Academy & Industry Research Collaboration Center (AIRCC)

Volume 9, Number 17, December 2019

Semantic Process Based Framework for Regulatory Reporting Process Management


Manjula Pilaka, Fethi A. Rabhi and Madhushi Bandara, University of New South Wales, Australia


Regulatory processes are normally tracked by regulatory bodies in terms of monitoring safety, soundness, risk, policy and compliance. Such processes are loosely framed processes and it is a considerable challenge for data scientists and academics to extract instances of such processes from event records and analyse their characteristics e.g. if they satisfy certain process compliance requirements. Existing approaches are inadequate in dealing with the challenges as they demand both technical knowledge and domain expertise from the users. In addition, the level of abstraction provided does not extend to the concepts required by a typical data scientist or a business analyst. This paper extends a software framework which is based on a semantic data model that helps in deriving and analysing regulatory reporting processes from event repositories for complex scenarios. The key idea is in using complex business-like templates for expressing commonly used constraints associated with the definition of regulatory reporting processes and mapping these templates with those provided by an existing process definition language. The efficiency of the architecture in evaluation, compliance and impact was done by implementing a prototype using complex templates of Declare ConDec language and applying it to a case study related to process instances of Australian Company Announcements.


Regulatory Reporting, Process Extraction, Semantic Technology, Events.