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ABSTRACT 
 
Proposed stability test for RLC low-pass filters is presented. The self-loop functions of these 

filters are derived and analyzed based on the widened superposition principle. The alternating 

current conservation technique is proposed to measure the self-loop function. An active inductor 
is replaced with a general impedance converter. Our research results show that the values of 

the selected passive components (resistors, capacitors, and inductors) in these filters can cause 

a damped oscillation noise when the stable conditions for the transfer functions of these 

networks are not satisfied. 

 

KEYWORDS 
 
Widened Superposition, RLC Low-Pass Filter, Stability Test, Self-loop Function, Voltage 

Injection. 

 

1. INTRODUCTION 
 

Analogue filters are essential in removing noise signals that may accompany a desired signal [1]. 

Passive low-pass filters employ RLC circuits, but they become impractical at very low 

frequencies because of large physical size of inductors and capacitors [2]. Moreover, feedback 
control theories are widely applied in the processing of analogue signals [3]. In conventional 

analysis of a feedback system, the term of “Aβ(s)” is called loop gain when the denominator of a 

transfer function is simplified as 1+Aβ(s), where A(s), β(s), are the open loop gain, and the 
feedback gain, respectively. The stability of a feedback network is determined by the magnitude 

and phase plots of the loop gain. However, the passive filter is not a closed loop system. 

Furthermore, the denominator of the transfer function of the analogue filter, regardless of active 
or passive is also simplified as 1+L(s), where L(s) is called “self-loop function”. Therefore, the 

term of “self-loop function” is proposed to define L(s) for both cases with and without feedback 

filters. This paper provides an introduction to the derivation of the transfer function, the 

measurement of the self-loop function and the stability test for RLC low-pass filters.  
 

The main contribution of this paper comes from the stability test for the RLC low-pass filters 

based on the widened superposition principle and the alternating current conservation 
measurement. This paper contains a total of 8 sections and 2 appendices. Section 2 constitutes 

background knowledge, with an explanation of the necessity for network analysis based on the 

widened superposition principle, an essence of derivation of self-loop function based on an 
alternating current conversation measurement and a brief presentation of the complex function. 

Section 3 mathematically analyzes an illustrative second-order denominator complex function 

http://airccse.org/cscp.html
http://airccse.org/csit/V10N10.html
https://doi.org/10.5121/csit.2020.101016


204 Computer Science & Information Technology (CS & IT) 

considered in details. Section 4 and Section 5 focus on the frequency domain analysis and the 
stability test for serial and parallel RLC low-pass filters. SPICE simulation results for the 

proposed design of active inductors for the RLC low pass filters are described in Section 6. A 

brief discussion of the research results is given in Section 7. The main points of this work are 

summarized in Section 8. We have collected a few important notions and results from analysis in 
Appendix for easy references. 

 

2. DESIGN CONSIDERATIONS FOR RLC LOW-PASS FILTER  
 

2.1. Widened Superposition Principle 
 

In this section, we propose a new concept of the superposition principle which is useful for 
deriving the transfer function of a network. The conventional superposition theorem is used to 

find the solution to linear networks consisting of two or more sources (independent sources, 

linear dependent sources) that are not in series or parallel. To consider the effects of each source 
independently requires that sources be removed and replaced without affecting the final result. 

Therefore, to remove a voltage source when applying this theorem, the difference in potential 

between the terminals of the voltage source must be set to zero (short circuit); removing a current 

source requires that its terminals be opened (open circuit). This procedure is followed for each 
source in turn, and then the resultant responses are added to determine the true operation of the 

circuit. There are some limitations of conventional superposition theorem. Superposition cannot 

be applied to power effects because the power is related to the square of the voltage across a 
resistor or the current through a resistor. Superposition theorem cannot be applied for non-linear 

circuit (diodes or transistors). In order to calculate the load current or the load voltage for the 

several choices of the load resistance of the resistive network, one needs to solve for every source 
voltage and current, perhaps several times. With the simple circuit, this is fairly easy but in a 

large circuit this method becomes a painful experience. 

 

In this paper, the nodal analysis on circuits is used to obtain multiple Kirchhoff current law 
equations. The term of "widened superposition" is proposed to define a general superposition 

principle which is the standard nodal analysis equation, and simplified for the case when the 

impedance from node A to ground is infinity and the current injection into node A is 0. In a 
circuit having more than one independent source, we can consider the effects of all the sources at 

a time. The widened superposition principle is used to derive the transfer function of a network 

[4, 5]. Energy at one place is proportional with their input sources and the resistance distances of 

transmission spaces. Let EA(t) be energy at one place of multi-sources Ei(t) which are transmitted 
on the different resistance distances di (R, ZL, and ZC in electronic circuits) of the transmission 

spaces as shown in Figure 1. The widened superposition principle is defined as 

 
n n

i

A

i=1 i=1i i

E (t)1
E (t) =

d d
   (1) 

 

The import of these concepts into circuit theory is relatively new with much recent progress 
regarding filter theory, analysis and implementation. 
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Figure 1. Energy at one node based on superposition principle 

 

2.2. Complex Function 
 
In this section, we describe a transfer function as the form of a complex function where the 

variable is an angular frequency. In frequency domain, the transfer function and the self-loop 

function of a filter are complex functions. Complex functions are typically represented in two 

forms: polar or rectangular. The polar form and the rectangular representation of a complex 
function H(jω) is written as 

 

               
  
  

Im
arctan

2 2 Re
Re Im Re Im

H j
j

H j
H j H j j H j H j H j e




    

 
 
 
      (2) 

 

where Re{H(jω)} is the real part of H(jω) and Im{H(jω)} is the imaginary part of H(jω), and j is 

the imaginary operator j2 = -1. The real quantity        
2 2

Re ImH j H j   is known as the 

amplitude or magnitude, the real quantity   
  

Im
arctan

Re

H j

H j





 
 
 
 

is called the angle  H j , which is the 

angle between the real axis and  H j . The angle may be expressed in either radians or degrees 

and real quantity 
  
  

Im

Re

H j

H j




 is called the argument   Arg H j  which is the ratio between the real 

part and the imaginary part of H(jω). The operations of addition, subtraction, multiplication, and 

division are applied to complex functions in the same manner as that they are to complex 

numbers. Complex functions are typically expressed in three forms: magnitude-angular plots 
(Bode plots), polar charts (Nyquist charts), and magnitude-argument diagrams (Nichols 

diagrams). In this paper, the stability test is performed on the magnitude-angular plots and the 

polar charts of the self-loop function. 

 

2.3. Graph Signal Model for Complex Function 
 

In this section, we describe the graph signal model of a typical complex function which is the 
same as the graph signal model of a feedback system. A negative-feedback amplifier is an 

electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback 

opposes the original signal. The applied negative feedback can improve its performance (gain 
stability, linearity, frequency response, step response) and reduce sensitivity to parameter 

variations due to manufacturing or environment. Thanks to these advantages, many amplifiers 

and control systems use negative feedback. However, the denominator complex functions are 
also expressed in the graph signal model which is the same as the negative feedback system.  A 

general denominator complex function is rewritten as 
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( ) ( )
( )

( ) 1 ( )

out

in

V s A s
H s

V s L s
 


 (3) 

 
This form is called the standard form of the denominator complex function. The output signal is 

calculated as 

 

 
 
( )

( ) ( ) ( )out in out

L s
V s A s V s V s

A s

 
  

  

 (4) 

 

Figure 2 presents the graph signal model of a general denominator complex function. The 
feedback system is unstable if the closed-loop “gain” goes to infinity, and the circuit can amplify 

its own oscillation. The condition for oscillation is 

 
 2 1

( ) 1 1 ;
j k

L s e k Z
  

     (5) 

 

Through the self-loop function, a second-order denominator complex function can be found that 

is stable or not. The concepts of phase margin and gain margin are used to asset the 

characteristics of the loop function at unity gain in magnitude-phase plots (Bode plots) [6]. 
 

 
 

Figure 2. Graph signal model of general complex function. 

 

2.4. Alternating Current Conservation Measurement 
 

This section describes a mathematical way to measure the self-loop function based on the 

alternating current conservation when we inject alternating signal sources (alternating current or 
voltage sources) and connect the input of the network into the alternating current ground (AC 

ground). In general, the term of “alternating current conservation” is proposed to define this 

technique. The main idea of this method is that the alternating current is conserved. In other 
words, at the output node the incident alternating current is equal to the transmitted alternating 

current. If we inject an alternating current source (or an alternating voltage source) at the output 

node, the self-loop function can be derived by ratio of the incident voltage (Vinc) and the 
transmitted voltage (Vtran) as shown in Figures 3(a), 3(c), and 3(d). Compared to measurement 

results of the alternating current conservation with the conventional ones (voltage injection), they 

are the same [7]. Apply the widened superposition principle at Vinc and Vtran nodes, and the self-

loop function is derived as 

( )
( )

( ) ( )
    inc inc

tran

tran

V VL s
V L s

A s A s V
 (6) 
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Figure 3. Derivation of self-loop function based on alternating current conservation. 

 

In case of Figure 3(b), the alternating currents are used to derive the self-loop function. Apply the 

widened superposition principle at Iinc and Itran nodes, and the self-loop function is derived as 
 

( )
( ) ( )

( )
   tran

inc tran

inc

IA s
I A s I L s

L s I
 (7) 

 

3. ANALYSIS OF SECOND-ORDER DENOMINATOR COMPLEX FUNCTION 
 

3.1. Second-Order Denominator Complex Function 
 

In this section, we shall analyze the frequency response of a typical second-order denominator 
complex function. This complex function is defined as in Equation (8). Assume that all constant 

variables are not equal to zero.  

 

2

1
( ) 

 
H s

as bs c
 (8) 

 

From Equation (27) in Appendix A.1, the simplified complex function is written as 

 

2

2 2 2

4
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a

bH j
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(9) 
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In order to plot the magnitude-angular charts, the values of magnitude-angular of the complex 
function, which are calculated in Appendix A.1, are summarized on Table 1.  In overdamped 

case, the magnitude of the complex function is so high from the first cut-off angular frequency 
2

1

2
1

2 2
cut

b a c b

a b a a

 
       

  
 

to the second cut-off angular frequency
2

2

2
1

2 2
cut

b a c b

a b a a

 
       

  
 

. 

Therefore, this gain will amplify the high order harmonics from ωcut1 to ωcut2 of an input signal 

which includes many harmonics. 

 

3.2. Damped Oscillation Noise 
 

In this section, we describe the response of a typical second-order denominator complex function 
to a step input or a square wave. Based on the Fourier series expansion of the square wave, the 

waveforms of the pulse wave are expressed in many functions of time with many different 

frequencies as shown in Figure 7. The waveform function of a square wave is  

 

   1

1

sin 2 2 14
( )

2 1














k

k f t
S t

k
 (10) 

 

 In under-damped case, the high-order harmonics of the step signal are significantly reduced 

from the first cut-off angular frequency. Therefore, the rising time and falling time are rather 

short. In this case, the system is absolutely stable.  

 In critically damped case, the rising time and falling time are longer than the underdamped 

case. Now, the system is marginally stable. The energy propagation is also maximal because 
this condition is equal to the balanced charge-discharge time condition [8]. 

 In over-damped case, the gain at the cut-off angular frequency will amplify the high-order 

harmonics of the step signal that causes the peaking or ringing. Ringing is an unwanted 

oscillation of a voltage or current. 
 

 
 

Figure 4. Waveform, spectrum, and partial sums of Fourier series of square wave. 

 

The term of “damped oscillation noise” is proposed to define this unwanted oscillation which 
fades away with time, particularly in the step response (the response to a sudden change in input). 

Damped oscillation noise is undesirable because it causes extra current to flow, which leads to 

thereby wasting energy and causing extra heating of the components. It can cause unwanted 
electromagnetic radiation to be emitted. Therefore, the system is unstable. 
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3.3. Self-Loop Function of Second-Order Denominator Complex Function 
 

In this section, we investigate the characteristics of the self-loop function L(s). The general 

second-order denominator complex function and its self-loop function are rewritten as in 
Equation (11). The magnitude-angular values and the real-imagine values of the self-loop 

function, which are calculated in Appendix A.2, are summarized in Table 2. In this work, the 

self-loop function is sketched on the magnitude-angular plots and polar charts. 
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2 2 2
2

2 2 2
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4

4 2 2
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1 2
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a
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b b b a aa a a c b
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(11) 

 

4. STABILITY TEST FOR SERIAL RLC LOW-PASS FILTER 
 

4.1. Analysis of Serial RLC Low-Pass Filter 
 
In this section, we shall present the frequency response of a serial RLC low-pass filter. Models of 

circuit and measurement of self-loop function for this filter are shown in Figure 5. Apply the 

widened superposition at output node on Figure 5(a), we get 
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V
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The transfer function and the self-loop function are derived as 
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Table 1. Summary of magnitude-angular values of transfer function 

 

Case Underdamped Critically damped Overdamped 
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Table 2. Summary of magnitude-angular values and real-imagine values of self-loop function 

 

Case Underdamped Critically damped Overdamped 
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Figure 5. Models of circuit and measurement of self-loop function for serial RLC LPF. 
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The simplified form of transfer function is 
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(14) 

 

Here, the resonant and the cut-off angular frequencies are 1
= ;

2LC
LC RL

R

L
  . The constraints of 

the stability for a serial RLC low-pass filter are defined as 
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4.2. Stability Test for Serial RLC Low-Pass Filter 
 

This section will present a stability test for a serial RLC low-pass filter. Three models of this 

filter are used to do the damped oscillation noise test. The marginally stable model is designed at 
cut-off frequency f0 = 50 kHz taking L = 796 μH, C = 3.18 nF, and R = 1 kΩ based on a balanced 

charge and discharge time condition as shown in Figure 6(b). Figures 6(a) and 6(c) are 

unconditionally stable (R = 1.5 kΩ), and unstable (R = 0.5 kΩ), respectively. Figures 6(e), 6(d) 

and 6(f) are the measurements of these self-loop functions with one voltage source. Moreover, 
two splitting voltage sources are also used to measure the self-loop functions as shown in  

Figures 6(g), 6(h) and 6(i). Figure 7(a) represents the SPICE simulation results of the magnitude 

of the serial RLC circuit on the frequency domain. In time domain, when the pulse signals go in 
to these models, the transient responses are shown in Figure 7(b). Figures 7(c), 7(d), 7(e), 7(f), 

7(g), 7(h), and 7(i) show the simulation results of the self-loop function on the magnitude-angular 

plots and polar charts. 



212 Computer Science & Information Technology (CS & IT) 

 
 

Figure 6. Models of circuits and measurements of self-loop functions for RLC low-pass filter. 

 

The simulation results of the frequency responses of transfer functions and self-loop functions 
are the same as the characteristics on Table 1 and Table 2. The damped oscillation noise (red) 

occurs in case of the unstable serial RLC circuit. In theoretical calculation at the cut-off 

frequency 50 kHz is 76.3 degrees. Our simulation results of self-loop functions show that  

 

 In stable case, phase is 95.7 degrees at 50 kHz, (phase margin = 84.3 degrees). 

 In marginally stable case, phase is 104 degrees at 50 kHz, (phase margin = 76 degrees). 

 In unstable case, phase margin is 116 degrees at 50kHz, (phase margin = 64 degrees). 

 

The simulation results and the values of theoretical calculation are unique. 

 

5. STABILITY TEST FOR PARALLEL RLC LOW-PASS FILTER 
 

5.1. Analysis of Parallel RLC Low-Pass Filter 
 
In this section, we shall present the frequency response of a parallel RLC low-pass filter. Models 

of circuit and measurement of self-loop function for this filter are shown in Figure 8. Apply the 

widened superposition at output node 
 

1 1 1 
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out

C L L

V
V

R Z Z Z
 (18) 
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Figure 7. Frequency response, transient response, polar charts and magnitude-phase plots of self-loop 
function for serial RLC low-pass filter. 
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Figure 8. Models of circuit and measurement of self-loop function for parallel RLC LPF. 

Then, the transfer function and the self-loop function of the parallel RLC low-pass filter are 
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The simplified form of Equation (19) is 
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Here, the resonant and the cut-off angular frequencies are 1 1
= ;

2LC
LC RC

RC
  . The constraints 

of the stability for the parallel RLC low-pass filter are defined as 
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5.2. Stability Test for Parallel RLC Low-Pass Filter 
 

This section will present a stability test for a parallel RLC low-pass filter. Three models of the 
parallel RLC low-pass filter are used to do the damped oscillation noise test. The marginally 

stable model is designed at cut-off frequency f0 = 50 kHz taking L = 796 uH, C = 3.18 nF, and R 

= 250 Ω based on a balanced charge and discharge time condition as shown in Figure 9(b). 
Figures 9(a) and 9(c) are unconditionally stable (R = 150 Ω), and unstable (R = 500 Ω), 

respectively. One current source injection and two splitting current sources are used to measure 

the self-loop functions. Figures 9(d), 9(e), 9(f), 9(g), 9(h) and 9(i) are the measurements of the 

self-loop functions. Figure 10(a) represents the SPICE simulation results of these models.  
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Figure 9. Models of circuits and measurements of self-loop functions for parallel RLC LPF. 

 

The damped oscillation noise (red) occurs in case of the unstable network (|ZL| = |ZC| > 2R). Our 

simulation results of self-loop functions show that  
 

 In stable case |ZL| = |ZC| < 2R, phase is 95.7 degrees at 50 kHz, (phase margin = 84.3 

degrees). 

 In marginally stable case (|ZL| = |ZC| = 2R), phase is 104 degrees at 50 kHz, (phase 

margin = 76 degrees). 

 In unstable case (|ZL| = |ZC| > 2R), phase margin is 116 degrees at 50kHz, (phase margin 
= 64 degrees). 

 

The simulation results and the values of theoretical calculation are unique. 

 

6. DESIGN OF ACTIVE INDUCTOR FOR RLC LOW-PASS FILTER  
 

6.1. Analysis of General Impedance Converter 
 
In this section, the passive inductor is replaced with a general impedance converter. In integrated 

circuits, capacitors are much preferred to inductors due to their small size. The general 

impedance converter acts like an inductor. The behaviour of an inductor can be emulated by an 
active circuit [9,10]. The general impedance converter is considered as a floating impedance as 

shown in Figure 11(a). Models of two active RLC low-pass filters are shown Figures 11(b) and 

11(c).  
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Figure 10. Frequency response, transient response, polar charts and magnitude-phase plots of self-loop 

function for serial RLC low-pass filter. 
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Figure 11. Proposed design of active inductors for RLC low-pass filters. 

 

The feedback loops which are provided by the two op amps force V1 − V3 and V3 − V5 to zero. 
 

1 3 5 V V V  (24) 

 
Apply the superposition at node V3, and we get 

 

2 4
3

2 2

1 1 
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 C C

V V
V

R Z R Z
 (25) 

 

The impedance of active inductor is designed as R1, R2, R3, and ZC chosen properly. From 

Equations (24) and (25), the value of this inductor is  
 

3 2 32

1 1

 L out out

C

R R RR
Z Z sCZ

R Z R
 (26) 

 

Here, Zout is the output impedance. This circuit converts a resistor to an inductor. Figure 12 shows 

the models of the proposed design of the active RLC low-pass filters. 

 

6.2. SPICE Simulations for Active RLC Low Pass Filters 
 
In this section, SPICE simulations are carried out using the ideal operational amplifier with the 

gain bandwidth (GBW) = 10 MHz and DC value of open loop gain (A(s)) = 100000. Two RLC 

circuits in Figure 12(a) and 12(b) are designed at the cut-off frequency f0 = 50 kHz taking C1 = 

3.18 nF, L1 = 796 μH, R1 = 1 kΩ, R2 = 250 Ω. In this paper, the 796 μH inductor is replaced 
with a general impedance converter which includes two op amps and three resistors as well as a 

capacitor. Figure 12(c) represents the active serial RLC circuit designed with R2 = R3 = 1 kΩ, 

C2 = 0.1 pF and R4 = 25 kΩ. Figure 12(d) represents the active serial RLC circuit designed with 
R1 = R3 = 1 kΩ, C2 = 0.1 pF, and R4 = 25 kΩ. The simulation results of the passive and the 

active RLC low-pass filters are unique as shown in Figures 12(e), 12(f), 12(g), and 12(h). 
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Figure 12. Proposed design and SPICE simulation results of active RLC low-pass filters. 

 

7. DISCUSSION 
 
The performance of a passive RLC low-pass filter is determined by its self-loop function and the 

step input response. These measurements show how good a second-order low-pass filter is. The 

self-loop function of a low-pass filter is only important if it gives some useful information about 
relative stability or if it helps optimize the performance of system. The self-loop function can be 

directly calculated based on the widened superposition principle. The alternating current 

conservation technique (voltage injection) can measure the self-loop function of low-pass filters. 
Compared to the research results with mathematical analysis, the properties of self-loop functions 

are the same. Moreover, Nyquist theorem shows that the polar plot of self-loop function L(s) 

must not encircle the point (−1, 0) clockwise as s traverses a contour around the critical region 

clockwise in polar chart [11]. However, Nyquist theorem is only used in theoretical analysis for 
feedback systems. 

 

8. CONCLUSIONS 
 
This paper describes the approach to do the stability test for RLC low-pass filters. The transfer 

functions of these filters are second-order denominator complex function. Moreover, the term of 

“self-loop function” is proposed to define L(s) in a general transfer function. In order to show an 
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example of how to define the operating region of a RLC low-pass filter, a second-order 
denominator complex function is analyzed. In overdamped case, the filter will amplify the high 

order harmonics from the first cut-off angular frequency ωcut1 to the second cut-off angular 

frequency ωcut2 of a step input. This causes the unwanted noise which is called ringing or 

overshoot.  
 

The term of “damped oscillation noise” is proposed to define the ringing.  The values of the 

passive components used in the filter circuit were chosen directly by the stable conditions. The 
passive inductor is replaced by a general impedance converter. All of the transfer functions were 

derived based on the widened superposition principle and self-loop functions were measured 

according to the alternating current conservation technique.  
 

The obtained results were acquired to simulations using SPICE models of the devices, including 

the model of an ideal operational amplifier. The frequency responses from the proposed active 

RLC low-pass filters are matched with the passive ones. In this paper not only the results of the 
mathematical model but also the simulation results of the designed circuits are provided, 

including the stability test. The simulation results and the values of theoretical calculation of the 

self-loop function are unique. Furthermore, managing power consumption of circuits and systems 
is one of the most important challenges for the semiconductor industry [12,13]. Therefore, the 

damped oscillation noise test can be used to evaluate the stability of a high-order filter. 
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APPENDIX 
 

A.1. Second-order denominator complex function 
 

From Equation (8), the transfer function is rewritten as 
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The magnitude-angular form of transfer function is 
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In critically damped case
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, the magnitude-angular form of transfer function is 
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At the cut-off angular frequency
2

cut

b

a
   , the values of magnitude and angular are 
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A.2. Self-loop function of second-order denominator complex function 
 

From Equation (11), the self-loop function is rewritten as 
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The magnitude-angular and the real-imagine parts of self-loop function are 
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In critically damped case
2

2

c b

a a

 
  
 

, the self-loop function is 
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At the angular frequency b

a
  , the magnitude-angular and the real-imagine values are 
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Do the same work, at the angular frequency
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At unity gain of the self-loop function, we have 
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Solving Equation (43), the angular frequency u  at unity gain is 
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Here, the cut-off angular frequency is
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At unity gain angular frequency 5 2
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   , the magnitude-angular and the real-

imagine values are 
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In underdamped case
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Here, the magnitude-angular and the real-imagine parts of self-loop function are  
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At the angular frequency
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At the angular frequency
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Then, at unity gain angular frequency 5 2
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In overdamped case 
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Here, the magnitude-angular and the real-imagine parts of self-loop function are 

 

2
2 2 2 2

2 2 2

2 2 2

4

4 2 2
( ) ; ( ) arctan

2 2 2

2

2 2
Re ( ) ; I

2

 
 

           
                                                            

      
          

       

a

a a c b a bL j L j
b b a a b a c b a

b a a b

a c b a
L j

b a a b
 

4
m ( )  

a
L j

b

 

(45) 

 

At the angular frequency
b

a
   , the magnitude-angular and the real-imagine values are 
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Then, at the angular frequency
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At unity gain angular frequency 5 2
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