

Boundedness follows directly from operator definitions.

Continuity holds for numeric and temporal operators, ensuring smooth response to gradual
changes.

Monotonicity is preserved with respect to enforcement strength.

Non-intrusiveness is guaranteed by construction, as no cryptographic secrets are accessed.

These properties collectively ensure that satisfaction values are suitable inputs for the decision
model defined in Section 5.

7. RISK-AWARE REMEDIATION PRIORITIZATION ALGORITHM

While the decision-oriented audit model identifies the operational state of a system, effective
security governance requires transforming decisions into prioritized remediation actions. In
complex web and server environments, remediation resources are limited, and not all policy
violations or instabilities can be addressed simultaneously. This section introduces a risk-aware
remediation prioritization algorithm that ranks audit findings based on their impact, urgency, and
architectural relevance.

7.1. From Decision Outcomes to Remediation Objectives

Let an audit snapshot at time tyield a decision outcome

de = (M) €D, (31)
as defined in Section 5. The objective of remediation prioritization is to determine an ordered set
of policy requirements

Pl = (D) P@)s - P (32)
where the ordering reflects decreasing remediation priority.
Remediation is triggered for decision states Warning, Critical, and Drift, while Acceptable states
require no immediate corrective action.

7.2. Requirement-Level Risk Decomposition

Global risk metrics obscure the contribution of individual policy requirements. To enable fine-
grained remediation, global risk is decomposed into requirement-level components.
Let R;(p;) € [0,1]denote the risk contribution associated with policy requirement p;at time t,
computed as

Re(pi) =w; - (1 —a(p)), (33)
where w;denotes the relative importance of requirement p;, and o(p;)is the aggregated
satisfaction defined in Equation (30).
This formulation ensures that highly important requirements with low satisfaction are assigned
higher remediation urgency.

7.3. Incorporating Temporal Instability and Conflict

Risk alone is insufficient to capture remediation urgency in dynamic systems. Temporal
instability and structural conflict must also be considered.
Let S;(p;)denote the local stability of requirement p;, and let F.(p;)denote its conflict
contribution. A composite urgency score is defined as

Ue(Pi) = a - Re(p) + B - (1 =S¢ (p)) +v - Fe(po), (34)
where a, B,y = Oare tunable weighting coefficients satisfying a + § +y = 1.
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This formulation balances immediate risk, temporal degradation, and structural mismatch in a
unified prioritization metric.

7.4. Layer-Aware Prioritization Strategy

Encryption and key management policies span multiple architectural layers, including
application, transport, storage, and key management services. Remediation actions targeting
different layers exhibit varying operational costs and systemic impact.
Let £(p;) € #denote the architectural layer associated with requirement p;. A layer-adjusted
priority score is defined as

Ue(0:) = U (D) * Aoy (35)
where A,is a layer-specific amplification factor reflecting remediation complexity or criticality.
This adjustment enables strategic remediation planning by emphasizing layers with higher
systemic risk exposure.

7.5. Prioritization Algorithm

The remediation prioritization process is formalized by the following algorithmic workflow.
Input:

Audit snapshot M, requirement set P, satisfaction values a(p;), stability values S;(p;), conflict
values F;(p;).

Output:

Ordered remediation list ;.

1. For each p; € P, compute R (p;)using Equation (33).

2. Compute urgency score U, (p;)using Equation (34).

3. Apply layer adjustment using Equation (35).

4. Sort all p;in descending order of U, (p,).

5. Output the ordered list P

This algorithm is deterministic, interpretable, and compatible with automated remediation
pipelines.

7.6. Decision-Dependent Remediation Policies

The aggressiveness of remediation actions depends on the decision outcome d;.

For Critical states, immediate remediation is recommended for the top-ranked requirements. For
Drift states, remediation may be scheduled or combined with enhanced monitoring. For Warning
states, corrective actions may be deferred pending trend confirmation.

This decision-dependent strategy prevents overreaction to transient deviations while ensuring
timely response to severe violations.

7.7. Discussion and Practical Implications
The proposed remediation prioritization algorithm transforms audit results into an actionable
security management instrument. By integrating risk, stability, conflict, and architectural context,

it supports informed decision-making under resource constraints.

Importantly, the algorithm avoids black-box optimization or learning-based heuristics, preserving
transparency and auditability—properties essential in regulated environments.
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8. CASE STUDY AND SCENARIO-BASED EVALUATION

This section evaluates the proposed decision-oriented auditing and remediation framework
through controlled scenarios representative of modern web and server systems. The objective is
to demonstrate how the proposed metrics, decision rules, and prioritization algorithm jointly
enable accurate interpretation of audit results and effective remediation planning under both static
and dynamic conditions.

8.1. Experimental Setup

The evaluation environment models a multi-layer software system comprising application,
transport, storage, and key management components. Each layer enforces a subset of encryption
and key management policy requirements defined over protocol versions, cryptographic
parameters, and key lifecycle properties.

Audit snapshots are collected at discrete time points, producing metric vectors M;as defined in
Equation (5.1-1). Satisfaction values a(p;), stability metrics S;(p;), and conflict indicators
F;(p;)are computed using the methods introduced in Sections 6 and 5, respectively. Threshold
values are fixed across scenarios to ensure comparability.

8.2. Scenario Definitions

Three evaluation scenarios are considered, each designed to highlight a distinct operational
condition commonly encountered in practice.

Scenario A: Stable and Compliant Configuration
In this scenario, all policy requirements are satisfied or exceeded, and no significant
configuration changes occur over time. Observed satisfaction values remain close to unity, and
temporal stability is high across all requirements.
Formally, for all tand p;,

o(pi) = 1,5:(p:) = b5, (36)
resulting in a global decision outcome of Acceptable. The remediation prioritization algorithm
produces an empty or low-priority remediation list, confirming that no corrective action is
required.

Scenario B: Gradual Configuration Drift
This scenario models unintentional degradation, such as delayed key rotation or incremental
weakening of cryptographic parameters. Satisfaction values decrease gradually while remaining
above compliance thresholds, and stability metrics consistently fall below 6.
For a subset of requirements P; c P,

O'(pi) \l, Ct = Hc,St < BS'pi € g)d' (37)
The decision model correctly classifies this condition as Drift. The remediation prioritization
algorithm ranks drifting requirements according to urgency scores defined in Equation (34),
enabling proactive intervention before critical violations emerge.

Scenario C: Acute Misconfiguration Event
The third scenario introduces a sudden policy violation, such as the use of deprecated protocol
versions or disabled key rotation. Satisfaction values drop sharply, and conflict and risk metrics
exceed their respective thresholds.
Formally,

dp; € P st o(pj) K1V R(pj) > Og. (38)
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The decision model assigns a Critical state, and the remediation algorithm prioritizes the
offending requirement at the top of the remediation list. This outcome demonstrates the
framework’s ability to distinguish acute violations from gradual degradation.

8.3. Decision Outcomes, Remediation Prioritization, and Interpretation

Across all evaluated scenarios, including the illustrative case study, the decision-oriented audit
model produced outcomes consistent with expected operational behavior. Stable configurations
were classified as Acceptable, early instability as Warning, and acute policy violations as Critical.
Decision transitions occurred only under sustained threshold violations, confirming the suitability
of the proposed model for continuous auditing rather than point-in-time assessment.

The illustrative case study further demonstrates how decision outcomes emerge from the joint
interpretation of consistency, stability, and risk metrics. In particular, the key rotation requirement
at the key management layer was classified as Drift due to reduced temporal stability across audit
snapshots, despite remaining within nominal consistency bounds. This highlights the ability of
the decision model to distinguish gradual policy erosion from acute misconfiguration—a
distinction not observable through static compliance checks.

Remediation prioritization results align with these decision outcomes. The proposed prioritization
algorithm ranked policy requirements according to risk contribution, temporal instability, and
architectural impact. Requirements associated with key management and other lower
architectural layers consistently received higher priority due to their systemic influence on overall
security posture. In contrast, requirements classified as Acceptable were deprioritized, while Drift
conditions were elevated for proactive remediation before escalation into critical violations.

Compared to metric-only auditing approaches, the proposed framework provides clearer and
more actionable outcomes. By explicitly mapping audit metrics to discrete decision states and
prioritized remediation actions, the framework reduces interpretive ambiguity and improves the
operational usefulness of audit results. Metric values that appear acceptable in isolation can thus
be contextualized within temporal behavior and architectural impact, enabling more consistent
and informed decision-making by auditors and security operations teams.

The evaluation focuses on controlled scenarios, including the compact illustrative case study, to
isolate decision behavior and avoid confounding factors. While real-world systems may exhibit
greater scale and complexity, the scenarios capture representative patterns of stability,
configuration drift, and misconfiguration commonly observed in operational environments.
Threats to validity include simplified system modeling and fixed decision thresholds; however,
these limitations do not affect the qualitative conclusions regarding decision interpretability,
temporal sensitivity, and remediation effectiveness.

9. DISCUSSION

This section discusses the implications, strengths, and limitations of the proposed decision-
oriented auditing framework, and analyzes potential threats to validity. The discussion
emphasizes how the framework advances current practice beyond metric-only auditing while
maintaining transparency and auditability.
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9.1. Practical Implications for Auditors and Security Operations

The proposed framework transforms encryption and key management audits from passive
compliance assessments into actionable decision-support processes. By explicitly mapping audit
metrics to discrete decision states and prioritized remediation actions, the framework reduces
interpretive ambiguity and shortens response times in operational environments.

For auditors, the decision space introduced in Section 5 provides a clear semantic interpretation
of audit outcomes, enabling consistent reporting and governance alignment. For security
operations teams, the remediation prioritization algorithm in Section 7 offers a structured
mechanism to allocate limited resources based on quantified risk, temporal instability, and
architectural impact.

Importantly, the framework supports continuous auditing without requiring intrusive access to
cryptographic secrets, making it suitable for regulated and production environments.

9.2. Advantages over Metric-Only and Compliance-Driven Approaches

Unlike traditional audits that report isolated metric values or binary compliance flags, the
proposed approach integrates metrics into a coherent decision model. This integration enables
differentiation between transient deviations, gradual drift, and acute misconfigurations—
distinctions that are critical for effective remediation planning but are typically absent in
checklist-based audits.

Furthermore, the explicit separation between metric computation and decision interpretation
allows organizations to adjust decision sensitivity through threshold calibration without
redefining metrics. This flexibility supports adaptation to evolving security standards and risk
appetites.

9.3. Interpretability and Transparency

A key design goal of the framework is interpretability. All decision outcomes and remediation
priorities are derived from deterministic rules and clearly defined thresholds. Unlike machine
learning—based approaches, the framework avoids opaque decision logic, ensuring that audit
results remain explainable to auditors, system owners, and regulatory bodies.

This transparency is particularly important in environments where audit findings must be
justified, documented, and reproduced across independent assessments.

This work has limitations related to threshold calibration and the use of scenario-based
evaluation. While the framework is designed to be system-agnostic, practical deployment
requires system-specific normalization mechanisms. Large-scale empirical validation is left for
future work.

9.4. Positioning within the Broader Research Landscape
Within the broader landscape of encryption and key management auditing research, this work
occupies a middle ground between purely theoretical metric frameworks and purely engineering-

focused audit tools. By combining formal metrics, decision semantics, and remediation logic, the
framework addresses a critical gap between analysis and action.
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The discussion highlights that the primary contribution of this work is not the introduction of new
cryptographic metrics, but rather the systematic interpretation and operationalization of existing
metrics within a decision-oriented audit process.

10.CONCLUSION AND FUTURE WORK

This paper presented a decision-oriented framework for auditing encryption and key management
policies in dynamic web and server systems, addressing the gap between quantitative audit
metrics and actionable security decisions. Unlike traditional approaches focused on static
compliance checking or isolated metric reporting, the proposed framework systematically
transforms audit results into interpretable decision states and prioritized remediation actions.

The core contribution of this work lies in the integration of system-level metrics, decision
semantics, and remediation logic within a unified audit process. Consistency, conflict, stability,
and risk metrics are jointly interpreted through a threshold-based decision model, enabling
explicit differentiation between acceptable configurations, early warning conditions,
configuration drift, and critical misconfigurations. This decision model is grounded in a formally
defined satisfaction function that supports partial compliance, heterogeneous enforcement
evidence, and non-intrusive evaluation without accessing cryptographic key material.

A key strength of the proposed approach is its interpretability and transparency. All audit
outcomes and remediation priorities are derived from deterministic rules and configurable
thresholds, avoiding opaque or data-driven black-box mechanisms. This property makes the
framework suitable for regulated and production environments, where audit results must be
explainable, reproducible, and aligned with organizational security policies.

Scenario-based evaluation demonstrated that the framework effectively distinguishes between
transient deviations, gradual enforcement drift, and acute policy violations, while providing clear
remediation guidance based on quantified risk and temporal behavior. Compared to metric-only
auditing, the decision-oriented approach reduces ambiguity and improves the operational
usefulness of audit results.

Future work will focus on large-scale empirical validation across heterogeneous production
environments, adaptive calibration of decision thresholds, and integration with automated
remediation and orchestration platforms. These extensions aim to further enhance the practical
applicability and operational impact of decision-oriented auditing for encryption and key
management policies.
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