
Natarajan Meghanathan et al. (Eds) : CoSIT, AIAPP, SIGL, CRIS, DMA, NLPML, CYBI - 2020 

pp. 19-32, 2020. © CS & IT-CSCP 2020                                                   DOI: 10.5121/csit.2020.100103 

 

 
TENSORFLOW 2.0 AND KUBEFLOW FOR 

SCALABLE AND REPRODUCABLE 

ENTERPRISE AI 
 

Romeo Kienzler1, 2, Holger Kyas2, 3, 4 

 

1IBM Center for Open Source Data and AI Technologies, 

505 Howard St, San Francisco, CA, USA 
 

2Berne University of Applied Sciences, Technology and Informatics, 

Wankdorffeldstrasse 102, 3014 Berne, Switzerland 

 
3Open Group, 548 Market St #54820, San Francisco, CA 94104-5401 

 
4Helvetia Insurance Switzerland, St. Alban-Anlage 26, 4002 Basel,  

Switzerland 

 

ABSTRACT 
 

Towards the End of 2015 Google released TensorFlow 1.0, which started out as just another 

numerical library, but has grown to become a de-facto standard in AI technologies. 

TensorFlow received a lot of hype as part of its initial release, in no small part because it 

was released by Google. Despite the hype, there have been complaints on usability as well. 

Especially, for example, the fact that debugging was only possible after construction of a 

static execution graph. In addition to that, neural networks needed to be expressed as a set of 

linear algebra operations which was considered as too low level by many practitioners. 

PyTorch and Keras addressed many of the flaws in TensorFlow and gained a lot of ground. 

TensorFlow 2.0 successfully addresses these complaints and promises to become the go-to 

framework for many AI problems. This paper introduces the most prominent changes in 
TensorFlow 2.0 targeted towards ease of use followed by introducing TensorFlow Extended 

Pipelines and KubeFlow in order to illustrate the latest TensorFlow and Kubernetes 

ecosystem movements towards simplification for large scale Enterprise AI adoption. 
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1. INTRODUCTION 
 

In this paper we introduce the novelties of TensorFlow 2.0 and how those impact the AI 

ecosystem from a developer’s as well as from an enterprise architecture point of view. 

Recommendations are given on how constant changes and disruptions in the AI ecosystem can 

be addressed. When Google released TensorFlow under the Apache License 2.0 in November 
2015, Torch, Theano and Caffe have been the most widely used DeepLearning frameworks 

[1][2]. Although those frameworks supported the most important features like OpenMP, 

CUDA, Automatic Differentiation, Convolutional and Recurrent Layers, the fact that it came 
from Google led to a huge adoption of TensorFlow (Figure 1) and in contrast, to a fast decline 

in usage of other frameworks, or even to an abandonation of frameworks like Theano and 
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Torch [3][4]. Besides the hype, developers eventually started complaining about it as well [5]. 

First, and especially, the lack of an eager execution mode pulled many users away from 
TensorFlow towards PyTorch [6]. PyTorch creates a dynamic execution graph allowing for 

line by line execution and debugging. In contrast, TensorFlow, up to version 1.6, created a 

static execution graph which had be run in a TensorFlow session in order to execute. 

Decupling code from runtime made it hard to debug TensorFlow code. Second, many 
developers found TensorFlow too low level. Working at the level of linear algebra is well 

suited for DeepLearning Research, but for applied settings, productivity vastly increases when 

developers move from matrices to layers. Therefore, Section 2 demonstrates how the new 
features in TensorFlow 2.0 addresses those usability related complaints, whereas Section 3 

illustrates how TFX Pipelines expand TensorFlow functionality addressing the complete 

ML/DeepLearning workflow. Section 4 highlights the fact how KubeFlow closes the devops / 

CICD loop by bringing TFX Pipelines to Kubernetes. Section 5 reflects on specific 
requirements for Enterprise AI. Finally, a conclusion is drawn on how this technology stack 

impacts the AI ecosystem now and in the future. 

 
 

Figure 1.  Google Trends of different DeepLearning frameworks over time  

 

2. THE MOST IMPORTANT FEATURES OF TENSORFLOW 2.0 
 

In the following the most important features of TensorFlow 2.0 are explained, and contrasted 
to TensorFlow 1.0, where applicable, using practical examples. 
 

2.1. Eager Execution  
 

Eager execution is undoubtedly the most prominent new feature – introduced in TensorFlow 

1.7 – activated by default in TensorFlow 2.0. Lack of eager execution was one of the main 

complaints against TensorFlow 1.X, as many developers can relate. Having to execute the 
whole computation graph to debug based on stack traces is tedious. Especially, since values of 

intermediate results haven't been accessible without mixing debug code into production code. 

With Eager Execution, the Tensor interface remains stable, but internally, "EagerTensor" 
objects are used over "Tensor" objects. Therefore, TensorFlow code can be used and debugged 

like arbitrary python code (as using numpy for example). In the following, source code 

examples are given for clearification: 
 

a = tf.constant(np.array([1., 2., 3.])) 
 

This creates an object of type “tensorflow.python.framework.ops.Tensor” which is meant to be 

a node of a static execution graph running in a TensorFlow session. Outside the context of a 

session, this object is useless as the following code illustrates: 
 

a.eval() 
 

Calling the eval method on a Tensor object outside a TensorFlow session context returns the 
following error: 
 

No default session is registered. 
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This means, debugging by looking inside a Tensor object outside an execution graph running 

in a TensorFlow session is impossible. Now this example is extended to a vector dot product 
computation, by creating a second Tensor: 
 

b = tf.constant(np.array([4.,5.,6.])) 
 

A static execution graph is created by applying the dot product operation on a and b: 
 

c = tf.tensordot(a, b,1) 
 

Variable c now contains a reference to a static execution graph of type 
“tensorflow.python.framework.ops.Tensor” which can be passed to a TensorFlow session for 

execution: 
 

tf.Session().run(c) 
 

Considering the same example using Eager Execution, the same Tensors will be of type 

“tensorflow.python.framework.ops.EagerTensor”. The following code returns the content of 

Tensor a as numpy ndarray: 
 

a.numpy() 

Interestingly, the same code now executes without a TensorFlow session: 

a = tf.constant(np.array([1., 2., 3.])) 

b = tf.constant(np.array([4.,5.,6.])) 
c = tf.tensordot(a, b,1) 

print(c.numpy()) 

 

2.2. tf.function  
 
Creating linear algebra code using the TensorFlow API can be confusing. Therefore, 

TensorFlow 2.0 introduced an amazing feature which allows for transforming arbitrary python 

code into a TensorFlow execution graph by annotating a function, called autograph. In the 
following, this is illustrated by a small example minimizing a nested function. Considering a 

function f(x)=x-(6/7)*x-1/7 and a function g(x)= f(f(f(f(x)))). An x such that g(x)=0 needs to 

be found. This is known as the “Turnip Seller Problem” [7]. The solution can be obtained by 

setting the first derivative g(x)’=0. TensorFlow 1.X and 2.0 support automatic differentiation 
of execution graphs, obtaining g’(x) from g(x). But in TensorFlow 2.0 this graph can now be 

generated using pure python code. The following code expresses f(x) and g(x) in python and 

creates a TensorFlow execution graph by annotating the python functions f and g with 
“tf.function”: 
 

@tf.function 

def f(x): 
    return x-(6/7)*x-1/7 

 

@tf.function 

def g(x): 
    return f(f(f(f(x)))) 
 

As can be observed, besides the annotations, the code is plain python only. Interestingly, this 

code has not defined any python function at all. It defined two TensorFlow objects f and g of 
type “tensorflow.python.eager.def_function.Function”. In order to inspect those objects the 

following code can be used: 
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tf.autograph.to_code(f.python_function) 

This prints the code contents of f which has been created internally: 
def tf__f(x): 

  do_return = False 

  retval_ = ag__.UndefinedReturnValue() 

  do_return = True 
  retval_ = x - 6 / 7 * x - 1 / 7 

  cond = ag__.is_undefined_return(retval_) 

 
  def get_state(): 

    return () 

 

  def set_state(_): 
    pass 

 

  def if_true(): 
    retval_ = None 

    return retval_ 

 
  def if_false(): 

    return retval_ 

  retval_ = ag__.if_stmt(cond, if_true, if_false, get_state, set_state) 

  return retval_ 
 

In order to solve for g’(x)=0, x has to be defined as TensorFlow variable and y as constant to 

be used later to set g’(x) to zero: 
 

x = tf.Variable(0, trainable=True, dtype=tf.float64) 
y = tf.constant([0], dtype=tf.float64) 

 

The last step is to run a gradient descent loop to find the minimum of g’(x): 
 

variables = [x] 

optimizer = tf.optimizers.Adam(0.5) 

loss_object = tf.keras.losses.MeanAbsoluteError() 
with tf.GradientTape(persistent=True) as tape: 

    for i in range(1000): 

        y_pred = g(x) 
        loss = loss_object(y,y_pred) 

        grads = tape.gradient(loss, variables) 

        optimizer.apply_gradients(zip(grads, variables)) 
 

As x is defined as (the only) TensorFlow variable, x is constantly adjusted in order to minimize 

the optimization objective (setting g’(x) to zero) and after some iterations x converges to 400, 

which is the solution to this equation as explained in [7]. This example highlights the 

simplicity of creating complex TensorFlow Execution graphs with simple python functions. 
 

2.3. Keras as official high level API in TensorFlow 
 

Keras, released in March 2015, just seven months before TensorFlow, is a high level deep 
learning framework supporting various low level linear algebra frameworks, including 

TensorFlow. High level frameworks abstract away the complex linear algebra deep learning 

involves by introducing components like layers over operations on tensors. In 2017 Google 
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added Keras to the TensorFlow distribution and in 2019 declared it as official high level API 

in TensorFlow [8]. At a first glance, this doesn’t seem to make too much sense since 
TensorFlow could be used as execution engine for Keras anyway. And in addition, this means 

that two APIs have to be kept in sync. The Keras API of the official Keras framework and the 

Keras API within TensorFlow. The next section explains the benefits of offering a Keras 

compatible API within TensorFlow, but first the following example is used to illustrate – given 
the correct way of imports – the 1:1 compatibility of Keras code between standalone Keras and 

the Keras API within TensorFlow. Considering the following standalone Keras code: 
 

from keras import Sequential 

from keras.layers import Flatten, Dense 
from keras.activations import relu, softmax 

model = Sequential([ 

    Flatten(input_shape=(28, 28)), 

    Dense(128, activation=relu), 
    Dense(10, activation=softmax) 

]) 
 

Changing the imports makes the same code compile without any changes using the Keras API 
TensorFlow provides: 
 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Flatten, Dense 
from tensorflow.nn import relu 

from tensorflow.nn import softmax 

 

2.4. Distribution Strategies 
 

As stated above, to the reader it might look tedious to maintain two implementations of the 
Keras API but when used in TensorFlow, distribution becomes very simple. Although both, 

native Keras and the Keras API of TensorFlow share the same interface which makes code 

look identical, the underlying implementation differs. Therefore when Keras is used in 
conjunction with TensorFlow, it’s implementation supports distribution out of the box. The 

only necessity is running the Keras code within a context of a TensorFlow distribution 

strategy. This sounds complex, therefore the following code is given as an example for 

clearification: 
 

ps_strategy = tf.distribute.experimental.ParameterServerStrategy() 

with ps_strategy.scope(): 
     
    model = Sequential([ 

        Flatten(input_shape=(28, 28)), 

        Dense(128, activation=Relu), 

        Dense(10, activation=Softmax) 

    ]) 
     

    model.compile(optimizer='adam',  

              loss='sparse_categorical_crossentropy', 

              metrics=['accuracy']) 
 

    model.fit(train_images, train_labels, epochs=5) 
As can be seen, the only necessity is instantiating a distribution strategy object and running 

within the scope of it. Interestingly, distribution is not limited to training but also works for 
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distributed evaluation and prediction. It’s noteworthy that there exist different distribution 

strategies addressing distinct cluster configurations ranging from single node, multiple GPU 
environments to multi node, multiple GPU per node environments. Depending on the strategy 

in use, minor configuration needs to be made on the cluster nodes. Although it is beneficial to 

understand the implementation details of different strategies, TensorFlow’s documentation 

clearly aligns them to distinct cluster configurations [9]. Distribution strategies are not only 
supported by Keras but by any computation within TensorFlow through a dedicated API and 

also by TensorFlow Estimators, which as of TensorFlow 2.0 are all distribution strategy-

aware. TensorFlow Estimators are another high level API within TensorFlow, which is 
covered in the next subsection. 
 

2.5. TensorFlow Estimators 
 

TensorFlow Estimators are probably the most important driver towards consumable AI. 

Estimators serve as ready-made building blocks – greatly reducing complexity and skill 

requirements from developer side, by encapsulating everything necessary for model training, 

scoring and serving into a single object. As stated previously, Estimators can run on any kind 
of distributed cluster environment, including GPU and TPU clusters, within a TensorFlow 

distribution strategy scope, without changing the Estimator’s implementation. TensorFlow 

ships a growing list of pre-compiled estimators, ranging from Single Layer Neural Networks 
over Gradient Boosted Trees to simple linear models. Therefore, TensorFlow is entering the 

traditional machine learning space as well which is dominated by Scikit-Learn in the python 

community [10]. In order to understand estimators, in the following, an example is introduced: 
 

classifier = tf.estimator.LinearClassifier(feature_columns=[age]) 

classifier.train(train_inpf) 

result = classifier.evaluate(test_inpf) 
 

As can be seen, running a logistic regression classifier is as simple as executing three lines of 

code. Note that the age variable, implementing the feature_column interface, contains the 

schema / meta information of a single column/feature, whereas train_inpf and test_inpf are 

functions converting underlying data to the required format (e.g. dictionary of Tensors). This 
concept stems from the idea that the same data preprocessing pipeline has to be reusable for 

training, testing, scoring and serving [11]. Reusability and operationalization is a very active 

area of research and development [12]. Those features are extensively supported through 
TensorFlow Estimators. 
 

3. TENSORFLOW EXTENDED (TFX) PIPELINES 
 

As touched at the end of the previous section, developer focus shifts away from simple model 

development and focus on operationalization, Explainability [13], Fairness [14], Robustness 
[15] and Data Lineage [16] drastically increased over the last year. Therefore, a top level 

section is dedicated to TFX Pipelines. One has to distinguish between the TFX API [17], 

which provides low level implementations of different transformation and aggregation steps, 
and TFX Pipelines which facilitate development of reusable and explainable AI workflows. 

It’s modules are explained in the following subsections. 

 

3.1. TFX Pipelines ExampleGen 
 

Although the name might be misleading, responsible for data loading, ExampleGen is the first 
stage of every TFX Pipeline. Implementing complex data loading code using the tf.data API 

can be avoided therefore. As in most machine learning frameworks like scikit-learn, SparkML 

and R, reading a CSV file can be done in one line of code. Using the tf.data API this needs a 
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whole code block. Using ExampleGen, the task now also boils down to one line of code like 

this: 
 

example_gen = CsvExampleGen(csv_input('floorsensordata2604.csv')) 
 

This creates an instance of ExampleGen based on the file floorsensordata2604.csv. Instances 

of ExampleGen are used by downstream stages of TFX Pipelines. ExampleGen also takes care 

of data partitioning for distributed training as well as implementing the ML best practices in 

data shuffling [18]. 
 

3.2. TFX Data Validation 
 

Data validation is one of the first steps in every machine learning project [19] and a variety of 

tools exist [20]. TFX Data Validation, which is a low level API called by TFX Pipeline 

components, casts these steps in a nicely documented and feature rich tool suite with three 
main focus areas: Schema Based Example Validation, Training-Serving Skew Detection, Drift 

Detection. In  Schema Based Example Validation, TensorFlow Extended Data Validation 

computes statistics on a given data set to be compared against a defined schema. Alternatively, 

schemas can be inferred from a given data set as well. A distinct feature of TFX are schema 
environments, which allow for different schemas under different circumstances, e.g. removal 

of a label column in a model serving environment. Training-Serving Skew Detection detects 

differences between training and serving data including changes in schema, data distributions 
and categorical imbalances. Drift Detection raises alerts if new, unseen data appears to be 

abnormal to the previously seen examples and a predefined threshold is exceeded. Currently, 

only L-infinity distance is supported [21]. Finally, TensorFlow Extended Data Validation also 

supports interactive tooling based on the facets [22] project which can be embedded in jupyter 
notebooks. Since DataValidation is a low level API, it’s usage is exemplified through 

StatisticsGen and ExampleValidator, which are introduced in the next subsections.  
 

3.3. TFX Pipelines StatisticsGen 
 

StatisticsGen [23] creates feature statistics for the downstream TFX Pipeline. This is a very 

important object containing meta information about the data. Components like 
SchemaGenerator and ExampleValidator, which will be introduced below, are making use of 

those statistics. Again, computing those statistics resembles into one line of code: 

 

stats = components.StatisticsGen( 

      input_data=example_gen.outputs.examples, 

      name='compute-eval-stats' 

      ) 
 

Now, the stats object can be passed as parameters to downstream pipeline components as we 

can see in the next section. 
 

3.4. TFX Pipelines SchemaGen 
 

SchemaGen [24] is a component which infers a schema from a given dataset. A schema 
includes data types for each feature as well as expected value ranges and nullability for 

downstream validity checks. It makes use of the stats object explained in the previous section. 

Again, only a single line of code is required in order to execute this stage: 
 

infered_schema = components.SchemaGen(stats=stats.outputs.output) 
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Using the infered_schema object in a pipeline reliefs the developer from maintaining a schema 

manually. Changes to schemas, e.g. additions or deletions of unused features can be handled 
without code changes therefore. 
 

3.5.TFX Pipelines ExampleValidator 
 

ExampleValidator [25] uses the data validator API to detect data quality issues by creating 
relevant validation statistics using a schema (implicitly created by SchemaGen or explicitly 

defined)  and StatisticsGen objects as input. A single code line creates this validation statistics 

object: 
 

validate_stats = components.ExampleValidator( 

      stats=stats.outputs.output, 

      schema=infered_schema.outputs.output 

      ) 
 

This object contains statistics supported by the TFX Data Validator API and can be inspected 

interactively or thresholds can be defined to control (e.g. abort) downstream execution of a 

TFX Pipeline. 
 

3.6. TFX Pipelines Transform 
 

Transform [26] is core for any feature transformation and engineering task. It uses the TFX 

Transform low level API and facilitates transformation tasks by providing a rich set of 
predefined transformation functions [27]. Although using existing transformations is simple, it 

is important to note that implementing a custom transformation is a non-trivial task which 

requires deep understanding on Tensor operations. On the other hand, any type of arbitrary 
data transformation can be accomplished, making this stage a key feature of TFX Pipelines, 

ensuring that unsupported transformations can be implemented manually. 
 

3.7. TFX Pipelines Trainer 
 

Trainer [28] encapsulates either a TensorFlow Estimator or a TensorFlow Keras API Model in order to 

make them available as a component within a TFX Pipeline. A Trainer consumes examples and a 

schema. It creates a SavedModel or EvalSavedModel object. SavedModel is the standard model export 

format of TensorFlow. EvalSavedModel is explained in the next subsection. 

 

3.8. TFX Pipelines Evaluator 
 
Evaluator [29] creates performance statistics on a model created by the Trainer component. 

Therefore it must be saved as EvalSavedModel over SavedModel since EvalSavedModel 

contains additional information needed by the Evaluator in order to compute statistics. Those 

statistics are published to TensorFlow Metadata [30], a central TFX metadata store, for 

downstream analysis. 

3.9. TFX Pipelines ModelValidator 
 

ModelValidator [31] uses a schema and statistics created upstream in order to mark a model as 

deployable (blessing). This component enables a TFX Pipeline to be automatically deployed 

after a model has been retrained on new data because model performance metrics are 
automatically checked before deployment. 
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3.10. TFX Pipelines Pusher 
 

Pusher [32] is a simple gatekeeper component which checks the results of a ModelValidator 

component and if the “blessing” was received, it saves the model to a specified target 

including TensorFlow Serving, TensorFlow.js or TensorFlow Lite. 
 

4. KUBEFLOW PIPELINES 
 

4.1. Kubernetes 
 

Kubernetes [33], a container orchestrator initially released by Google, is transforming IT 

operations in cloud and enterprise data centers worldwide [34].  

 
 

Figure 2.  Kubernetes Architecture Overview. 

 

Figure 2 illustrates the basic components of Kubernetes. The Master Node runs the Controller-
Manager which is core for container orchestrations. E.g. it constantly verifies the is-requested 

difference and in case a container crashed, a replacement is scheduled to be created. On the 

Worker Node, a kubelet is responsible, among other tasks, to start and stop individual 
containers. In Kubernetes, a Pod groups a set of Containers into a namespace, sharing 

resources, e.g. virtual network interfaces. This makes Kubernetes a lightweight abstraction 

layer over a set of data center resources to be consumed by applications materialized as Pod. 
 

4.2. KubeFlow  
 

KubeFlow [35] is a workload agnostic pipeline execution framework. This means, every 
application which can be packaged as a container can be run within KubeFlow. For example, 

Apache Spark is supported natively. Individual steps of a data processing pipeline are divided 

into tasks which KubeFlow provisions individually on Kubernetes. This mitigates a common 
resource assignment problem for high variational resource demands between intermediate 

pipeline tasks.  
 

4.3. KubeFlow as engine for TFX Pipelines 

 
Although, TFX Pipelines are workflow engine agnostic, currently, implementations for 

Apache AirFlow [36] and KubeFlow exist. Since KubeFlow runs natively on Kubernetes, its 

particularly interesting as scalable TFX Pipelines execution engine, benefitting from 
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Kubernetes scalability and wide industry adoption. A TFX Pipeline can be imported into 

KubeFlow. After importing, a TFX Pipeline, as well as all other types of KubeFlow Pipelines, 
is available for execution (Figure 3). Before execution, a set of pipeline specific, predefined 

parameters can be set (e.g. path to data source). A running pipeline is called an experiment. 
 

 
 

Figure 3.  KubeFlow Pipelines. An overview of available (deployed) Pipelines. 

 

Experiments are running on Kubernetes. Each stage of a pipeline runs in a separate Pod. 

Assets between stages are shared via file system. Figure 4 shows a screen shot of a 
successfully ran experiment and all interactions between individual stages as graph. The green 

arrow indicates successful completion. Resource limitations can be assigned to each individual 

stage allowing for scale-up and scale-out on Kubernetes. 

 

 
 

 Figure 4.  KubeFlow Pipelines. Single Experiment, all stages successfully ran. 

 

 

 

 



Computer Science & Information Technology (CS & IT)                                    29 

 

5. INDUSTRY AND ENTERPRISE CONSIDERATIONS ON MACHINE 

LEARNING FRAMEWORKS TENSORFLOW, KERAS AND PYTORCH 
 

The usage of Machine Learning Frameworks like Tensorflow 2.0, Keras and Pytorch is very 

promising for enterprises in many industries due to its evident and potential business value. 

Generating undiscovered, critical insights and predictive trends about customer behavior, 
internal fraud and/or market trends are key use cases leveraged by those Machine Learning 

capabilities leading to higher revenue while driving innovative shifts. 
 

Dedicated Machine Learning Experts, Data Engineers and Scientists care for an end-to-end 

data quality within their pipelines, while also the algorithmic layer is a crucial element 
underpinned by the usability and separation of concerns within frameworks. The Process for 

Machine Learning Pipelines may vary between people and organizations. A Standard 

Enterprise Production template is suggested as follows: 

 

 
 

Latest KubeFlow and TensorFlow Extended (TFX) distributions come with major key 
advantages: 
 

Manage: Adaptability / Complexity / Consistency / Large Data Wrangling / Versioning  

Enhance: Model Quality / Isolation / Portability / Training Quality / User Experience 
Important architectural questions need to be addressed within enterprises of various industries 

due to technical and compliance factors. For instance, Data consistency, information age and 

network latency are factors and requirements driving architectural decisions like data location, 

integration and cloud deployment models. 
 

Traditional enterprises usually protect their data on-premises while facing questions like 

moving data to a private, hybrid or public clouds. Instead of moving data to compute engines, 

the opposite is possible. Leaving data where they're hosted is often a better option if 
computing artefacts can be mobilized to the data host. This leads to a potential model where 

Machine Learning Frameworks like TensorFlow 2.0 require mobility. 

  
Container technology provide mobile encapsulation of functionality. If the data host is able to 

host containers, it is a feasible alternative. Since this is not always the case it becomes a data 

and service integration architecture question. Cloud Computing does not make the integration 
architecture less complex, it raises new issues which go far beyond Machine Learning 

Frameworks. The stated complexity of instrumenting Machine Learning Frameworks like 

TensorFlow 2.0 are evident, while the industry solutions are usually individual to the related 
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enterprise context. It requires the ML pipelines to manage, operationalize and bring into 

production across different environments, for instance like the following illustration. 
TensorFlow 2.0 and KubeFlow support this. 
 

The context of Machine Learning Frameworks is wider for enterprises than it seems from a 

higher use case and business value level. The materialization of Machine Learning promises 

imply the resolution of complex problems on Data Placement, Integration Architecture and 
Cloud Deployment. 
 

To reach lean usage of Machine Learning Models exposed to business users by API’s an agile 

Design and Development is more efficient thus recommended. Among others, Flexibility and 
Adaptability are guiding principles taking decisions on architectural questions in the context of 

Machine Learning and beyond. And regular Architecture Testing is an obligatory task, also 

since developments in technology and socio-economy are very fast and impactful. 
 

6. CONCLUSIONS 
 

As can be seen from the latest developments in the ecosystem, TensorFlow aggressively 
pushes into various directions to establish a de-facto standard in AI. The latest improvements 

of TensorFlow 2.0 are directed towards simplicity in model development and scaling. TFX 

Pipelines address DevOps and CICD requirements and compatibility to KubeFlow adds 
scalability into the mix. As KubeFlow is not only limited to run TFX Pipelines it can co-exist 

with other established technologies, including Apache Spark, the current standard for large 

scale ETL for example. This minimizes technology lock-in and provides a seamless 
technology migration path between different tools and frameworks as their popularity rises and 

falls. To reach lean usage of Machine Learning Models exposed to business users by API’s an 

agile Design and Development is more efficient thus recommended. Flexibility and 

Adaptability are guiding principles taking decisions on architectural questions in the context of 
Machine Learning and beyond. Testing and adopting the architecture regularly is obligatory 

since developments in technology and socio-economy are very fast. 
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