Ivan Martinez-Murillo, Paloma Moreda, and Elena Lloret, University of Alicante, Spain
This paper explores the influence of external knowledge integration in Natural Language Generation (NLG), focusing on a commonsense generation task. We extend the CommonGen dataset by creating KITGI, a benchmark that pairs input concept sets with retrieved semantic relations from ConceptNet and includes manually annotated outputs. Using the T5-Large model, we compare sentence generation under two conditions: with full external knowledge and with filtered knowledge where highly relevant relations were deliberately removed. Our interpretability benchmark follows a three-stage method: (1) identifying and removing key knowledge, (2) regenerating sentences, and (3) manually assessing outputs for commonsense plausibility and concept coverage. Results show that sentences generated with full knowledge achieved 91% correctness across both criteria, while filtering reduced performance drastically to 6%. These findings demonstrate that relevant external knowledge is critical for maintaining both coherence and concept coverage in NLG. This work highlights the importance of designing interpretable, knowledge-enhanced NLG systems and calls for evaluation frameworks that capture the underlying reasoning beyond surface-level metrics.
Natural Language Generation, Interpretability, Knowledge-enhanced, Commonsense Generation.