
DEEP REINFORCEMENT LEARNING FOR
NAVIGATION IN CLUTTERED ENVIRONMENTS

Peter Regier Lukas Gesing Maren Bennewitz

Humanoid Robots Lab, University of Bonn, Bonn, Germany
{pregier,maren}@cs.uni-bonn.de

ABSTRACT

Collision-free motion is essential for mobile robots. Most approaches to collision-free and efficient nav-
igation with wheeled robots require parameter tuning by experts to obtain good navigation behavior. In
this paper, we aim at learning an optimal navigation policy by deep reinforcement learning to overcome
this manual parameter tuning. Our approach uses proximal policy optimization to train the policy and
achieve collision-free and goal-directed behavior. The output of the learned network are the robot’s trans-
lational and angular velocities for the next time step. Our method combines path planning on a 2D grid
with reinforcement learning and does not need any supervision. Our network is first trained in a simple
environment and then transferred to scenarios of increasing complexity. We implemented our approach in
C++ and Python for the Robot Operating System (ROS) and thoroughly tested it in several simulated as
well as real-world experiments. The experiments illustrate that our trained policy can be applied to solve
complex navigation tasks. Furthermore, we compare the performance of our learned controller to the pop-
ular dynamic window approach (DWA) of ROS. As the experimental results show, a robot controlled by
our learned policy reaches the goal significantly faster compared to using the DWA by closely bypassing
obstacles and thus saving time.

1. INTRODUCTION

A prerequisite for nearly all mobile robot applications is collision-free navigation. Typical solu-
tions apply a two-stage approach and use 2D path planning on a cost grid in combination with
a low-level motion controller for path tracking and collision avoidance. The low-level controller
hereby determines the motion commands for the current time step taking into account the global
path and the current robot state as well as the local environment. Typical navigation systems
require manual parameter tuning to achieve a good navigation behavior. This tuning requires a
significant amount of time and profound knowledge about the navigation software, the robot hard-
ware, as well as the environment conditions, and is a difficult task due to the trade off between
time efficiency and safety.

In this paper, we present a self-learned navigation controller realizing collision avoidance and
goal-directed behavior. Our approach combines grid-based planning with reinforcement learn-
ing (RL) and applies proximal policy optimization (PPO) [1] for the learning task. Our framework
hereby uses a global planner to obtain a 2D path from the current robot pose to the global goal.
The input of the network consists of the robot’s translational and angular velocities, local goals
determined from the global path, and a patch of the occupancy grid map containing the obstacles
in the robot’s vicinity. The outputs are the robot’s velocity commands for the next time step. Fig. 1
shows an example situation and a visualization of our approach.

To the best of our knowledge, we present the first solution that integrates global path planning with
deep RL to reach a global goal in the environment. Our framework thereby learns the appropriate
distance to obstacles and performs regular recomputation of the global path. As a result, no
parameter tuning of the navigation controller and inflation of the objects in the map is needed to
find the best trade-off between completion time and safety distance to obstacles. When the global

Dhinaharan Nagamalai et al. (Eds): CSEIT, WiMoNe, NCS, CIoT, CMLA, DMSE, NLPD - 2020
pp. 193-204, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.101117

http://airccse.org/cscp.html
http://airccse.org/csit/V10N11.html
https://doi.org/10.5121/csit.2020.101117

subgoals

local map

global
path

goal

local map

subgoals

velocities:

neural

network

Figure 1: Visualization of our approach, which relies on a global path that is recalculated on a 2D occupancy
grid every time step. We use subgoals on the path as part of our observation space and input to a neural
network. Additionally, we use a local grid map centered around the robot and the current translational and
angular velocities vt−1 and ωt−1 as network input. We train the network to learn a navigation policy that
outputs the velocity commands vt and ωt for the next time step.

path leads through narrow passages, where collisions are likely to occur, our system learns to
drive around those narrow regions.

We integrated our learned navigation policy as a collision avoidance module that can be used with
the Robot Operating System (ROS) navigation stack [2]. We thoroughly evaluated our approach
in simulation and in a real-world experiment and compared the performance with the dynamic
window approach (DWA) [3], which is used in ROS and which is still one of the most popular
navigation schemes. As the experimental results show, the robot steered by our learned policy
reaches the goal significantly faster than using the DWA. Furthermore, we show that the policy,
which is initially trained only on a simple environment, can be transferred to environments of
increasing complexity.

Computer Science & Information Technology (CS & IT)194

2. RELATED WORK

In the last few years, several learning approaches for mobile robot navigation have been pre-
sented. Sergeant et al. [4] proposed to use a state representation based on laser range data and
learned translational and angular velocity commands for local obstacle avoidance. The authors
trained an autoencoder neural network with human-controlled action commands. Pfeiffer et al. [5]
presented an end-to-end navigation system learned for simple maps using 2D laser data as input,
the velocity commands as output, and a 2D path as teacher. The authors later extended the work
by applying subsequent RL training to the learned model [6], thus reducing the training time of
RL and avoiding overfitting of the imitation model. Liu et al. [7] used a local occupancy map as
state representation to learn a navigation policy using a variant of the value iteration networks.
Tai et al. [8] proposed generative adversarial imitation learning to achieve socially complaint nav-
igation. The authors use depth data to train the network and the social force model to generate
a large set of training data. Pokle et al. [9] designed a local controller to determine the robot’s
velocity commands and predicting a local motion plan, while considering the trajectories of sur-
rounding humans. These supervised learning methods all depend on the teacher, e.g., controls
provided by humans, a global path planner, or a well-tuned optimization, while the goal of our
work is to enable the robot to learn by itself while navigating in the environment.

Gupta et al. [10] investigated a mapping and planning navigation network based on visual data
that encodes the robot’s observations into a birds-eye view of the environment, which makes the
method limited to known scenarios. Also the approach presented by Hsu et al. [11] was developed
for known environments. A CNN processes image data and generates discrete actions to move
the robot towards a global goal pose. In contrast to that, we use a binary occupancy grid map as
representation, which makes the learned policy applicable to environments not seen in the training
data.

Chen et al. [12] deployed also PPO for deep RL as we do. The authors rely on height-map
observations as state representation for a wheel-legged robot. Due to a high-dimensional robot
state, the authors discretize the action space and use a set of navigation behaviors to deal with
obstacles of certain, given shapes.

Tai et al. [13] presented a method that utilizes the robot’s velocities and target positions as state
representation for an actor-critic RL approach. The authors developed a local controller relying on
sparse laser-range measurements and trained a mapless motion planner. Fan et al. [14] proposed
to use a set of subsequent laser scans and apply PPO to learn movement commands for navigation
through crowds. Those approaches do not consider global path planning as they are designed for
local navigation.

Chiang et al. [15] applied AutoRL to learn two different navigation behaviors, i.e., path following
and driving to a global goal location. The authors do not combine learning with global path
planning but use the global goal coordinate as input to the network. In our experiments, the robot
got stuck in local minima while using only the global goal as input. Therefore, we use a subgoal
on the regularly recomputed global path as additional input.

3. PROBLEM DESCRIPTION

We consider a robot moving according to the unicycle model that has to reach a goal location
by executing translational and angular velocities. A path planner computes the 2D path to the
goal on a global grid map at every time step using the estimated robot pose from a localization
system. The RL learning task is to determine the velocity commands for each time step to navigate
collision-free and as fast as possible to the goal.

We model the problem as a partially observable Markov decision process (POMDP) defined as

Computer Science & Information Technology (CS & IT) 195

the tuple (S,O,A, T ,R, γ). Here, s ∈ S corresponds to the state of the environment including
the robot. The state of the environment changes based on the robot’s actions a ∈ A, which are in
our case the translational and angular velocity commands (v, ω), and according to the transition
probability T (s′|s, a). The agent cannot determine the state s but has to rely on observations
O(o|s′, a). After every state transition the robot receives a rewardR(s, a).

The actor critic approaches approximate the value function (critic) to be able to update the policy
(actor) itself. We use a deep neural network as non-linear function approximator to evaluate the
state value function V π, which determines the expected return for state s when following the
policy π. The goal of RL is to find a stochastic policy πθ(at|ot) that maximizes the expected
reward

max E

(
T∑
k=0

γkR(sk, ak)

)
,

where θ is the set of parameters that specify the function approximator, T is the final time step,
and γ is the discount factor.

The critic network is updated based on the advantage value

At = A(ot, at) = Qπθ(ot, at)− V πθ(ot). (1)

where Qπθ(ot, at) = rt + γV πθ(o′t). Here rt is the immediate reward at time t and V πθ(o′t) is the
expected return for the observation o′t. The actor network uses the policy gradient (PG) method to
update the network weights θ in order to maximize

max E(log πθ(at|ot)At). (2)

Proximal policy optimization (PPO) [1] substitutes the log πθ term for the policy probability ratio
Ψ = πθ/πθold , to achieve stability. To avoid large policy updates that can impede and reset the
training process, the probability ratio is constrained to the range of [1 − ε, 1 + ε] via the clip
function

ηCLIP (θ) = Et [min (ΨAt, clip (Ψ, 1− ε, 1 + ε) At)] . (3)

4. NEURAL NETWORK APPROXIMATOR FOR LOCAL NAVIGATION

To learn the navigation strategy that takes into account the global path to the goal and the obstacles
in the robot’s vicinity, we train a deep neural network approximator that provides the robot’s
translational and angular velocities. The architecture of this network is described in the following.

4.1. Observation Space
The observation space consists of three components as described in the following. The first com-
ponent is ov = (vt−1, ωt−1) with vt−1 and ωt−1 as the robot’s current translational and angular
velocities computed at the previous time step. The second component is om, which corresponds
to the 3m× 3m patch of the 2D occupancy grid map around the robot (see Fig. 2). As resolution
of the map we use 0.05 m, thus the grid patch size has a dimension of 60× 60 cells.

Additionally, we use a representation of local 2D subgoals in the observation. The subgoal at the
current time step is calculated as the position on the global path that is 1m away from the robot
and stored in map coordinates. At time step t, we transform the global coordinates of the subgoals
stored at time steps t− 1 and t− 5 into the robot frame to get their relative positions, which serve
as third observation component og = (px−5, p

y
−5, p

x
−1, p

y
−1). The representation of the local goal

px−1, p
y
−1 indicates the robot’s progress that was made towards the goal since the previous time step

and is used for the reward calculation. By adding a second subgoal to the observation spaceO, we
noticed an improvement of the navigation policy and speed up of the training. As already noted
by Kulhánek et al. [16], using information of previous observations helps the system to infer the
real state s ∈ S of the environment. To summarize, an observation is defined as o = (og, ov, om).

Computer Science & Information Technology (CS & IT)196

10 m

10
m

goal

60 px

60
p
x

10 m

10
m

goal

60 px

60
p
x

10 m

10
m

goal

60 px

60
p
x

Figure 2: Binary image representation used as input to the network. A 3m× 3m patch (dashed green)
around the robot’s pose is cropped from the global occupancy grid map. The robot is at the center of the
resulting egocentric image and the viewing direction is to the right side. The global path (red) is computed
with the A* search in a binary global map. Interpolated values in the cropped image resulting from the
rotation are set to occupied as well as regions outside the boundaries of the global map.

4.2. Reward
Our reward function considers task completion, the duration, and the progress towards the goal

R(s, a) = Rfin(s, a) +Rfix +Rdist(s, a). (4)

A navigation task ends if the robot arrives at the goal, a collision occurs, or a maximum number
of time steps is reached. Accordingly, the rewardRfin(s, a) is defined as follows:

Rfin(s, a) =


b if the goal was reached
−c if a collision occurred
0 otherwise

(5)

Rfin(s, a) is a large positive value if the distance to the final goal is less than 0.3m, a large nega-
tive value if the distance between the robot and the nearest obstacle is less than 0.3m, meaning a
collision is occurred, and zero otherwise.

Rfix is a fixed negative reward, that penalizes each action to force the robot to finish an episode
as fast as possible.

To speed up the training, we use a third reward component

Rdist(s, a) = α · D(s,a), (6)

where D(s, a) is the function computing the distance between the robot and subgoal (px−1, p
y
−1)

and α is a scaling factor.

Computer Science & Information Technology (CS & IT) 197

Input Network Output

Scalars

Grid patch

pxt−5 p
y
t−5 p

x
t−1 p

y
t−1 vt−1 ωt−1

60 px

60 px

Input
(60,60,1)

conv
(58,58,64)

conv
(56,56,64)

pool
(28,28,64)

conv
(26,26,32)

conv
(24,24,16)

pool
(24,24,16)

dense
(1000)

Input
(6) dense

(1000)

concat
dense
(1000)

Critic

dense(1)

= vθ(o)

Actor

dense(2)

= µ

dense(2)

= σ

at =(vt, ωt) ∼ πθ

πθ = N (µ;σ)
Policy

Figure 3: Network structure of the actor-critic scheme. The input consists of scalar values and the grid patch.
The scalar values are fed into a single, fully connected dense layer. The binary image of the grid patch (see
also Fig. 2) is handled by multiple CNN layers to distinguish obstacle configurations. Then, both branches
are concatenated and assembled in a further dense layer. Finally, the critic value vθ(o) corresponding to the
value function estimator is computed by a last layer. The policy distribution π is calculated by the mean
and standard deviation of two normal distributions from which vt and ωt are sampled.

4.3. Neural Network Structure
Our observation space as described in Sec. 4.1. is divided based on the representation of the data.
Typically, the obstacle grid around the robot is represented as a binary image, while the rest of the
observation space provides information about the different components of the robot state. Thus,
we propose a network architecture that consist of two branches that split the observation space
into scalar values and the binary grid patch (left part of Fig. 3). The scalar branch of the network
is a single, fully connected neural network layer (green layer in the upper branch in Fig. 3) and
encodes the subgoals and robot velocities into a high dimensional feature space to process them
in the following layers.

The grid patch is processed by separate CNN layers (lower branch in Fig. 3), that are well suited
for processing 2D data structure, e.g., images. The layers can identify 2D relationships between
pixel values and encode obstacles in the robot’s vicinity. Max-pooling layers after the first two
CNNs reduce the shape and compress the information. This layered design is inspired by the
network composition of the well-known VGGnetworks for image recognition [17]. The 3D output
of the last max-pooling layer is flattened and reduced to a one-dimensional output with another
dense layer (shown in blue). Then, we concatenate the outputs of both branches (blue and green)
and process them together in an extra fully connected layer. Finally, we normalize the output,
which is a standard technique [18].

The actor and critic estimators share the same connected layers. We found out that the param-
eter sharing between the actor and critic improves the learning speed because there are fewer
parameters to learn. For the value function estimator vθ(ot), the shared network output is in-
serted into a last dense layer to get a single real number which represents the critic value. The
final output of the actor network is the policy π(a|o) modeled by the two Gaussian distributions
N (µtrans ;σtrans) and N (µang ;σang). The two mean values are shrunk with an tanh activation
function. This scaling forces the values to stay between the desired velocity limits ([0 : 0.7] m/s
and [−0.7 : 0.7] rad/s). The σ values are the standard deviations of the normal distributions. We
apply a sigmoid activation function scaled with 0.5 to guarantee that the bandwidths of the normal
distributions do not massively grow.

Computer Science & Information Technology (CS & IT)198

Env1 Env2 Env3 Env4 Env5 Env6

2.5m

Figure 4: Environments used for training and evaluation. The policy was initially trained only in Env1
and evaluated in all other environments. Afterwards, we used further episodes from Env6 to improve the
navigation behavior in highly cluttered scenes as in Env5 and Env6. The evaluation results are depicted in
Tab. 1 and Fig. 6.

5. EXPERIMENTS

The implementation of our framework is based on several components. As communication back-
bone, we use ROS and for the RL approach, we created a simulation environment with Gazebo [19].
We implemented the RL in Python with the Tensorflow library [20]. As mobile platform, we use
the Robotino robot by Festo [21].

5.1. Training
To train the neural network and learn a policy to follow a global path and reach a goal without
collisions, we used a simple environment (see Env1 in Fig. 4). During the training, we sampled
the start and goal positions randomly across the free space, where we chose start-goal configura-
tions with a short Euclidean distance at the beginning and later increased the distance for more
challenging scenarios. This helps the robot initially to reach preferable states and learn basic nav-
igation in free space, while longer start-goal configurations force the robot to deal with obstacles,
as suggested in [22].

We used four simultaneously operating robots to ensure our collected data is independent and
identically distributed. Each robot was given different start and goal configurations. Every episode
was limited to 1000 time steps, the batch size was 32 and the entire training involved 106 episodes.
In Eq. (5), we set the final reward b to 10, c to 50, rfix in Eq. (4) to−0.1, and α in Eq. (6) had value
of 10, as experimentally determined. The controller run with a frequency of 10Hz during training
and testing. The overall training time was about 24 hours using a Nvidia GeForce GTX 1080.

5.2. Evaluation
After training, we performed experiments in different environments to evaluate the policy learned
in Env1 in terms of number of successful runs, which means that the robot reached the goal
without collisions, and completion time, both in comparison to the standard ROS [2] navigation
stack. The latter uses the DWA [3] to calculate the robot’s velocity commands. We configured the
DWA with similar restrictions to guarantee similar conditions in terms of acceleration and velocity
limits and application of the unicycle robot control. The translational velocity was limited between
0 and 0.7m/s and the angular velocity between −0.7 rad/s and 0.7 rad/s. The acceleration limits
for translational and angular steering were set to 1 m/s2 and 1 rad/s2 for both approaches.

Note that the DWA approach needs an inflation radius around obstacles in the 2D grid map. This
corresponds to a general safety distance to prevent collisions that could result, e.g., from the
discretization of the environment. The inflation parameters usually need to be tuned to achieve
a good trade-off between safety and time performance. One advantage of our approach is that it

Computer Science & Information Technology (CS & IT) 199

Env1 Env2 Env3 Env4 Env5 Env6 Env5* Env6*
1.0 1.0 0.99 0.99 0.75 0.22 1.0 0.84

Table 1: Success rate of the trained policy. The evaluation consists of 400 runs for each of the environments
shown in Fig. 4. A successful run means that the robot reaches the goal within a certain time limit without
any collision. To improve performance in Env5 and Env6, we continued to train the policy on Env6. As
shown in the last two columns (Env5* and Env6*), the results of the re-trained policy were seriously better.

Figure 5: Performance improvement in Env6. (a) Collisions in Env6 with the policy trained on Env1. (b)
The policy resulting from the additional training in Env6 shows much fewer collisions.

works on a binary map of the environment without any inflation. Our approach directly learns the
appropriate distance to obstacles depending on their local configuration.

Fig. 4 depicts the environments we used in the evaluation. Each map introduces a further level
of difficulty. Env2 is similar to the training environment Env1 but the length of the room is
doubled and an additional obstacle occurs in the center. The large walls of Env3 can lead the
robot into local minima if no global path is used. This map is well suited to test the performance
of the learned policy in terms of a reduced completion time while avoiding collisions since fast
movements on circular arcs around the obstacle corners are needed to achieve a good navigation
behavior. Env4 introduces round obstacle shapes not experienced before. Env5 and Env6 consists
of several regions with a high obstacle density. In those maps, it is not always possible to follow
the global path computed on a map without obstacle inflation since the path might lead through
regions with very close obstacles. Thus, the robot has to learn to bypass the corresponding region
by moving away from the global path.

5.3. Success Rate
For each environment in Fig. 4, we performed 400 runs with the DWA and with our trained policy.
The robot’s start and goal configurations were sampled randomly for each run but were the same
for the two approaches. The DWA controller was able to reach all goals in all environments
without any collisions. The success rates of our trained policy are listed in Tab. 1. Our approach
performs equally well in Env1 to Env4. In Env5 and Env6 the performance decreases due to

Computer Science & Information Technology (CS & IT)200

Figure 6: Average completion time for the DWA and our learned policy. The box height shows the average
completion time and the whiskers illustrate the standard deviation. As can be seen, our trained policy
outperforms the DWA in each environment. The difference is statistically significant in Env3, Env4, and
Env5 according to a paired t-test at the 0.05 level.

an insufficient generalization resulting from Env1, that leads to increased collision rates. We
discovered that situations in which the robot has to depart from the global path did not occur in
Env1 and, thus, the robot could not learn a suitable strategy to handle those situations.

To overcome this limitation, we continued the training process with the so far learned policy
parameters θ on Env6. After only 8000 further trained episodes (which corresponds to not even
1% of the initial size of the training set), the performance improved significantly and the results
are shown in the last two columns of Tab. 1. In Env5 we could achieve a success rate of 100%
with the newly learned policy and in Env6 the robot now reached the goal in 84% of all runs (the
results are denoted as Env5* and Env6* in Tab. 1).

The left image of Fig. 5 visualizes for Env6 the positions where the robot collided with obstacles
when following the policy learned on Env1. The right image of Fig. 5 shows the collisions after
further training on Env6. As can be seen, fewer collisions appear in regions with high obstacle
density. The reason is that the robot learned when it is beneficial not to follow the global path into
narrow space but rather drive around depending on the obstacle configuration.

5.4. Completion Time
Next, we evaluated the completion time of the navigation tasks when using the standard DWA
approach and our learned policy. Fig. 6 shows the average completion time for the runs from
Sec. 5.3. that were successfully completed by both approaches. Our approach is 16% faster on

Computer Science & Information Technology (CS & IT) 201

Figure 7: Real-world experiment. The robot entered the office from the left. Based on our learned naviga-
tion policy, the robot chooses the best translational and angular velocities to reach the global goal quickly
while avoiding the obstacle in the center.

average over all evaluated runs. The difference is statistically significant in Env3, Env4, and Env5
according to a paired t-test at the 0.05 level. One reason for the faster performance is that the
robot learns the best distance to obstacles, which reduces the trajectory length and leads to time
savings, especially in Env3 where our policy performs 26% faster than the DWA.

5.5. Real-World Experiment
Finally, we applied our learned policy on a real robot and compared the performance to the DWA.
In the experiment, the robot had to enter an office from the corridor and navigate around an
obstacle to reach the global goal (see Fig. 7) by following subgoals on the path. An occupancy
grid of the environment was mapped before and we applied Monte Carlo localization [23] to
obtain the robot pose.

For the evaluation, we performed 10 experiments with similar start and goal configurations for
both the standard DWA approach and our trained policy. With both approaches, the robot reached
the goal in each run. The DWA approach needed 28.2 s on average to reach the goal location while
our approach had a reduced average completion time of 25.5 s. The difference was statistically
significant according to a paired t-test at the 0.05 level.

Our approach saves time by driving closer around obstacles while the standard DWA takes into
account a general inflation radius around obstacles.

6. CONCLUSIONS

In this paper, we proposed a new approach to learn a navigation policy for wheeled robots in an
unsupervised manner. We use proximal policy optimization for reinforcement learning to train a
network that provides the robot’s translational and angular velocity commands for the next time

Computer Science & Information Technology (CS & IT)202

step. Our solution combines global path planning with deep RL to navigate collision-free and
reach a global goal in the environment.

Our policy was first trained in a simple environment and subsequently evaluated in environments
with increasing complexity. The experimental results demonstrate that our network successfully
learned collision-free, goal-directed behavior also in cluttered environments. Furthermore, we
compared the performance of our trained policy to the popular dynamic window approach (DWA)
with respect to completion time of navigation tasks. On average, the robot controlled by our
learned policy completed the tasks 16% faster than the DWA of ROS. In our real-world experi-
ment, we experienced similar results, i.e., the robot performs 10% faster than the DWA using our
navigation policy. Our learned strategy safes time by keeping a closer distance to obstacles and
choosing appropriate velocities. This is a direct result of the optimization of the motion commands
based on the local configuration of the obstacles without any parameter tuning for the navigation
controller.

In future work, we plan to incorporate dynamic obstacles, e.g., walking humans, into our frame-
work. An additional sensor would detect the moving obstacles and combine them with the static
grid map as input to the CNN.

ACKNOWLEDGMENTS

We would like to thank Christopher Gebauer for helpful discussions and his support during the ex-
perimental evaluation. This work has partly been supported by the German Research Foundation
under Germany’s Excellence Strategy, EXC-2070 - 390732324 (PhenoRob).

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” arXiv preprint, 2017.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“ROS: An open-source robot operating system,” in Proc. of the ICRA Workshop on Open
Source Software, 2009.

[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robotics and Automation Magazine (RAM), 1997.

[4] J. Sergeant, N. Sünderhauf, M. Milford, and B. Upcroft, “Multimodal deep autoencoders for
control of a mobile robot,” in Proc. of the Australasian Conf. on Robotics and Automation
(ACRA), 2015.

[5] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From perception to deci-
sion: A data-driven approach to end-to-end motion planning for autonomous ground robots,”
in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[6] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart, and J. Nieto,
“Reinforced imitation: Sample efficient deep reinforcement learning for mapless navigation
by leveraging prior demonstrations,” IEEE Robotics and Automation Letters (RA-L), 2018.

[7] Y. Liu, A. Xu, and Z. Chen, “Map-based deep imitation learning for obstacle avoidance,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[8] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation through raw
depth inputs with generative adversarial imitation learning,” Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2018.

[9] A. Pokle, R. Martin-Martin, P. Goebel, V. Chow, H. M. Ewald, J. Yang, Z. Wang,

Computer Science & Information Technology (CS & IT) 203

A. Sadeghian, D. Sadigh, S. Savarese, and M. Vazquez, “Deep local trajectory replanning
and control for robot navigation,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2019.

[10] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and
planning for visual navigation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[11] S.-H. Hsu, S.-H. Chan, P.-T. Wu, K. Xiao, and L.-C. Fu, “Distributed deep reinforcement
learning based indoor visual navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018.

[12] X. Chen, A. Ghadirzadeh, J. Folkesson, M. Björkman, and P. Jensfelt, “Deep reinforcement
learning to acquire navigation skills for wheel-legged robots in complex environments,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[13] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous con-
trol of mobile robots for mapless navigation,” in Proc. of the IEEE/RSJ Intl. Conf. on Intel-
ligent Robots and Systems (IROS), 2017.

[14] T. Fan, X. Cheng, J. Pan, D. Monacha, and R. Yang, “Crowdmove: Autonomous mapless
navigation in crowded scenarios,” in Proc. of the IROS Workshop on From freezing to jostling
robots: Current challenges and new paradigms for safe robot navigation in dense crowds,
2018.

[15] H. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation behaviors end-to-end
with AutoRL,” IEEE Robotics and Automation Letters (RA-L), 2019.

[16] J. Kulhánek, E. Derner, T. de Bruin, and R. Babuška, “Vision-based navigation using deep
reinforcement learning,” in Proc. of the Europ. Conf. on Mobile Robotics (ECMR), 2019.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in Proc. of Int. Conf. on Learning Representations (ICLR), 2015.

[18] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint, 2016.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2004.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[21] Festo. [Online]. Available: https://www.festo-didactic.com/int-en/learning-
systems/education-and-research-robots-robotino/

[22] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proc. of the
Int. Conf. on Machine Learning (ICML), 2009.

[23] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localization: Efficient posi-
tion estimation for mobile robots,” Proc. of the Conference on Advancements of Artificial
Intelligence (AAAI), 1999.

Computer Science & Information Technology (CS & IT)204

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

