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ABSTRACT

The animal feed supply chain to farm, mainly represented by the feed suppliers and livestock farm-

ers, currently faces great inefficiencies due to outdated supply chain management. Stakeholders

struggle with the timing and quantity evaluation when restocking their feed bins, significantly affect-

ing cost and labour efficiency. However, the lack of accurate and cost-effective sensors to measure

stock levels of solid materials stored in containers and open piles is preventing the implementation

of these strategies in a large number of industrial sectors. In these cases, traditional technologies

cannot offer a convenient solution due to an inevitable trade-off between accuracy and cost. This

work develops an integral feedstock management system to optimise the entire supply chain. A new

monitoring system based on an RGB-D sensor is presented as well as the data processing pipeline

from raw depth measurements to bin specific daily consumption rates.
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1. Introduction

As the global human population grows and logistics improve, livestock production (pig
meat, poultry, beef, cattle, etc.) is forecast to grow further. However, satisfying increasing
and changing demands for animal-source foods requires a further shift from extensive
to intensive-scale operations. This intensification means a progressive introduction of
industrially manufactured compound feeds for the livestock sector. Commercial animal
feed companies are best placed to provide such formulated feeds, but there is a strong
pressure to optimize the use of resources while providing the lowest cost of production to
the farmer. Compound feed production is a global growing industry with a one billion tones
produced yearly worth of $400 billion. The EU28 is the third largest feed producer in the
world (16% share), along with USA (17%) and China (18%). By 2030, feed production is
predicted to double due to the increase mechanization and meat consumption in emerging
economies [1, 2].

The animal feed supply chain to farm, mainly represented by feed suppliers and livestock
farmers, suffer from great inefficiencies for both stakeholders. These inefficiencies are due
to a very traditional and inefficient supply chain management, more precisely: a) Bad es-
timations of feedstocks by the farmer, b) Uncertainty of feed demand and c) Obsolete bin
monitoring and restocking methods [3]. The compound feed industry is also competitive
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Figure 1: Activity diagram of an animal-feed delivery supply chain.

in that it works in a market which has essentially achieved maturity. Following the inten-
sification trend, they have been progressively merged into large companies that perform
under the integrated production system, where they aim to control the whole or partial
process of animal-source food production. Although feed management is primarily the
responsibility of the farmer, most of the big players (Cargill, Nutreco, ForFarmers, Vall
Companys, El Pozo, etc.) of this ’livestock intensification’ are adopting precision feeding
schemes from farrowing to fattening farms which can be a highly effective tool in enabling
a reduction of feed intake per animal while also maximizing individual growth rates [4].
It enables the provision of the right amount of feed, in the right nutrient composition,
at the right time. However, main efforts to connect on-farm feeding activities logistics of
getting feed to farm have hitherto been unsuccessful due to the difficulties to accurately
measure animal farm feed-stocks. Nowadays, big corporations are investing to narrow this
gap as they recognize that it is essential to plan the logistics of feed movements from the
factory to the farm site to protect the feed as much as possible as well as seek for increased
efficiency for supply chain players, boosting business profitability.

This work presents a new bin measurement system and supporting data processing meth-
ods to better estimate the volume and weight of stored compound feed in livestock farms.
Additionally, this work aims to set the basis to optimize the animal feed supply chain
(Figure 1) for global leaders and farmers by developing a feedstock remote monitoring
system, validate different business processes, as well as the scalability of the hardware
solution.

The remainder of this paper is structured as follows: related work and details on the case
study and the problem considered in this paper are provided in Section Related Work;
Section Materials and Methods outlines the proposed solution; in Section Results case
studies are described and results are analyzed; Afterwards, in Section Technology Adoption
results are discussed along with other insights of the work; Finally, Section Conclusions
and Future Research highlights the main contributions of this work.
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2. Related Work

There are few kinds of solutions in the market that have attempted to provide a solution to
remotely monitor feedstocks in livestock farms bins. They either measure bin’s weight or
measure the feed level inside the bin. The first approach (weight) uses ”load cells”, which
are installed in the bin’s support structure. The second approach (level) uses level sensors
usually based on cable, radar, ultrasonic or guided wave technology. Additionally, it exists
similar products to our proposal present on the market (e.g., 3DLevelScanner Non-Contact
Sensor by BinMaster [5]). These sensors make use of a complex radar system to measure a
3D feed surface as our proposal. Even though these sensors are completely out of scope for
our environment due to: a) their high cost, what makes large deployments not affordable
and b) the physical principle they rely on, that do not allow them to provide accurate
and reliable data in small bins like the ones our environment present (fibber manufactured
bins with a cylinder diameter of up to 3 meters).To access the data remotely, they often
use standard data loggers and GPRS modems with private protocols. Measuring stock
level within the bin is difficult since the feed surface is uneven (the difference between the
lowest and the highest points can easily reach 2 meters). Since level sensors only measure
the distance between the device and a single point in the feed’s surface, measures have a
lack of accuracy [6]. The only solution in the market able to provide accurate measures are
the load cells. However, their installation costs are extremely high (e3,000/bin including
installation) for the market niche this work targets. Moreover, devices with the lowest
price – ultrasonic and guided wave radars – cost per bin e1, 200 plus e150 to e300 for
annual maintenance and communication services. In addition, the functionality obtained
by suppliers’ standard software is limited to a daily record of the levels in the bins. If the
customer requires a higher level of integration (which is the most common situation, since
a single feed supplier manages several farms), the customization will raise even more the
final price. With regards sensor network deployment and operations scalability, most of the
solutions which are already in the market must be mains powered, raises the installation
costs. Additionally, some farms have electricity generators which are only active for certain
hours per week, failing to supply all day-round power to the devices and making them
non-operable most of the time. Besides, the smart services offered by these devices do not
go beyond checking the bin’s feed level from the online platform and receiving an alert if
they are low. They do not combine and analyse the data gathered from different devices,
so they cannot forecast the feed demand and optimize inventories, production batches,
delivery routes and raw materials purchases. Most of these devices suffer of the same
pain, uncertain profitability, that avoids them to obtain a successful market uptake. Of
course, several sensors are present in the literature that try to address similar problems in
the smart city environment like the waste collection [7, 8, 9]. Even though, non of them
reach the required accuracy to measure bulk solids stored into farm bins.

The availability of this remote monitoring systems will enables the use of smarter feed
logistics platforms (SFLP). With gathered real-time feedstock data, and production data
of both stakeholders (farmers & suppliers) taken mainly from suppliers’ Information Man-
agement Systems (IMS). The SFLP would work in three areas: a) Feed demand forecast
to predict the feed demand and the future stock levels in the farms, based on current stock
levels and production data shared by farmers, b) Automatic restocking process that auto-
matically would generate the restocking orders based on the selected restocking policies.
Farmers would receive alerts and would be able to confirm the restocking orders with a
simple click and c) Feed suppliers can take full responsibility of the feedstocks (Vendor
Managed Inventory, VMI) and process the restocking orders automatically, taking into
account current stock levels, feed demand forecast, production data, and cost functions
defined by the supplier. The SFLP will provide a solution to mitigate the uncertainty of
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demand, help smooth the peaks of production allowing smaller buffers of inventory and
reduce transport costs optimizing the shipping routes. SFLP will allow the feed plant to
improve several business processes such as feed orders processing, ingredient purchasing,
feed production, product storage, and delivery schedules. Research on collaborative supply
chain strategies constitutes promising concepts in the establishment of sustainable freight
transportation systems [10]. Even though, the literature on this specific vertical of the well
known VMI applied to livestock feed to farm is really scarce. There is an interesting work,
CHAINFEED [11], where the authors introduced this new strategy for the feed producers
to improve their supply chain performance. After modelling statistically the feed supply
chain and simulating distinct replenishment scenarios, they highlighted the importance of
having updated stock information to reduce model’s uncertainty.

3. Materials and Methods

This work is part of the IoFEED project (https://www.iof2020.eu), that aims to monitor
approximately 325 bins and validate two distinct business processes carried out between
farmers and feed manufacturers. Initially, two test-beds have been set in two distinct
countries, the United Kingdom (UK) and Spain (ES). The UK has two distinct partners
(UK1 and UK2) and 25 bins each, and Spain has a single partner (ES1) with 50 devices.
After this initial phase, the number of monitored bins will increase up to 175 more for
the Spanish pilot. Two business processes will be put to test in this project proving cost-
benefit and cost-effectiveness: (i) business process 1 (BP1), focused on farmers; and (ii)
business process 2 (BP2), focused on helping to feed manufacturers. BP1 aims to provide
the best solution for farmers to achieve a seamless procedure to measure bins’ stock, and
provide the best and accurate real-time information for daily tracking of feed consume in
the farm to assess feeding costs and help the farmer to increase his feed conversion rate,
and a reduction in stock ruptures. Additionally to BP1 benefits, BP2 aims on changing
the business strategy moving the workload balance of maintaining the feedstock to the
feed supplier, so they can handle and manage the correct and exact amount of feed for
each bin that covers their client needs (the farmer) while, at the same time, optimizing
the supply chain cost (production, own stocks, product shipping / distribution, etc.).

3.1. Remote monitoring system

The key enabling technology consists of a camera with a commodity RGB-D sensor that
captures colour images along with dense pixel-wise depth information in real-time. With
an embedded computer vision algorithm, it provides much more accuracy (error < 3%)
than traditional single-point level sensors (error = 15 − 20%). Instead of using a single
point measure like lasers or ultrasound, a matrix of 320x240 readings over the feed’s
surface is taken. This device has been designed for providing up to 24 readings per day. It
is battery powered with an integrated solar panel for recharging the battery pack. Each
device mounts with a M2M module (GPRS/3G) that allows the use of the cellular network
when available. Electronics, batteries and energy harvesting have been configured to lower
the energy consumption an enable a live-span of one month without solar contribution.

This device has been designed to provide an easy installation. Figure 3 shows how in four
steps the sensor is placed by drilling a hole in the top cone, attaching an adapter ring and
screwing the sensor. In case a sensor has to be removed, a metal cap is also provided. It
does not require any cleaning or maintenance after installation since batteries must not
be substituted and it has a self-cleaning system against dust and condensation (Figure 2).
As it is shown in Figure 4, the sensor measures distance from the camera (placed in
the top of the bin) to the feed surface. Using this depth map (320x240 distances), the
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Figure 2: From left to right, the 3d sensor, communication electronics, and self-cleaning
system.

sensor: (i) performs a 3D reconstruction of the feed surface; (ii) intersects this surface
with the user-defined bin geometry; and (iii) estimates the remaining volume. In the
following subsection, it is described the data processing applied from depth map to volume
estimation.

Figure 3: Four steps of the sensor installation procedure with (1) cherry picker placement,
(2) hole marking and (3) drilling, (4) adapter ring placement and sensor fixation.

The FIWARE IoT stack has been used as an Open Initiative for this project [12] to develop
cloud systems. FIWARE architecture has been demonstrated as a powerful and reliable
solution for the implementation of IoT based applications. One of the key aspects of
this architecture is the adoption of the OMA NGSI Context Management standard to
manage and exchange context information about context Entities [13]. I that sense, the
Orion Context Broker has been used to model data. The Orion Context Broker is an
implementation of the Publish/Subscribe Context Broker Generic Enabler. It decouples
the consumers of data, like end users and M2M applications, from the devices, objects and
resources that produce the data. The Context Broker provides an API that implements
the NGSI-9 and NGSI-10 Context APIs [14]. It enables the interoperability of the systems
with other use cases of the IOF2020 programme.
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Figure 4: Illustrative example of feed bin (a), single shoot measured disparity maps (b
top) and IR channel (b bottom) and feed surface reconstruction in distinct time steps (c-f)
while feed is consumed.
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Figure 5: Domain model for the livestock feed remote monitoring system.

Figure 5 shows how is organized and structured the knowledge of our problem. Distinct
actors are contributing to the system. Apart from the Farmer and the Feed manufacturer,
also technical experts are informing the system with data related to the specific feed diets
delivered to farms. After data gathering, raw data is sent to the cloud systems to be
processed.
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3.1.1. From Depth Map to Volume

Although the process applied to convert the raw depth map into the scalar volume has been
designed specifically for our data pipeline, it is commonly known in the literature [15, 16].
A free-space approach is applied to estimate the bin’s current stock. Hence, this free-
space based method allows calculating the remaining empty volume of a bin by using the
measured depth map from the inner bin and the measured or informed bin diameter. It
is important to point out that the described method supports the free placement of the
sensor on any top cone position. Hence, if the camera is not centred and perpendicular
to the surface, it is required to geometrically transform the inferred inner surface. The
geometric transformation values can be introduced manually given the camera pose and
location or automatically extracted using the bin walls (if they are presents in the depth
map).
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4. Quality 
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Figure 6: Flow chart of procedure used to determine the volume.

Figure 6 shows the pipeline applied to estimate remaining volume for each bin. First, the
point cloud generation (step 1), in this phase we translate each single pixel value from
the depth map to a real-world coordinate using the calibration matrix. Next step implies
geometrically transform the obtained mesh to get it aligned with the origin of coordinates
(step 2), in our case, the central axis of the bin at its maximum high. Bin walls are removed
from 3D mesh by filtering via face normal filtering (step 3). This procedure enables us
to effectively remove points that do not belong to the feed surface. Afterwards, the point
cloud is decimated by removing outliers within a predefined neighbourhood in a fixed
radius. A quality check is performed to assess how reliable is the information available (step
4). A threshold (TH) is set experimentally, to decide including previously capture depth
maps into the current measurement to fill the gaps by overlapping two or more historical
depth maps. We also exclude the points that do not belong to the theoretical geometry of
the bin. The surface sampling rate is quantified by comparing the theoretical maximum
bin area that can be measured and the relative area described by each depth map. Hence,
only feed surface points score to this ratio. The remaining surface is approximated by a
combination of multi quadratic radial basis functions (RBF [17]). RBF allows us to create
a clean and smooth point grid (step 5) to recover missing zones produced by sunlight,
temperature or other external factors as will be discussed on Section Results. Finally, the
interpolated surface is triangulated using the Delaunay algorithm [18] on the projected
points in the x, y plane (step 6). Then the surface of each triangle is multiplied by its
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mean depth (z) value to obtain the total empty volume. We infer the remaining volume
by subtracting the calculated empty volume to the total bin volume (step 7). All this
pipeline is currently executed on our cloud systems. Even though, each device performs
an image acquisition process to ensure data quality before sending raw depth map and
RGB images to the cloud.

3.1.2. Measure of a Known Weight

One of the main drawbacks of measuring inner volume to estimate the weight is the as-
sumption that the bulk density of the stored product remains constant throughout the en-
tire bin. This might be true for smaller bins but in modern commercial-size bins, bulk den-
sity of feed compounds substantially increases due to compressive and hoop stresses [19].
In our experiments feed density is modelled as a constant value, but an additional pack-
ing factor is considered. While the objective of this research was to determine the field
pack factors and bin capacities for on-farm and commercial bins used to store corn in the
U.S. [20], we manually adjust packing factor for every bin based on a known feed load and
the provided density by the feed manufacturer. Hence, our weight estimation is calculated
by multiplying the remaining volume estimation and the given density.

3.2. Planning the Feed Delivery

As it has been briefly explained in Section Introduction, feed market is divided into two
main segments. First, there is a free market, where farmers are free to buy to any feed
supplier and buying decisions based on best price and service, and second, there is another
captive market that operates in a highly integrated model where farmers and feed suppliers
are owned by the same agribusiness corporate or where farmers have long term contracts
with feed suppliers. From the feed manufacturer perspective, one of the main pains is the
uncertain demand forecast. Captive market is normally more predictable, but it is still
highly depended on observed production plan done by the farmer to generate new feed
orders. On free market, the need for an accurate demand forecast is a must. Modelling
the feed consumption is one most wanted tools a demand planner could ask for, because
a) it would be really appreciated to have a projection of feed intake and b) it enables them
to detect abnormal patterns on animal feed consumption.

Feed efficiency (FE) is an important production trait as feed accounts for 60–70% of the
costs for layer production systems [21]. Although we cannot measure the feed conversion
ratio (FCR) efficiency between individual animals, an initial estimation to be measured
is the daily consumption rate (DCR) for a given bin. There are two main sources of
information. First, the feedstock measured by using remote monitoring sensors and second,
fattening schemes designed by livestock managers. This work focuses on the first source
of information to estimate DCR from hourly measured stocks. Algorithm 1 explains
the procedure followed to compute DCR by using two or three days of hourly based
estimations.

This algorithm to compute DCR and the remaining days of stock estimation (ETA) makes
use of W , a date ascent ordered time series with estimated weights including the last
available reading where |W | ≥ 48. It samples a period of three days since the current
time; minLoad as the minimum load detected in Kg. Any increase in weight below this
value is filtered; order that defines the order of the used low-pass filter used; fcut as its
cutoff frequency in Hz; and wcurrent as the current stock in Kg.
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Input:
W , minLoad, order, fcut, wcurrent

Output:
DCR, ETA
Preserve peaks from being filtered :

1: Compute differences Wdiff ← |Wi+1 −Wi|
2: Get the peaks Wpeaks ←Wdiff ≥ minLoad
3: Remove the peaks Wnopeaks ←W −Wpeaks

Apply a Lowpass Butterworth filter (LBF) :
4: Wf ← LBF (Wnopeaks, order, fcut)

Group Wf by date :
5: Wagg(date)← max(Wf (date))
6: Compute DCR value DCR← Average(Wagg)

Compute ETA value :
7: ETA← Average(Wagg) wcurrent

8: return DCR, ETA
Algorithm 1: Using weight timeseries to compute Daily Consumption Rate (DCR)
and estimate remaining days of stock (ETA)

4. Results

4.1. Remote monitoring system

In order to validate the sensor’s accuracy, some reference bins have been upgraded with
weighting cells. Hence, for those bins, the real weight is collected along with the new
sensor-based estimation.

4.1.1. Accuracy and Repeatably

A bin has been placed on a weighting bay to validate the accuracy and repeatability of
our sensor. Having installed a device on this bin, we proceed to fill the bin with materials
until its maximum capacity (TotalCapacity). A discharging process is carried out while
measuring. The sensor has been configured to work in continuous mode. Hence, the device
is connected to the main power to be capable of sending data every 15 minutes. This test
has been done with the collaboration of an independent company. They have provided us
a bin as well as materials used to perform the tests on their facilities. This test has been
repeated for five times. An external team have been operating on the bin and collecting
information about the whole process of draining the bin. We have collected the amount
of Kg that they removed from the bin and also the remaining material (Wref ). Data is
collected and processed during the discharge operation to estimate the remaining stock
(West). Figure 7 shows data collected from the five runs performed and relative error
(Eq. 1) obtained compared with the reference weight given by load cells.

erel =
|Wref −West|
TotalCapacity

(1)

Overall, results shows an average deviation between our estimations and the weighing
system used is about 1.15% with a maximum deviation of 4.15% in one of the points. It is
important to point out that, when materials are very close to the sensor (sensor measures
distances from 60 cm to 8.5 m) it is observed that sensor has some inaccuracies, data
provided on this point is an estimation based on the maximum bin capacity. It is planed
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Figure 7: Weight estimations compared with weight reference (load cell) for the five runs
with relative error to TotalCapacity.

to add a short range sensor to overcome this drawback. This reality is observed on initial
measurement with full bin for every run. We do not take into account error introduced in
this extreme range where estimated error may exceed 6% of the bin’s maximum capacity.
So far, only four bins are tested in field conditions, where load cells and our sensor have
been installed for each bin. Results achieved are similar to the ones observed in laboratory
conditions. It is important to notice that load cells typically have impressive worst-case
specifications, and their actual performance is usually better than the specification. As a
general rule, they operate with a 0.01% percent of span, which is really accurate. Mean-
while, other single-point-based sensors (ultrasound, laser, contact sensors, etc.) highly
depend on how uneven is the feed surface.

4.1.2. Reliability

Considering this sensor aims to work on outdoor conditions, an important point to validate
consists of verifying that the depth measurement is stable to environmental conditions.
electronic sensors, signal conditioning circuits are sensitive to temperature, that often
causes output drifts on range measurements regardless of the used technology. Reflective
surfaces also affect RGB-D cameras, but considering the analyses done by other works [22],
it can be deduced that the color and the material of a target influence the depth measure-
ment. The reflectivity of the surface indicates the quantity of light that bounces back to
the sensor, as well as external light sources add noise to the camera. Even though sur-
face reflectivity, sunlight, temperature affect the available signal-to-noise ratio on captured
images by reducing the depth map quality.

We have defined a Quality Index (Eq. 2 where 0 ≤ Qi ≤ 1), to rank acquired depth maps
according to the results obtained. In other words, how far a measured depth map (D) is
from the perfect acquisition, being 1 the perfect depth map, and 0 not having available
any data point. Eq. 3 defines f(D,x, y) that determines if a depth reading is available or
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not.

Qi(D,n,m) =

∑N
n=0

∑M
m=0 f(D,n,m)

n ∗m
(2)

f(D,x, y) =

{
1, if D[x, y] ≥ 1

0, otherwise
(3)

Figure 8 shows how Quality Index varies with temperature measured by our sensor. It
shows a decline in Quality Index below 10 ◦C. Most of this temperature effect has been
corrected by setting up an appropriate warm-up time to the device and reached accuracy
level is not affected.

4.1.3. Limitations

The system has been designed to work under appropriate conditions, but it is with lim-
itations. Some preventive actions has been taken to ensure these conditions: First, a
cleaning system has been included (essentially a wiper) to maximise the likelihood to have
a clean reading, removing sticked feed. Even though, dust suspended in the air in the
headspace between the sensor and the feed surface reduces the depth map quality or even
a blind reading when bins were measured shortly after or while filling. The sensor should
be able to measure the entire bin wall/feed surface interface. Sometimes, when bins are
very full and the surcharge cone of grain exceeded the eave height of the bin, or simply
the system’s field of view is obstructed, our estimation algorithm takes some assumptions
and extrapolate readings to fill the gaps. This may lead us to introduce some error in our
estimations.

4.2. Planning the Feed Delivery

Regarding to DCR and ETA estimations, filter parameters have been set for the experi-
ments with fcut ← 2/24 and order ← 4. Figure 9 gives an example of daily stock, daily
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consumption rate (DCR) and ETA values for every day. This is the main information
provided to farmers along with other gathered data (ie. temperature, humidity and visual
image of the inner bin, etc.). Additionally to BP1 benefits, BP2 aims on changing the
business strategy moving the workload balance of maintaining the feedstock to the feed
supplier, so they can handle and manage the correct and exact amount of feed for each
bin that covers their client needs (the farmer) while, at the same time, optimising the
supply and logistics chain costs (production, own stocks, product shipping/distribution,
etc.). Figure 10 depicts the global information available to feed manufacturers to plan
according to feed types, consumption rates, and simple demand forecast (ETA).

Nov 20 Nov 21 Nov 22 Nov 23 Nov 24 Nov 25 Avg.
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Figure 9: Sample location, remaining stock estimation based on daily consumption. Col-
oring is based on a traffic light schema where color gets red when stock live-span reaches
two days of stock.

4.3. Technology Adoption

This project has provided a collaborative framework through this we have been able to
deploy a significant amount of devices. Besides, distinct countries have shown different
business models between farmers and feed manufacturers. After several improvements on
algorithmic and electronic design, a set of 50 devices are installed across farms to validate
device accuracy, durability and weather conditions resilience. Since the installation done
across distinct farms, they have been collecting data for a working period of 10 months.
We have assessed a good functionality of the sensor, not only in terms of data accuracy
and repeatability but in terms of usability and deployability. It takes 20 minutes to install
and configure in a bin without ladder, lesser if truck mounted crane is not needed (ladder
availability). Apart from the observed limitations (Section Limitations), it is interesting to
point out that during these pilots we have experienced some implementation barriers with
farmers. They typically focus mainly on their core business and have little or no interest in
data gathering. Moreover, it is required a reliable technological basis to encourage farmers
into low-risk implementations, even in the scenarios where they are not the facility owners.
Although it is commonly accepted that smart farming requires information sharing across
supply chains, farmers are still and often not willing to provide access to their data in the
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Figure 10: Case study UK1 pilot with 20 locations and 27 sensor mounted bins.

light of uncertainties about ownership and security of their data. While these concerns
tend to dilute when they are not the real owners of the facility, it will be required the
implementation of policies to give farmers ownership of their data. All the actors of
the value chain seek for proven results of direct impact and improvement potential on
individual farm and supply chain levels.

5. Conclusions and Future Research

This work presents a new monitoring system for animal feed storage bins that gives volume
estimations with errors below 5% in all cases. According to the results obtained, the
average deviation between our estimations and the used weighing system can achieve up
to 1.15% relative full scale error. This system is designed to enable large deployments. It is
battery powered with solar charging. Its installation is done in lesser that 20 minutes each
bin without maintenance required. Additionally, a data processing pipeline is presented
to generate business insights to help decision takers, either farmers or feed manufacturers.
The main problem of this work aims to address originates from a practical application
of feed compounder delivery to animal farms, where the main objective is to satisfy all
the farm demands at a minimal cost. In the same vein, this work enables a closed-loop
system where periodical measures gathered from the field will be used by heuristics to
dynamically optimise inventories and routes. Thus, this updated information from real
inventories will reduce the uncertainty with which heuristics has to deal. Several future
research lines are possible. This work needs to boost the collaboration with partners or
consultants to overcome investment hesitance by providing enough business cases. Rich
and extensive analysis on costs and pay-offs as well as implementation support will be of
utmost importance before proceeding to larger deployments. A good starting point would
be proposing the integration of the proposed solution in other sectors (for example, by
fostering the collaboration with other use cases within the EU-IoF2020 project).
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