
Natarajan Meghanathan et al. (Eds) : CoSIT, AIAPP, SIGL, CRIS, DMA, NLPML, CYBI - 2020

pp. 19-32, 2020. © CS & IT-CSCP 2020 DOI: 10.5121/csit.2020.100103

TENSORFLOW 2.0 AND KUBEFLOW FOR

SCALABLE AND REPRODUCABLE

ENTERPRISE AI

Romeo Kienzler1, 2, Holger Kyas2, 3, 4

1IBM Center for Open Source Data and AI Technologies,

505 Howard St, San Francisco, CA, USA

2Berne University of Applied Sciences, Technology and Informatics,

Wankdorffeldstrasse 102, 3014 Berne, Switzerland

3Open Group, 548 Market St #54820, San Francisco, CA 94104-5401

4Helvetia Insurance Switzerland, St. Alban-Anlage 26, 4002 Basel,

Switzerland

ABSTRACT

Towards the End of 2015 Google released TensorFlow 1.0, which started out as just another

numerical library, but has grown to become a de-facto standard in AI technologies.

TensorFlow received a lot of hype as part of its initial release, in no small part because it

was released by Google. Despite the hype, there have been complaints on usability as well.

Especially, for example, the fact that debugging was only possible after construction of a

static execution graph. In addition to that, neural networks needed to be expressed as a set of

linear algebra operations which was considered as too low level by many practitioners.

PyTorch and Keras addressed many of the flaws in TensorFlow and gained a lot of ground.

TensorFlow 2.0 successfully addresses these complaints and promises to become the go-to

framework for many AI problems. This paper introduces the most prominent changes in
TensorFlow 2.0 targeted towards ease of use followed by introducing TensorFlow Extended

Pipelines and KubeFlow in order to illustrate the latest TensorFlow and Kubernetes

ecosystem movements towards simplification for large scale Enterprise AI adoption.

KEYWORDS

Artificial Intelligence, TensorFlow, Keras, Kubernetes, KubeFlow, TFX, TFX Pipelines

1. INTRODUCTION

In this paper we introduce the novelties of TensorFlow 2.0 and how those impact the AI

ecosystem from a developer’s as well as from an enterprise architecture point of view.

Recommendations are given on how constant changes and disruptions in the AI ecosystem can

be addressed. When Google released TensorFlow under the Apache License 2.0 in November
2015, Torch, Theano and Caffe have been the most widely used DeepLearning frameworks

[1][2]. Although those frameworks supported the most important features like OpenMP,

CUDA, Automatic Differentiation, Convolutional and Recurrent Layers, the fact that it came
from Google led to a huge adoption of TensorFlow (Figure 1) and in contrast, to a fast decline

in usage of other frameworks, or even to an abandonation of frameworks like Theano and

20 Computer Science & Information Technology (CS & IT)

Torch [3][4]. Besides the hype, developers eventually started complaining about it as well [5].

First, and especially, the lack of an eager execution mode pulled many users away from
TensorFlow towards PyTorch [6]. PyTorch creates a dynamic execution graph allowing for

line by line execution and debugging. In contrast, TensorFlow, up to version 1.6, created a

static execution graph which had be run in a TensorFlow session in order to execute.

Decupling code from runtime made it hard to debug TensorFlow code. Second, many
developers found TensorFlow too low level. Working at the level of linear algebra is well

suited for DeepLearning Research, but for applied settings, productivity vastly increases when

developers move from matrices to layers. Therefore, Section 2 demonstrates how the new
features in TensorFlow 2.0 addresses those usability related complaints, whereas Section 3

illustrates how TFX Pipelines expand TensorFlow functionality addressing the complete

ML/DeepLearning workflow. Section 4 highlights the fact how KubeFlow closes the devops /

CICD loop by bringing TFX Pipelines to Kubernetes. Section 5 reflects on specific
requirements for Enterprise AI. Finally, a conclusion is drawn on how this technology stack

impacts the AI ecosystem now and in the future.

Figure 1. Google Trends of different DeepLearning frameworks over time

2. THE MOST IMPORTANT FEATURES OF TENSORFLOW 2.0

In the following the most important features of TensorFlow 2.0 are explained, and contrasted
to TensorFlow 1.0, where applicable, using practical examples.

2.1. Eager Execution

Eager execution is undoubtedly the most prominent new feature – introduced in TensorFlow

1.7 – activated by default in TensorFlow 2.0. Lack of eager execution was one of the main

complaints against TensorFlow 1.X, as many developers can relate. Having to execute the
whole computation graph to debug based on stack traces is tedious. Especially, since values of

intermediate results haven't been accessible without mixing debug code into production code.

With Eager Execution, the Tensor interface remains stable, but internally, "EagerTensor"
objects are used over "Tensor" objects. Therefore, TensorFlow code can be used and debugged

like arbitrary python code (as using numpy for example). In the following, source code

examples are given for clearification:

a = tf.constant(np.array([1., 2., 3.]))

This creates an object of type “tensorflow.python.framework.ops.Tensor” which is meant to be

a node of a static execution graph running in a TensorFlow session. Outside the context of a

session, this object is useless as the following code illustrates:

a.eval()

Calling the eval method on a Tensor object outside a TensorFlow session context returns the
following error:

No default session is registered.

Computer Science & Information Technology (CS & IT) 21

This means, debugging by looking inside a Tensor object outside an execution graph running

in a TensorFlow session is impossible. Now this example is extended to a vector dot product
computation, by creating a second Tensor:

b = tf.constant(np.array([4.,5.,6.]))

A static execution graph is created by applying the dot product operation on a and b:

c = tf.tensordot(a, b,1)

Variable c now contains a reference to a static execution graph of type
“tensorflow.python.framework.ops.Tensor” which can be passed to a TensorFlow session for

execution:

tf.Session().run(c)

Considering the same example using Eager Execution, the same Tensors will be of type

“tensorflow.python.framework.ops.EagerTensor”. The following code returns the content of

Tensor a as numpy ndarray:

a.numpy()

Interestingly, the same code now executes without a TensorFlow session:

a = tf.constant(np.array([1., 2., 3.]))

b = tf.constant(np.array([4.,5.,6.]))
c = tf.tensordot(a, b,1)

print(c.numpy())

2.2. tf.function

Creating linear algebra code using the TensorFlow API can be confusing. Therefore,

TensorFlow 2.0 introduced an amazing feature which allows for transforming arbitrary python

code into a TensorFlow execution graph by annotating a function, called autograph. In the
following, this is illustrated by a small example minimizing a nested function. Considering a

function f(x)=x-(6/7)*x-1/7 and a function g(x)= f(f(f(f(x)))). An x such that g(x)=0 needs to

be found. This is known as the “Turnip Seller Problem” [7]. The solution can be obtained by

setting the first derivative g(x)’=0. TensorFlow 1.X and 2.0 support automatic differentiation
of execution graphs, obtaining g’(x) from g(x). But in TensorFlow 2.0 this graph can now be

generated using pure python code. The following code expresses f(x) and g(x) in python and

creates a TensorFlow execution graph by annotating the python functions f and g with
“tf.function”:

@tf.function

def f(x):
 return x-(6/7)*x-1/7

@tf.function

def g(x):
 return f(f(f(f(x))))

As can be observed, besides the annotations, the code is plain python only. Interestingly, this

code has not defined any python function at all. It defined two TensorFlow objects f and g of
type “tensorflow.python.eager.def_function.Function”. In order to inspect those objects the

following code can be used:

22 Computer Science & Information Technology (CS & IT)

tf.autograph.to_code(f.python_function)

This prints the code contents of f which has been created internally:
def tf__f(x):

 do_return = False

 retval_ = ag__.UndefinedReturnValue()

 do_return = True
 retval_ = x - 6 / 7 * x - 1 / 7

 cond = ag__.is_undefined_return(retval_)

 def get_state():

 return ()

 def set_state(_):
 pass

 def if_true():
 retval_ = None

 return retval_

 def if_false():

 return retval_

 retval_ = ag__.if_stmt(cond, if_true, if_false, get_state, set_state)

 return retval_

In order to solve for g’(x)=0, x has to be defined as TensorFlow variable and y as constant to

be used later to set g’(x) to zero:

x = tf.Variable(0, trainable=True, dtype=tf.float64)
y = tf.constant([0], dtype=tf.float64)

The last step is to run a gradient descent loop to find the minimum of g’(x):

variables = [x]

optimizer = tf.optimizers.Adam(0.5)

loss_object = tf.keras.losses.MeanAbsoluteError()
with tf.GradientTape(persistent=True) as tape:

 for i in range(1000):

 y_pred = g(x)
 loss = loss_object(y,y_pred)

 grads = tape.gradient(loss, variables)

 optimizer.apply_gradients(zip(grads, variables))

As x is defined as (the only) TensorFlow variable, x is constantly adjusted in order to minimize

the optimization objective (setting g’(x) to zero) and after some iterations x converges to 400,

which is the solution to this equation as explained in [7]. This example highlights the

simplicity of creating complex TensorFlow Execution graphs with simple python functions.

2.3. Keras as official high level API in TensorFlow

Keras, released in March 2015, just seven months before TensorFlow, is a high level deep
learning framework supporting various low level linear algebra frameworks, including

TensorFlow. High level frameworks abstract away the complex linear algebra deep learning

involves by introducing components like layers over operations on tensors. In 2017 Google

Computer Science & Information Technology (CS & IT) 23

added Keras to the TensorFlow distribution and in 2019 declared it as official high level API

in TensorFlow [8]. At a first glance, this doesn’t seem to make too much sense since
TensorFlow could be used as execution engine for Keras anyway. And in addition, this means

that two APIs have to be kept in sync. The Keras API of the official Keras framework and the

Keras API within TensorFlow. The next section explains the benefits of offering a Keras

compatible API within TensorFlow, but first the following example is used to illustrate – given
the correct way of imports – the 1:1 compatibility of Keras code between standalone Keras and

the Keras API within TensorFlow. Considering the following standalone Keras code:

from keras import Sequential

from keras.layers import Flatten, Dense
from keras.activations import relu, softmax

model = Sequential([

 Flatten(input_shape=(28, 28)),

 Dense(128, activation=relu),
 Dense(10, activation=softmax)

])

Changing the imports makes the same code compile without any changes using the Keras API
TensorFlow provides:

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Flatten, Dense
from tensorflow.nn import relu

from tensorflow.nn import softmax

2.4. Distribution Strategies

As stated above, to the reader it might look tedious to maintain two implementations of the
Keras API but when used in TensorFlow, distribution becomes very simple. Although both,

native Keras and the Keras API of TensorFlow share the same interface which makes code

look identical, the underlying implementation differs. Therefore when Keras is used in
conjunction with TensorFlow, it’s implementation supports distribution out of the box. The

only necessity is running the Keras code within a context of a TensorFlow distribution

strategy. This sounds complex, therefore the following code is given as an example for

clearification:

ps_strategy = tf.distribute.experimental.ParameterServerStrategy()

with ps_strategy.scope():

 model = Sequential([

 Flatten(input_shape=(28, 28)),

 Dense(128, activation=Relu),

 Dense(10, activation=Softmax)

])

 model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

 model.fit(train_images, train_labels, epochs=5)
As can be seen, the only necessity is instantiating a distribution strategy object and running

within the scope of it. Interestingly, distribution is not limited to training but also works for

24 Computer Science & Information Technology (CS & IT)

distributed evaluation and prediction. It’s noteworthy that there exist different distribution

strategies addressing distinct cluster configurations ranging from single node, multiple GPU
environments to multi node, multiple GPU per node environments. Depending on the strategy

in use, minor configuration needs to be made on the cluster nodes. Although it is beneficial to

understand the implementation details of different strategies, TensorFlow’s documentation

clearly aligns them to distinct cluster configurations [9]. Distribution strategies are not only
supported by Keras but by any computation within TensorFlow through a dedicated API and

also by TensorFlow Estimators, which as of TensorFlow 2.0 are all distribution strategy-

aware. TensorFlow Estimators are another high level API within TensorFlow, which is
covered in the next subsection.

2.5. TensorFlow Estimators

TensorFlow Estimators are probably the most important driver towards consumable AI.

Estimators serve as ready-made building blocks – greatly reducing complexity and skill

requirements from developer side, by encapsulating everything necessary for model training,

scoring and serving into a single object. As stated previously, Estimators can run on any kind
of distributed cluster environment, including GPU and TPU clusters, within a TensorFlow

distribution strategy scope, without changing the Estimator’s implementation. TensorFlow

ships a growing list of pre-compiled estimators, ranging from Single Layer Neural Networks
over Gradient Boosted Trees to simple linear models. Therefore, TensorFlow is entering the

traditional machine learning space as well which is dominated by Scikit-Learn in the python

community [10]. In order to understand estimators, in the following, an example is introduced:

classifier = tf.estimator.LinearClassifier(feature_columns=[age])

classifier.train(train_inpf)

result = classifier.evaluate(test_inpf)

As can be seen, running a logistic regression classifier is as simple as executing three lines of

code. Note that the age variable, implementing the feature_column interface, contains the

schema / meta information of a single column/feature, whereas train_inpf and test_inpf are

functions converting underlying data to the required format (e.g. dictionary of Tensors). This
concept stems from the idea that the same data preprocessing pipeline has to be reusable for

training, testing, scoring and serving [11]. Reusability and operationalization is a very active

area of research and development [12]. Those features are extensively supported through
TensorFlow Estimators.

3. TENSORFLOW EXTENDED (TFX) PIPELINES

As touched at the end of the previous section, developer focus shifts away from simple model

development and focus on operationalization, Explainability [13], Fairness [14], Robustness
[15] and Data Lineage [16] drastically increased over the last year. Therefore, a top level

section is dedicated to TFX Pipelines. One has to distinguish between the TFX API [17],

which provides low level implementations of different transformation and aggregation steps,
and TFX Pipelines which facilitate development of reusable and explainable AI workflows.

It’s modules are explained in the following subsections.

3.1. TFX Pipelines ExampleGen

Although the name might be misleading, responsible for data loading, ExampleGen is the first
stage of every TFX Pipeline. Implementing complex data loading code using the tf.data API

can be avoided therefore. As in most machine learning frameworks like scikit-learn, SparkML

and R, reading a CSV file can be done in one line of code. Using the tf.data API this needs a

Computer Science & Information Technology (CS & IT) 25

whole code block. Using ExampleGen, the task now also boils down to one line of code like

this:

example_gen = CsvExampleGen(csv_input('floorsensordata2604.csv'))

This creates an instance of ExampleGen based on the file floorsensordata2604.csv. Instances

of ExampleGen are used by downstream stages of TFX Pipelines. ExampleGen also takes care

of data partitioning for distributed training as well as implementing the ML best practices in

data shuffling [18].

3.2. TFX Data Validation

Data validation is one of the first steps in every machine learning project [19] and a variety of

tools exist [20]. TFX Data Validation, which is a low level API called by TFX Pipeline

components, casts these steps in a nicely documented and feature rich tool suite with three
main focus areas: Schema Based Example Validation, Training-Serving Skew Detection, Drift

Detection. In Schema Based Example Validation, TensorFlow Extended Data Validation

computes statistics on a given data set to be compared against a defined schema. Alternatively,

schemas can be inferred from a given data set as well. A distinct feature of TFX are schema
environments, which allow for different schemas under different circumstances, e.g. removal

of a label column in a model serving environment. Training-Serving Skew Detection detects

differences between training and serving data including changes in schema, data distributions
and categorical imbalances. Drift Detection raises alerts if new, unseen data appears to be

abnormal to the previously seen examples and a predefined threshold is exceeded. Currently,

only L-infinity distance is supported [21]. Finally, TensorFlow Extended Data Validation also

supports interactive tooling based on the facets [22] project which can be embedded in jupyter
notebooks. Since DataValidation is a low level API, it’s usage is exemplified through

StatisticsGen and ExampleValidator, which are introduced in the next subsections.

3.3. TFX Pipelines StatisticsGen

StatisticsGen [23] creates feature statistics for the downstream TFX Pipeline. This is a very

important object containing meta information about the data. Components like
SchemaGenerator and ExampleValidator, which will be introduced below, are making use of

those statistics. Again, computing those statistics resembles into one line of code:

stats = components.StatisticsGen(

 input_data=example_gen.outputs.examples,

 name='compute-eval-stats'

)

Now, the stats object can be passed as parameters to downstream pipeline components as we

can see in the next section.

3.4. TFX Pipelines SchemaGen

SchemaGen [24] is a component which infers a schema from a given dataset. A schema
includes data types for each feature as well as expected value ranges and nullability for

downstream validity checks. It makes use of the stats object explained in the previous section.

Again, only a single line of code is required in order to execute this stage:

infered_schema = components.SchemaGen(stats=stats.outputs.output)

26 Computer Science & Information Technology (CS & IT)

Using the infered_schema object in a pipeline reliefs the developer from maintaining a schema

manually. Changes to schemas, e.g. additions or deletions of unused features can be handled
without code changes therefore.

3.5.TFX Pipelines ExampleValidator

ExampleValidator [25] uses the data validator API to detect data quality issues by creating
relevant validation statistics using a schema (implicitly created by SchemaGen or explicitly

defined) and StatisticsGen objects as input. A single code line creates this validation statistics

object:

validate_stats = components.ExampleValidator(

 stats=stats.outputs.output,

 schema=infered_schema.outputs.output

)

This object contains statistics supported by the TFX Data Validator API and can be inspected

interactively or thresholds can be defined to control (e.g. abort) downstream execution of a

TFX Pipeline.

3.6. TFX Pipelines Transform

Transform [26] is core for any feature transformation and engineering task. It uses the TFX

Transform low level API and facilitates transformation tasks by providing a rich set of
predefined transformation functions [27]. Although using existing transformations is simple, it

is important to note that implementing a custom transformation is a non-trivial task which

requires deep understanding on Tensor operations. On the other hand, any type of arbitrary
data transformation can be accomplished, making this stage a key feature of TFX Pipelines,

ensuring that unsupported transformations can be implemented manually.

3.7. TFX Pipelines Trainer

Trainer [28] encapsulates either a TensorFlow Estimator or a TensorFlow Keras API Model in order to

make them available as a component within a TFX Pipeline. A Trainer consumes examples and a

schema. It creates a SavedModel or EvalSavedModel object. SavedModel is the standard model export

format of TensorFlow. EvalSavedModel is explained in the next subsection.

3.8. TFX Pipelines Evaluator

Evaluator [29] creates performance statistics on a model created by the Trainer component.

Therefore it must be saved as EvalSavedModel over SavedModel since EvalSavedModel

contains additional information needed by the Evaluator in order to compute statistics. Those

statistics are published to TensorFlow Metadata [30], a central TFX metadata store, for

downstream analysis.

3.9. TFX Pipelines ModelValidator

ModelValidator [31] uses a schema and statistics created upstream in order to mark a model as

deployable (blessing). This component enables a TFX Pipeline to be automatically deployed

after a model has been retrained on new data because model performance metrics are
automatically checked before deployment.

Computer Science & Information Technology (CS & IT) 27

3.10. TFX Pipelines Pusher

Pusher [32] is a simple gatekeeper component which checks the results of a ModelValidator

component and if the “blessing” was received, it saves the model to a specified target

including TensorFlow Serving, TensorFlow.js or TensorFlow Lite.

4. KUBEFLOW PIPELINES

4.1. Kubernetes

Kubernetes [33], a container orchestrator initially released by Google, is transforming IT

operations in cloud and enterprise data centers worldwide [34].

Figure 2. Kubernetes Architecture Overview.

Figure 2 illustrates the basic components of Kubernetes. The Master Node runs the Controller-
Manager which is core for container orchestrations. E.g. it constantly verifies the is-requested

difference and in case a container crashed, a replacement is scheduled to be created. On the

Worker Node, a kubelet is responsible, among other tasks, to start and stop individual
containers. In Kubernetes, a Pod groups a set of Containers into a namespace, sharing

resources, e.g. virtual network interfaces. This makes Kubernetes a lightweight abstraction

layer over a set of data center resources to be consumed by applications materialized as Pod.

4.2. KubeFlow

KubeFlow [35] is a workload agnostic pipeline execution framework. This means, every
application which can be packaged as a container can be run within KubeFlow. For example,

Apache Spark is supported natively. Individual steps of a data processing pipeline are divided

into tasks which KubeFlow provisions individually on Kubernetes. This mitigates a common
resource assignment problem for high variational resource demands between intermediate

pipeline tasks.

4.3. KubeFlow as engine for TFX Pipelines

Although, TFX Pipelines are workflow engine agnostic, currently, implementations for

Apache AirFlow [36] and KubeFlow exist. Since KubeFlow runs natively on Kubernetes, its

particularly interesting as scalable TFX Pipelines execution engine, benefitting from

28 Computer Science & Information Technology (CS & IT)

Kubernetes scalability and wide industry adoption. A TFX Pipeline can be imported into

KubeFlow. After importing, a TFX Pipeline, as well as all other types of KubeFlow Pipelines,
is available for execution (Figure 3). Before execution, a set of pipeline specific, predefined

parameters can be set (e.g. path to data source). A running pipeline is called an experiment.

Figure 3. KubeFlow Pipelines. An overview of available (deployed) Pipelines.

Experiments are running on Kubernetes. Each stage of a pipeline runs in a separate Pod.

Assets between stages are shared via file system. Figure 4 shows a screen shot of a
successfully ran experiment and all interactions between individual stages as graph. The green

arrow indicates successful completion. Resource limitations can be assigned to each individual

stage allowing for scale-up and scale-out on Kubernetes.

 Figure 4. KubeFlow Pipelines. Single Experiment, all stages successfully ran.

Computer Science & Information Technology (CS & IT) 29

5. INDUSTRY AND ENTERPRISE CONSIDERATIONS ON MACHINE

LEARNING FRAMEWORKS TENSORFLOW, KERAS AND PYTORCH

The usage of Machine Learning Frameworks like Tensorflow 2.0, Keras and Pytorch is very

promising for enterprises in many industries due to its evident and potential business value.

Generating undiscovered, critical insights and predictive trends about customer behavior,
internal fraud and/or market trends are key use cases leveraged by those Machine Learning

capabilities leading to higher revenue while driving innovative shifts.

Dedicated Machine Learning Experts, Data Engineers and Scientists care for an end-to-end

data quality within their pipelines, while also the algorithmic layer is a crucial element
underpinned by the usability and separation of concerns within frameworks. The Process for

Machine Learning Pipelines may vary between people and organizations. A Standard

Enterprise Production template is suggested as follows:

Latest KubeFlow and TensorFlow Extended (TFX) distributions come with major key
advantages:

Manage: Adaptability / Complexity / Consistency / Large Data Wrangling / Versioning

Enhance: Model Quality / Isolation / Portability / Training Quality / User Experience
Important architectural questions need to be addressed within enterprises of various industries

due to technical and compliance factors. For instance, Data consistency, information age and

network latency are factors and requirements driving architectural decisions like data location,

integration and cloud deployment models.

Traditional enterprises usually protect their data on-premises while facing questions like

moving data to a private, hybrid or public clouds. Instead of moving data to compute engines,

the opposite is possible. Leaving data where they're hosted is often a better option if
computing artefacts can be mobilized to the data host. This leads to a potential model where

Machine Learning Frameworks like TensorFlow 2.0 require mobility.

Container technology provide mobile encapsulation of functionality. If the data host is able to

host containers, it is a feasible alternative. Since this is not always the case it becomes a data

and service integration architecture question. Cloud Computing does not make the integration
architecture less complex, it raises new issues which go far beyond Machine Learning

Frameworks. The stated complexity of instrumenting Machine Learning Frameworks like

TensorFlow 2.0 are evident, while the industry solutions are usually individual to the related

30 Computer Science & Information Technology (CS & IT)

enterprise context. It requires the ML pipelines to manage, operationalize and bring into

production across different environments, for instance like the following illustration.
TensorFlow 2.0 and KubeFlow support this.

The context of Machine Learning Frameworks is wider for enterprises than it seems from a

higher use case and business value level. The materialization of Machine Learning promises

imply the resolution of complex problems on Data Placement, Integration Architecture and
Cloud Deployment.

To reach lean usage of Machine Learning Models exposed to business users by API’s an agile

Design and Development is more efficient thus recommended. Among others, Flexibility and
Adaptability are guiding principles taking decisions on architectural questions in the context of

Machine Learning and beyond. And regular Architecture Testing is an obligatory task, also

since developments in technology and socio-economy are very fast and impactful.

6. CONCLUSIONS

As can be seen from the latest developments in the ecosystem, TensorFlow aggressively
pushes into various directions to establish a de-facto standard in AI. The latest improvements

of TensorFlow 2.0 are directed towards simplicity in model development and scaling. TFX

Pipelines address DevOps and CICD requirements and compatibility to KubeFlow adds
scalability into the mix. As KubeFlow is not only limited to run TFX Pipelines it can co-exist

with other established technologies, including Apache Spark, the current standard for large

scale ETL for example. This minimizes technology lock-in and provides a seamless
technology migration path between different tools and frameworks as their popularity rises and

falls. To reach lean usage of Machine Learning Models exposed to business users by API’s an

agile Design and Development is more efficient thus recommended. Flexibility and

Adaptability are guiding principles taking decisions on architectural questions in the context of
Machine Learning and beyond. Testing and adopting the architecture regularly is obligatory

since developments in technology and socio-economy are very fast.

ACKNOWLEDGEMENTS

Special thanks to Animesh Singh and Tommy Li, both working for the IBM Center for Open Source

Data and AI Technologies (CODAIT) in San Francisco, for their valuable inputs.

REFERENCES

[1] Andrej Karpathy. A Peek at Trends in Machine Learning. https://medium.com/@karpathy/a-peek-
at-trends-in-machine-learning-ab8a1085a106 (Aug. 2019)”

[2] Andrej Karpathy. Unique mentions of deep learning frameworks in arxiv papers (full text) over

time. https://twitter.com/karpathy/status/972295865187512320 (Aug. 2019)

[3] Pascal Lamblin. MILA and the future of Theano.

https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY (Aug 2019)

[4] Sam Stites. Development Status. https://github.com/torch/torch7/blob/master/README.md (Aug

2018)

[5] Daniel Kuster. The Good, Bad & Ugly of TensorFlow. https://www.kdnuggets.com/2016/05/good-

bad-ugly-tensorflow.html (Aug 2019)

[6] Yaroslav Bulatov. TensorFlow meets PyTorch with Eager execution.

https://medium.com/@yaroslavvb/tensorflow-meets-pytorch-with-eager-mode-714cce161e6c

(Aug 2019)
[7] Ian Stewart. Professor Stewart's Cabinet of Mathematical Curiosities, Page 9, ISBN 978-

0465013029

[8] TensorFlow Documentation. Keras. https://www.tensorflow.org/guide/keras (Aug 2019)

[9] TensorFlow Documentation. Distributed Training in TensorFlow.

https://www.tensorflow.org/guide/distribute_strategy (Aug 2019)

Computer Science & Information Technology (CS & IT) 31

[10] KDnuggets. Top 20 Python Machine Learning Open Source Projects.

https://www.kdnuggets.com/2015/06/top-20-python-machine-learning-open-source-projects.html

(Aug 2019)

[11] TensorFlow Documentation. Datasets for Estimators.

https://www.tensorflow.org/guide/datasets_for_estimators (Aug 2019)

[12] Kumar Srivastava. Method and system for auto learning, artificial intelligence (ai) applications

development, operationalization and execution. Patent US20190171950A1

[13] Ian Sample. Computer says no: why making AIs fair, accountable and transparent is crucial. the

Guardian, 5 November 2017.

[14] Solon Barocas, Andrew D. Selbst. Big Data’s Disparate Impact. California Law Review Jun 2016
Volume 104 No. 3

[15] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Ambrish Rawat, Martin Wistuba, Valentina

Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian M. Molloy, Ben Edwards.

Adversarial Robustness. ArXiv 2018

[16] Yingwei Cui, Jennifer Widom. Lineage tracing for general data warehouse transformations.

Volume 12 Issue 1, May 2003, Pages 41-58, The VLDB Journal — The International Journal on

Very Large Data Bases

[17] Denis Baylor, Eric Breck, Heng-Tze, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal,

Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay

Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy, Steven Euijong Whang, Martin

Wicke, Jarek Wilkiewicz, Xin Zhang, Martin Zinkevich (2017) TFX: A TensorFlow-Based
Production-Scale Machine Learning Platform, 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining 2017

[18] TensorFlow Documentation. The ExampleGen TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/examplegen (Aug 2019)

[19] Romeo Kienzler. The lightweight IBM Cloud Garage Method for data science.

https://developer.ibm.com/articles/the-lightweight-ibm-cloud-garage-method-for-data-science/

(Aug 2019)

[20] Romeo Kienzler. Architectural decisions guidelines. https://developer.ibm.com/articles/data-

science-architectural-decisions-guidelines/ (Aug 2019)

[21] Wikipedia. Chebyshev distance. https://en.wikipedia.org/wiki/Chebyshev_distance (Aug 2019)

[22] Facets. https://pair-code.github.io/facets/ (Aug 2019)
[23] TensorFlow Documentation. The StatisticsGen TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/statsgen (Aug 2019)

[24] TensorFlow Documentation. SchemaGen. https://www.tensorflow.org/tfx/guide/schemagen (Aug

2019)

[25] TensorFlow Documentation. The ExampleValidator TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/exampleval (Aug 2019)

[26] TensorFlow Documentation. The Transform TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/transform (Aug 2019)

[27] TensorFlow Documentation. Module: tft.

https://www.tensorflow.org/tfx/transform/api_docs/python/tft (Aug 2019)

[28] TensorFlow Documentation. The Trainer TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/trainer (Aug 2019)
[29] TensorFlow Documentation. The Evaluator TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/evaluator (Aug 2019)

[30] TensorFlow Documentation. ML Metadata. https://www.tensorflow.org/tfx/guide/mlmd (Aug

2019)

[31] TensorFlow Documentation. The ModelValidator TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/modelval (Aug 2019)

[32] TensorFlow Documentation. The Pusher TFX Pipeline Component.

https://www.tensorflow.org/tfx/guide/pusher (Aug 2019)

[33] Kubernetes. https://kubernetes.io/ (Aug 2019)

[34] Kelsey Hightower, Brendan Burns, Joe Beda. Kubernetes: Up and Running: Dive Into the Future

of Infrastructure. O’Reilly 2018 ISBN 978-1-491-935-67-5
[35] KubeFlow. https://www.kubeflow.org/ (Aug 2019)

[36] Apache Airflow Documentation. https://airflow.apache.org/ (Aug 2019)

32 Computer Science & Information Technology (CS & IT)

Authors

Romeo Kienzler is Chief Data Scientist at IBM Center for Open Source Data and AI

Technologies (CODAIT) in San Francisco, USA, Associate Professor for Artificial

Intelligence at Berne University of Applied Sciences and Adjunct Professor for

Information Security at Northwestern University of Applied Sciences, Switzerland. He

holds a M. Sc. (ETH) in Information Systems, Applied Statistics and Bioinformatics

Holger Kyas is Board Member at Open Group, Adjunct Professor for Cloud, BigData,

Machine Learning and Information Technology at Berne University of Applied
Sciences, Switzerland and Enterprise Architect at Helvetia Insurances Switzerland. He

holds a Masters in Information Technology and is studying Masters of Business

Administration at University of Applied Sciences and Arts in Basel,

	Abstract
	Towards the End of 2015 Google released TensorFlow 1.0, which started out as just another numerical library, but has grown to become a de-facto standard in AI technologies. TensorFlow received a lot of hype as part of its initial release, in no small ...
	Keywords
	Artificial Intelligence, TensorFlow, Keras, Kubernetes, KubeFlow, TFX, TFX Pipelines

