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ABSTRACT 
 

While there has been considerable progress in building deep learning models based on clinical 

time series data, overall machine learning (ML) performance remains modest. Typical ML 

applications struggle to combine various heterogenous sources of Electronic Medical Record 

(EMR) data, often recorded as a combination of free-text clinical notes and structured EMR 

data. The goal of this work is to develop an approach for combining such heterogenous EMR 

sources for time-series based patient outcome predictions. We developed a deep learning 

framework capable of representing free-text clinical notes in a low dimensional vector space, 

semantically representing the overall patient medical condition. The free-text based time-series 

vectors were combined with time-series of vital signs and lab results and used to predict 

patients at risk of developing a complex and deadly condition: acute respiratory distress 

syndrome. Results utilizing early data show significant performance improvement and validate 

the utility of the approach. 
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1. INTRODUCTION 
 

Deep Learning utilizing Electronic Medical Record (EMR) data for medical diagnosis/outcome 

predictions is an active and promising field of research. The interest in the topic has been spurred 

by the combination of a number of contributing factors. On one hand, there is the availability and 

sheer abundance of EMR data: in the US alone, the Centers for Disease Control and Prevention 

report more than 800 million physician office visits annually, most associated with digital EMR 

data [1]. This, combined with the practical significance of medical AI, advances in deep learning, 

and the availability of powerful and inexpensive computing resources, has led to an abundance of 

clinical prediction models derived to predict various medical outcomes with limited clinical 

success [2,3]. 

 
More recently, the utility of time-series EMR data has been explored for improved deep learning 

predictions, as traditional ML on the entire time series is often infeasible as each data point would 

be handled as a separate feature introducing dimensionality problems. Patient visit EMR data, 

such as vital signs, lab results, clinical notes, etc., is typically time-stamped, and, intuitively, 
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human experts often base their judgments on the temporal relations of various variables. For 

example, a time series showing non-improving respiratory rate values, despite medical 

interventions, may serve as a sign of clinical deterioration, as well as other outcomes (e.g. 

mortality risk). Recently, time-series-based ML effort attempts to learn such temporal clinical 

knowledge and multi-task inference using a clinical time series benchmark dataset [4,5],  derived 

from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database 

[6]. The dataset contains time series data for 17 selected clinical variables containing more than 

31 million clinical events. The benchmark tasks consist of in-hospital mortality prediction, 

decompensation prediction, length-of-stay prediction, and phenotype classification. Harutyunyun 

et al. [4] also built several baseline ML models on the benchmark, including several LSTM-based 

models. 

 
The clinical time series benchmark was also used on the task of medical diagnosis code 

prediction. Inspired by the success of embeddings combined with recurrent networks in NLP, 

Lipton et al. [7] built an LSTM-based diagnosis prediction model utilizing 13 time series 

variables used to predict 128 common diagnosis codes. More recently, [8] developed an attention 

model outperforming the LSTM models on a number of the MIMIC time series benchmark tasks.  
The performance of the proposed time-series-based ML models, however, is quite limited. For 

example, the best achieved F1-scores on the multi-label diagnosis task described by Harutyunyun 

et al. [4] are 0.29 and 0.15, micro and macro F1-scores respectively. Human expert diagnosis 

coding significantly outperforms the proposed models simply because clinicians have access to 

additional patient data (outside the time series of 13 vital signs and lab results variables), that 

provides rich patient medical context. In particular, clinicians have access to the clinical free-text 

notes, that include information such as the patient medical history, family history, the reason for 

the visit, signs, symptoms, findings, social history, etc. 

 

2. TASK DEFINITION 
 

The goal of this study is to better approximate the clinical information used by human experts, by 

combining time series structured data (lab results and vital signs), with time series free text data 

(clinical notes). In particular, we focus on the early identification (within 24 hours of admission) 

of patients at risk of developing ARDS (Acute Respiratory Distress Syndrome). The condition is 

characterized by the development of acute dyspnea at rest, hypoxemia, and alveolar infiltrates on 

chest imaging within hours to days of an inciting event such as viral pneumonia. ARDS is a 

significant cause of morbidity and mortality in the USA and worldwide [9,10]  and is the 

principal cause of COVID-19 associated mortality. 
In a reported Wuhan case series, among the 201 patients with confirmed COVID-10, 41.8% 

developed ARDS and among these patients 52.4% died. It has been reported that in general 

ARDS caused by COVID-19 results in 2.3% mortality rate of diagnosed cases [11]. Early 

recognition can limit the propagation of lung injury and significantly improve patient outcomes 

[12]. Similar to other acute conditions, predicting ARDS is a difficult task even for human 

experts, as the condition is often confounded by cardiogenic factors, and, at the same time, is 

highly heterogeneous [13] and COVID-induced ARDS is atypical.  ARDS involves the 

interaction of multiple risk factors, past history, and current conditions, signs, and symptoms, and 

thus structured time series data, without access to the free-text patient context will be insufficient 

in judging ARDS outcomes. 

  

3. RELATED WORK 
 

The literature related to this study falls into two categories: combining free-text and structured 

EMR data for clinical outcome predictions, and machine learning with clinical time series data.  
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A large volume of literature on combining structured and free-text EMR data pre-processes the 

free-text data by applying some information extraction (IE) technique, typically medical concept 

detection [14,15,16]. The majority of approaches extract UMLS or SNOMED-CT concepts from 

free-text with their negation status with various off-the-shelf tools [15, 17, 18, 19, 20].  
 

More recently, Miotto et al. [21] built Deep Patient representations utilizing structured EMR 

variables and notes converted to a set of concepts using traditional methods. Shickel et al. [3] 

present a survey of various deep learning techniques, the majority of which focus on structured 

EMR data.  In addition, a number of deep learning studies explore pre-training on diagnosis and 

procedure code embeddings [22,23,24].   
 

In terms of utilizing time series data, deep learning techniques have been explored extensively, 

typically focusing only on structured EMR data. In addition to the studies focusing on LSTM and 

transformer architectures for clinical time series described in Section Introduction [4,7,8], a 

number of studies explore clinical time series for patient outcome prediction. For example, Choi 

et al. [25] develop a temporal model using recurrent neural networks (RNN) and time-stamped 

structured EMR data. Similarly, Lipton et al. [26] explore the modeling of missing time series 

data with RNNs. Choi, et al. [27] developed a reverse time attention model, so that recent clinical 

visits are likely to receive higher attention. Razavian et al. [28] built multi-task disease onsets 

prediction utilizing LSTM and CNN on common lab test results. Nguyen et al. [29] built a CNN 

model using coded EMR data, combined with coded time separators, such as [1-3 months], [6-12 

months], etc. Xu et al. [30] developed a recurrent multi-channel attention model combining 

various clinical sources of time-series records including waveform and numeric data.  
 

The main contribution of this work is the low-dimensional vector space representation of free-

text, that can be combined with structured EMR data in the context of time-series based clinical 

outcome prediction.  
 

4. METHOD 
 

4.1. Dataset 
 

Clinical encounter data of adult patients was extracted from the MIMIC3 Intensive Care Unit 

(ICU) database [6]. MIMIC3 consists of retrospective ICU encounter data of patients admitted 

into Beth Israel Deaconess Medical Center from 2001 to 2012. MIMIC3 includes time series data 

recorded in the EMR during encounters (e.g. vital signs/diagnostic laboratory results, free text 

clinical notes, medications, procedures, etc.). The dataset contains data associated with over 

58,000 ICU visits, including over 2 million free-text clinical notes. 

 
For this study, in accordance with previous literature [31], we identified ARDS for adult patients 

older than 18 years with ICD-9 codes for severe acute respiratory failure and use of continuous 

invasive mechanical ventilation, excluding those with codes for acute asthma, COPD and CHF 

exacerbations. This resulted in 4,624 ARDS cases from a total of 48,399 adult ICU admissions. 

The ICU mortality rate in this population was approximately 59%. 

  

4.2. Structured Data Time Series 
 

Time series data was collected over the first 24 hours of ICU admission. The first 24-hour 

timeframe was chosen, as it has been reported that ARDS develops at a median of 30 hours after 

hospital admission [32]. Thus, a 24-hour window provides for the gathering of enough data, 
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while at the same time is early enough for real-time clinical decision support (CDS). Time series 

were created in 4-hour windows (averaging values if more than one present). 

  
Utilizing clinical knowledge and ML experiments on the dataset, we identified the most 

informative vital and lab result variables in the context of ARDS outcome predictions. They 

include 'Bicarbonate','Systolic blood pressure (noninvasive)', 'Tidal Volume (set)', 'Partial 

pressure of carbon dioxide (arterial)', 'Monocytes', 'Partial pressure of oxygen', 'Lactate 

dehydrogenase', 'Urine output', 'Calcium (total)', 'Mean corpuscular hemoglobin concentration', 

'Lymphocytes', 'Respiratory rate',  'Glascow coma scale verbal response', 'Minute Volume', 

'Phosphate', 'Respiratory rate (total)',  'Heart Rate', 'Mean Airway Pressure',  'PEEP set', 'Diastolic 

blood pressure (noninvasive)', as well as 'age' and 'bmi'. 

   

4.3. Free-text Data Time Series 
 

In addition to structured data, we also included time-series of time-stamped clinical notes. In 

particular, we focused on nursing notes, as they are available early (within 24 hours), unlike, for 

example, discharge notes available at the end of the patient stay. Nursing notes also contain a 

comprehensive summary of the patient history and present condition. Similarly to the structured 

data time series, free-text time series were created in 4-hour windows. Ideally, we would like the 

free-text notes to be converted to a low dimensional vector space, semantically representing the 

overall patient medical condition, including medical history and present illness and symptoms.  
It has been noted that clinicians viewing properly coded patient diagnosis codes (ICD9 and 

ICD10 codes) are typically capable of deducing the overall condition, history, and risk factors 

associated with a patient [33]. Diagnosis codes are used to describe information, such as current 

diagnoses, signs and symptoms, history and chronic conditions, past and current treatments / 

procedures, age group and/or susceptibilities, expected outcome, patient social history, the reason 

for the visit, etc. Intuitively, the totality of patient’s diagnosis codes represent a meaningful 

medical summary of the patient. However, real-time CDS systems, such as predicting ARDS 

outcome within 24 hours of admission, won't have access to the full set of the patient's ICD 

codes, which are typically entered at a later time. 

 
At the same time, it has been suggested that the medical code co-occurrence of diagnosis can be 

exploited to generate low-dimensional representations of ICD codes [22-24] that may facilitate 

EMR data-based exploratory analysis and predictive modeling [33-35]. Building upon this work, 

we built a deep learning model trained to predict the patient’s ICD code embeddings from 

nursing notes and thus create a low dimensional vector space semantically representing the 

overall patient medical condition: Patient Context Vectors (PCV). 

 
The full set of MIMIC3 nursing notes (1,081,176 free-text notes) were used as a pre-training step 

in a model trained to predict the patient's averaged ICD-code embeddings: PCVs. The optimum 

size of the ICD-code embedding vectors was determined to be 50. Experiments with two deep 

learning networks were performed. In both cases, the architectures utilized were similar to typical 

deep learning text classification networks, with the difference that the target prediction is not 

probabilities on a set of categories (soft-max loss function), but an ICD-code embedding vector 

(multi target regression with mean squared error loss function). In both cases, the input texts were 

truncated/padded to a length 400 tokens, the last linear layer of size 50 used loss function of 

mean squared error, the Adam optimizer was used with batch size of 32, trained on 3 epochs. A 

word-level CNN model [36], consisting of a convolutional, max Pooling layers, followed by 2 

hidden layers of size 500 achieved a mean squared error of 0.18 on the test set. A fine-tuned Bert 

base model [37] achieved a mean squared error of 0.13 on the test set. Both models were used to 
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convert test notes into to a low dimensional vector space (PCVs of size 50), semantically 

representing the overall patient medical condition. 

 

4.4. Time-series ARDS Predictions 
 

Time series data was collected from 6 four-hour windows following ICU admission. Each time 

series step contains values from 20 structured variables and nursing notes represented as PCVs of 

size 50, i.e. each time series step contains a total of 70 variables, with a total of 6 time series per 

visit. The representation is analogous to text classification representations, with word embeddings 

of size 70 and text length of size 6.  All structured variables were normalized, and missing values 

were replaced with an indicator variable. A basic LSTM network was trained with an LSTM 

layer of size 200, followed by a dense layer with binary cross-entropy loss. The network used  the 

Adam optimizer, LSTM-layer 0.3 dropout and L2 regularizer. Instances were weighted to 

accommodate for the unbalanced dataset (4,624 ARDS cases from a total of 48,399 adult ICU 

admissions). 10-fold cross-validation results are shown in Table 1. 
 
Table 1.  10-fold cross-validation results for predicting ARDS outcomes from 6 time series steps (within 24 

hours of admission).  Structured: Structured data representing 20 vital signs and lab results; Structured + 

CNN PCV: Structured data and Patient Context Vectors of size 50 pre-trained using word-level CNN on all 

MIMIC3 nursing notes; Structured + Bert PCV: Structured data and Patient Context Vectors of size 50 pre-

trained using Bert base model fine-tuning on all MIMIC3 nursing notes.  

 

Time Series Data Precision Recall F1-score 

Structured 30.6 64 41.4 

Structured +  CNN PCV 36.3 65 46.6 

Structured +  Bert PCV 38.6 66 48.7 

 

Results suggest that including free-text time-series data significantly outperforms predictions 

based exclusively on structured lab and vital signs. The addition of the CNN and the Bert-based 

models outperformed the baseline LSTM using only structured data by 5.2 and 7.3 F1-score 

absolute percent points respectively. Not surprisingly, the transformer-based Bert pre-trained 

model outperformed the word-level CNN results (by 2.1 F1-score absolute percent points). It is 

not clear how the results compare to human expert performance, as the outcome variable is based 

on subsequent ARDS outcome, and not on human judgements made within 24 hours of 

admission. It is likely that human expert ARDS predictions utilizing early admission data might 

also exhibit relatively low F-scores, as ARDS is an extremely challenging condition, requiring 

knowledge and inference based on complex geno- and pheno-type interactions. 

 

5. CONCLUSIONS 
 

This study focused on combining time-series lab results and vital signs EMR data, with free-text 

clinical notes time series attempting to capture patient medical context information. Our end goal 

was to predict early (within 24 hours) the development of an acute condition (ARDS), a task that 

is challenging even for clinical experts as it requires thorough knowledge and understanding of 

the patient's geno- and pheno-type, combined with the temporal monitoring of various tests and 

signs. Results suggest that the encoding and addition of the information present in free-text notes 

improved substantially the overall model performance. 
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