
Natarajan Meghanathan et al. (Eds): SIPP, BIGML, DaKM, SOEN, AISC - 2020

pp. 75-82, 2020. © CS & IT-CSCP 2020 DOI: 10.5121/csit.2020.100206

FROM QUALITY ASSURANCE TO QUALITY
ENGINEERING FOR DIGITAL

TRANSFORMATION

Kiran Kumaar CNK

Capgemini India Private Limited, Inside Divyasree Techno Park, Kundalahalli,

Brookefield, Bengaluru, Karnataka 560037, India

ABSTRACT

Defects are one of the seven prominent wastes in lean process that arises out of the failure of a

product or functionality from meeting customer expectations. These defects, in turn, can cause

rework and redeployment of that product or functionality again, which costs valuable time, effort,

and money. As per the survey, most of the clients invest much time, energy, and money in fixing

production defects.

This paper provides information about ways to move into quality engineering from quality

assurance mode for digital transformation by diagnostic, Predictive & Prescriptive approaches, it

also outlines the overall increase in quality observations, given QA shift left and continuous

delivery through Agile with the integration of analytics and toolbox.

KEYWORDS

Diagnostic, Predictive & Prescriptive approaches, continuous delivery through Agile

1. INTRODUCTION

In this contemporary world, the quality of the product determines the furthering and sustaining of

any software business. Currently, quality assurance (QA) plays a continuous and consistent role

in improving the QA process in most of the software businesses to ensuring that quality of the

product, i.e., is enhanced by reducing and eliminating defects as clients invest much time, effort

and money in fixing defects. This process of quality assurance is achieved by applicationlevel

testing, test automation, inward-focused and descriptive mode.

On the other hand, for the actual digital transformation, quality of the product must be

concatenated and engineered rather than just only being assured. It is chieved by migrating from

quality assurance to quality engineering. The framework of quality engineering comprises of

customer-focused, diagnostic, predictive, prescriptive, Shift left & continuous delivery through

agile.

76 Computer Science & Information Technology (CS & IT)

The main objective of implementation of quality engineering are as follows,

a. QA role in agility and DevOps

b. Integration of Analytics

c. Test driven development in agile mode

d. Structured Testing process & Adaptivity

2. QA ROLE IN ‘AGILITY’ AND ‘DEVOPS’

Agile refers to an incremental and iterative approach that focuses on collaboration, continuous

customer feedback, and small, rapid releases. DevOps is a concept of executing end to end

engineering processes that focuses on constant testing and delivery, which brings in both

development and operation team together.

In this environment of agility in combination with DevOps, the tester performs quality

engineering and assurance in all stages of the Agile development phase as opposed to

participating only at the end of the cycle. During Requirement Analysis & Grooming phase

(Stage1), QA can synergize with Business Analysts to picture the client's viewpoint, to ensure

quality at the requirement level, also to ensure that acceptance criteria have covered all

validations points and to eradicate defect ambiguity profoundly. In the Planning & Estimation

phase (stage 2), QA plays a vital role through effective communication & brainstorming that

helps in arriving at accurate estimations and in the effective discharge of SCRUM events,

including DEMO.

In the next Functional Analysis & Design phase (Stage 3), QA plays a pivotal role to prevent

defects upfront, Which could be thoroughly established by keen story/ requirement analysis,

understanding junit coverages from Dev team, Designing high-level test scenarios and providing

walkthrough of the same to all stakeholders like BA, Dev, Architect, Product owner, etc., on a

scheduled ‘Test scenario walkthrough meet’ and finally coming out with a master test plan

document i.e., inclusion of unit, SIT and Regression test scenarios/cases based on the discussion

which binds insights and inputs that brewed out in the ‘Test scenario walkthrough meet’. This

way, we ensure that all stakeholders are on the same page, removing discrepancies in approaches

and eliminating requirement ambiguousness. Thus, filling up the gap in understanding in advance

and effectively proceeding with a concrete plan.

In the implementation phase (stage 4), QA can effectively perform technical normalization by

performing API / web service testing or smoke testing in Dev Env, to further minimize the

proximity of defects. Finally, in the quality assurance phase (Stage 5), QA can engineer and

assure the quality by incorporating different layers of testing like Build Verification Testing

(BVT, without which QA do not proceed with SIT), full-fledged SIT, Regression (mostly

automated) and smart testing like crowd testing. Refer to figure 1 for an overview of testing types

and corresponding responsibilities. [1] [2]

Computer Science & Information Technology (CS & IT) 77

Figure 1. Testing types and Responsibilities

3. INTEGRATION OF ANALYTICS

In this context, analytics enables testers to evaluate the performance of the test outcome. It can be

tracked with the help of various potential metrics and parameters involved in the process of a test

engineering exercise. In other words, the health quotient of the software product that is being

tested is well being measured. The final status of the test results provides us with a perfect picture

of the state of functionalities of the tested software. Refer to figure 2 to have an overview of

prominent test analytics [3]

Figure 2. Prominent test analytics

78 Computer Science & Information Technology (CS & IT)

4. TEST DRIVEN DEVELOPMENT IN AGILE MODE

Test-driven development (TDD) is one of the common practices of Agile core development. It is

one of the engineering techniques for developing the software in collaboration where the code of

programming design and its corresponding testing are executed in series of micro-iterations. It is

an evolutionary approach that combines test first – Development next approach. The very purpose

of this TDD is to focus on customer specification and not an end-phase validation primarily.

Refactoring is also associated with this process, and it plays an important role in restructuring the

code piece. Further, the tests should succeed to reduce complexity and enhance its

understandability, maintainability, and clarity. Refer to figure 3 for an overview of the test-first

development process. There are two levels of TDD. They are as follows, [4]

Figure 3. Test-first development process

4.1. Acceptance TDD (ATDD)

With ATDD you write a single acceptance test. This test fulfils the requirement of the

specification or satisfies the behavior of the system. After that, write just enough

production/functionality code to fulfil that acceptance test. The acceptance test focuses on the

overall behavior of the system. ATDD also was known as Behavioural Driven Development

(BDD).

Computer Science & Information Technology (CS & IT) 79

4.2. Developer TDD

With Developer TDD you write a single developer test i.e., unit test and then just enough

production code to fulfill that test. The unit test focuses on every small functionality of the

system. Developer TDD is simply called as TDD.

The main goal of ATDD and TDD is to specify detailed, executable requirements for your

solution on a just in time (JIT) basis. JIT means taking only those requirements into consideration

that are needed in the system. So, increase efficiency and providing accurate coverage. Refer to

figure 4 to know how acceptance TDD and development TDD work hand in hand.[4]

Figure 4. How acceptance TDD and developer TDD work together

5. STRUCTURED TESTING PROCESS & ADAPTIVITY

The structured testing process is one in which we would come up with a master test plan that

comprises of test scenarios and test cases of unit testing, SIT and UAT managed together. The

primary objective of designing a master testing plan document is to enable inhibition-free

coordination and communication between different testing levels. By managing all testing

activities on the same platform, we would be able to have a check on a few major aspects. First, it

provides transparency between different phases of testing as we get to know what exactly covered

as part of each testing phase. This way, we could carry out precise validation rather than

exhaustive testing with redundancies. Second, we could eliminate any miss in scenario coverage

80 Computer Science & Information Technology (CS & IT)

with a preconceived assumption. Finally, it further strengthens the core principle of agile. i.e.,

collaboration. Figure 5 illustrates the structured testing process.

Adaptivity is more of a combating process where testers from all phases pool together and learn

from experience and response to changes instantly. It also ensures the QA team of different

phases to stay on the same page with a clear understanding of in-scopes and out of scopes. This

would eventually enable QA to provide strategic inputs on business functionalities on further

development. Figure 6 illustrates the flow of adaptivity.

Figure 5. Structured testing Process

Figure 6 illustrates the flow of adaptivity

Computer Science & Information Technology (CS & IT) 81

6. RESULTS FROM THE PILOT PHASE

Having run a pilot phase by implementing this approach across two digitally transformed projects

of team capacity 17 and 9 each in the automotive domain, we have observed the below illustrated

results. As it goes by, there is almost 50 – 60 % of the reduction of overall time spent in the test

preparation phase that includes data settings, test scenario design, test case design, review and

review comment incorporation. Next, to be keenly observed, there is almost an 80 to 90%

reduction in the defect leakage in production environment due to systematic working in a

preventive defect mode rather than defect deduction mode. Also, almost 20 – 25 % of the time-

saving in the overall test duration. Finally, this approach persists in providing us with a channel to

manage and improve the testing process periodically and dynamically.

7. CONCLUSIONS

Hereby I conclude that by employing the above suggested quality engineering framework, we can

dramatically increase the quality of the deliverables. This model also strongly advocates for the

saying ‘(Defect) Prevention is always better than cure.’ This, on the other hand, helps in

continuous testing process improvement and in testing advancements like automation, Robotic

Automation process, etc. Finally, the tester gets transformed as ‘Quality Engineer and assurer’ by

acquiring complete knowledge from functional, business, and technical spheres.

8. ACKNOWLEDGEMENTS

I would like to thank all my peers, managers, and mentors for their support, directly and

indirectly, helping me to in making this article

82 Computer Science & Information Technology (CS & IT)

9. REFERENCES

[1]Tridibesh Satpathy, (2017) A Comprehensive Guide to Deliver Projects using Scrum -Third Edition,

SCRUMstudy™, a brand of VMEdu, Inc.

[2]Saliya Sajith Samarawickrama, (2018) “Continuous scrum: a framework to enhance scrum with Devops,

2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer)IEEE

[3]Harsh Vardhan (2019), “Applying Data Analytics to Test Automation”, Stickyminds, TechWell Corp.

[4]Max Guernsey Iii, (2013) Test-Driven Database Development: Unlocking Agility-1st Edition, Net

Objectives Lean-Agile Series, Addison-Wesley Professional

AUTHORS

Kiran Kumaar CNK works as a Senior Agile Quality Engineer with Capgemini

India Pvt Limited. Currently, he is working on an onsite assignment at Capgemini,

Netherlands. He holds B. Tech & MBA (Executive program in project

management). He possesses over 10 years of experience in IT industry,

predominantly in Insurance, automotive and public sectors. He is a certified

Scrum Master and certified in ISTQB (advanced level) as well. Unequivocally, he

possesses good presentation and communication skills that allowed him, from

offshore, efficiently collaborate with different onshore clients and stakeholders

across countries like US, Germany, Poland, Morocco, France, UK & Netherlands.

