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ABSTRACT 
 
Natural language processing (NLP) has witnessed many substantial advancements in the past 

three years. With the introduction of the Transformer and self-attention mechanism, language 

models are now able to learn better representations of the natural language. These attention-

based models have achieved exceptional state-of-the-art results on various NLP benchmarks. 

One of the contributing factors is the growing use of transfer learning. Models are pre-trained 

on unsupervised objectives using rich datasets that develop fundamental natural language 

abilities that are fine-tuned further on supervised data for downstream tasks. Surprisingly, 

current researches have led to a novel era of powerful models that no longer require fine-

tuning. The objective of this paper is to present a comparative analysis of some of the most 

influential language models. The benchmarks of the study are problem-solving methodologies, 

model architecture, compute power, standard NLP benchmark accuracies and shortcomings. 
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1. INTRODUCTION 
 

Over the past few years, there has been rapid progress in the field of language modeling. The new 
generation of NLP models introduced from late 2018 has drastic performance improvements on 

many language understanding benchmarks, with few achieving near-human level accuracies. This 

significant rate of progress can also be comprehended from the need for more rigorous 
benchmarks as these models have outperformed on the existing benchmarks. The shift from 

GLUE [1] to SuperGLUE [2] is one of the prominent examples. The two major contributors 

behind this success are Transformer and Transfer learning. 
 

Before the introduction of the Transformer [3], Recurrent Neural Networks were the state-of-the-

art solution for any NLP tasks. Later, for many years LSTM [4] became the go-to architecture for 

developing sequence to sequence models. The introduction of gating mechanism and attention 
mechanisms successfully mitigated the vanishing gradients problem and enhanced the 

performance on longer sequence length. Nevertheless, these modifications could not resolve the 

shortcoming posed by its sequential nature, i.e., it inhibited parallelization within training 
examples. Transformer embarked a new beginning by introducing parallelization which 

facilitated encoding all parts of the input sequence together at the same time. This considerably 

reduced the time to train the model. The success of the Transformer model comes from the self-

attention mechanism that understands the essential elements in a sentence by evaluating the 
relationships between all words. A few months later, GPT [5], one of the early implementations 
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of the transformer-based language model, successfully demonstrated the effectiveness of using 
transformers by outperforming several task-specific state-of-the-art models. This overwhelming 

success is predominantly attributed to the adaptation of Transformers. Consequently, 

Transformers became a conventional preference for many upcoming language models.  

 
In the last few years, NLP has witnessed a rise in the adaptation of transfer learning. It has been 

vastly explored in the field of computer vision, where a Convolutional Neural Network (CNN) is 

pre-trained on a rich image dataset such as ImageNet [6] followed by fine-tuning on task-specific 
data. Similarly, in NLP, pre-training a language model on considerably large unlabeled text 

corpora has become the new standard approach. Rather than randomly initializing the model 

parameters, it helps the model to learn fundamental language abilities that can be valuable in any 
NLP task. Enormous text repositories like Wikipedia, books, articles, social media platforms, 

etc., act as the primary source of plain text. Transfer learning has been helpful to many NLP tasks 

that have an inadequate amount of training data. It would have been nearly impossible to reach 

the remarkable state-of-the-art language models without transfer learning. 
 

The paper covers a detailed comparative analysis among various Transformer based Language 

models. It is divided into the following sections. Section II is a literature review. This section 
describes a broad summary of the proposed language models and their significant contributions. 

Section III presents the inferences drawn from the model. Section IV provides a detailed 

comparative analysis. Section V concludes the paper with insights from this analysis. 
 

2. LITERATURE REVIEW 
 

Jacob Devlin et al. (Oct 2018) [7] proposed BERT, which stands for Bidirectional 

Representations from Transformers. It marks the beginning of one of the most influential 
concepts that changed the entire NLP scenario, a pre-trained deep bidirectional model. The term 

bidirectional emphasizes BERT’s context-sensitive word embedding generated by combining the 

left and right contexts. To train such representation, the model uses a masked language model 
(MLM), which is inspired by the cloze task [8]. It also utilizes next sentence prediction (NSP), a 

second pre-training task along with MLM that builds a better understanding of the relationship 

between the sentences. To sum up, BERT attains new state-of-the-art results on eleven NLP tasks 

and establishes a firm foundation for the upcoming language models. 
 

Zihang Dai et al. (Jan 2019) [9] proposed Transformer-XL, an improved transformer architecture 

capable of learning dependencies beyond the maximum sequence length T, or a fixed-length 
segment. To achieve this, the model suggests two changes in the original transformer 

architecture. It introduces recurrence between segment levels and a novel relative positional 

encoding. Transformer-XL learns dependencies that are 450% longer and attains 1874x speed up 

during evaluation than the transformer. 
 

Zhilin Yang et al. (June 2019) [10] proposed XLNet, a generalized autoregressive pretraining 

method that uses permutation language modeling to enable an autoregressive model to learn 
bidirectional contexts. The bidirectional nature comes from the permutation of the factorization 

order, which allows it to see tokens occurring to the left and right in the same sequence. This 

makes XLNet perform better on language understanding tasks like question answering, reading 
comprehensions, etc. 

 

Yinhan Liu et al. (July 2019) [11] proposed RoBERTa, which stands for Robustly optimized 

BERT approach. RoBERTa enhances the BERT model by providing a set of modifications in its 
pre-training implementation, some of which are inspired by the previous works in neural machine 

translation and are proven to enhance end-task performances. Experiments on GLUE [1], 



Computer Science & Information Technology (CS & IT)                                     167 

SQUAD v1.1/v2.0 [12], RACE [13], reveals that RoBERTa outperforms BERT and establishes 
new state-of-the-art results. 

 

Zhenzhong Lan et al. (Sept 2019) [14] proposed ALBERT, A Lite BERT, that achieves a new 

state-of-the-art solution on RACE, GLUE and SQUAD benchmarks. Although ALBERT-large 
(comparable to BERT-large) falls short in performance, it is 18x smaller and trains 1.7x faster. It 

disentangles the memory limitation and communication overhead that are inevitable when pre-

trained models are scaled. To accomplish this, the model introduces two modifications in BERT, 
factorized embedding parameterization and cross-layer parameter sharing. Along with this, 

Sentence order prediction (SOP), a novel pre-training objective, is introduced that replaces NSP. 

These developments lead ALBERT to scale to ALBERT-xxlarge, a much larger model that 
outperforms BERT with 70% fewer parameters. 

 

Colin Raffel et al (Oct 2019) [15], proposed T5, which stands for Text-to-Text Transfer 

Transformer. It is the result of combining the best design traits from past work in Language 
Modelling.  The model introduces a unified text-to-text framework where NLP tasks are treated 

as a text-to-text problem. This novel framework enables T5 to solve diverse downstream tasks 

using a single pre-trained model, as opposed to fine-tuned task-specific models. T5 achieved the 
state-of-the-art solution on GLUE, CNN/Daily Mail [16] with achieving near-human score on 

SuperGLUE.  

 
Jingqing Zhang et al. (Dec 2019) [17] proposed PEGASUS, a specialized pre-training model for 

abstractive text summarization. It is pre-trained on a novel self-supervised objective, Gap 

Sentences Generation (GSG), that bears a striking resemblance to the targeted downstream task. 

As a result, PEGASUS provides faster fine-tuning and greater performance on low resource 
summarization, i.e., accomplishing state-of-the-art results on six datasets with just 1000 

examples. 

 
Kevin Clark et al. (Mar 2020) [18] proposed ELECTRA, a two transformer text encoder 

(generator and discriminator) model that is pre-trained by distinguishing the real tokens in the 

original sentence. ELECTRA emphasizes stronger compute efficient models. Based on this 

vision, 12.5% trained and 50% trained ELECTRA-Small efficiently outsmarts BERT-Small and 
GPT, respectively. Replaced token detection is remarkably computationally efficient than MLM. 

Although the model architecture bears a similarity with Generative Adversarial Training (GAN) 

[19], the paper briefly explains the difference in their implementation and why it is an instance of 
Adversarial Contrastive Estimation [20] instead of GAN. 

 

Alec Radford et al. (June 2020) [21] proposed GPT-3, the third- generation autoregressive 
language model in the GPT series. The model consists of 175B parameters, the largest in any 

model till date and is 100x bigger in comparison to GPT-2 [22]. The model implements few-shot 

learning, i.e., capable of performing a novel NLP task by looking at a limited number of 

examples/instructions. That is, the model does not update any parameter-weights and can be 
applied directly on any NLP tasks. In most cases, this eliminates the need to fine-tune the model 

further, which can be challenging at times due to the unavailability of domain-specific data. GPT-

3 is task-agnostic and surpasses the previous state-of-the-art fine-tuned model in few downstream 
tasks. 
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3. INFERENCES DRAWN 
 

3.1. BERT 
 

Although BERT outperformed on eleven NLP tasks, its pre-training phrase can be optimized 
further. It is pre-trained on two unsupervised tasks one of which is MLM. It trains the model to 

utilize bidirectionality by predicting a few masked tokens in a sentence. The masking strategy 

creates a mismatch in the fine-tuning tasks as [MASK] tokens never occur in fine-tuning data 
until created externally. To soften this, the [MASK] token was used only 80% of the time. Also, 

in sentences with more than one masked token, the model treats them independent of each other, 

i.e., the second masked token is assumed to be semantically independent of the first masked 

token. This assumption hurts the prediction in cases of high dependence between the tokens. The 
second pre-training objective, NSP, improves the performance on Natural Language Interface and 

Question Answering tasks. 

 

3.2. Transformer-XL 
 

The vanilla transformer model did not emphasize retaining contexts between fragments of 
segments exceeding the maximum sequence length (T=512 tokens).In other words, the 

information flow between segments of the same documents was not captured, causing context 

fragmentation. To deal with such limitation, Transformer-XL proposed a segment-level 
recurrence mechanism that enabled reusing the hidden layer of the previous segment. This 

ensured a proper flow of information, thus accurately capturing long term dependencies. 

Absolute positional embeddings (used in the vanilla model) had to be replaced by the relative 

positional encodings as it was incompatible with segment recurrence. Such encoding enabled 
self-attention layers to figure out the relative distance between tokens and where to attend them.  

 

3.3. XLNet 
 

Inspired by recent successes in bidirectional context representation and segment recurrence, 

XLNet integrates both into a generalized autoregressive pre-trained model. Using the permutation 
LM pretraining objective, samples of different orders of the factorization are obtained using 

different attention masks. This permutation allowed such orders that required contexts of both the 

left and the right tokens for predicting a token, equipping a bidirectional behavior. To facilitate 
such behavior, XLNet’s Two-Stream self-attention architecture produces two kinds of token 

representations instead of one, i.e., content and query representation. The content representation 

is the same as in the vanilla transformer and is used when predicting other tokens. On the other 
hand, the novel query representation is used when the token itself is being predicted. It includes 

contextual information of tokens occurring before the current token in the order and the 

positional information of the token itself. 

 

3.4. RoBERTa 
 

This paper focuses on an in-depth analysis of BERT and finding new alternatives to improve 
performance. As a result, new modifications in the pre-training were discovered. Following 

those, RoBERTa is pre-trained on a dataset that is 10x larger, a larger vocabulary, and larger 

mini-batch sizes. The dynamic masking scheme used in MLM ensures that different masked 
versions of the same sentence occur across different epochs, leading to slightly better pre-

training. RoBERTa excludes NSP, as experiments prove that it no longer remains critical with the 

proposed set of modifications, and instead, eliminating it improves performances on downstream 
NLI tasks such as SQuAD 1.1/2.0, MNLI-m [23], RACE, etc. 
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3.5. ALBERT 
 

Factorization of embedding parameters decomposes the word embedding size E and hidden layer 

size H. One-hot vectors are projected firstly into the context-independent word embedding space 
and then into context-dependent hidden space, significantly reducing O(V ×H) parameters to O(V 

× E + E × H). On the contrary, the benchmark scores with cross-layer parameter sharing are 

worse than no sharing at all, indicating that there exists a trade-off between the number of 
parameters and model performance. The parameter-reduction mechanism significantly reduces 

the number of unique parameters, enabling the ALBERT-xxlarge scale to even larger hidden 

layer size with having around 70% of parameters of BERT-large. 

 

3.6. T5 
 
T5 combines the results of a rigorous study done across different aspects of a model. It is a deep 

bidirectional pre-trained model that uses both the encoder and decoder model of the original 

transformer. The model is pre-trained on Colossal Clean Crawled Corpus (C4), a large dataset 

created to avoid repetitions, as models underperform when trained on a limited size dataset due to 
memorization of the repeated examples. A predefined prefix is added before every input 

sequence to perform a certain downstream task. Although STS-B [24] is a regression task 

(outputs a number between 1-5), T5 successfully transforms it into a 21-class classification 
problem. The output is rounded and assigned a class name, thereby fitting a regression task into 

the framework. Currently, T5 tops the STS-B leaderboard with T5-11B achieving new state-of-

the-art solution. 
 

3.7. PEGASUS 
 
PEGASUS is a perfectly curated pre-trained model specialized in generating abstractive text 

summarization. It is a task-specific architecture where every component in pre-training maps 

closely to text summarization. The model is pre-trained on C4 [25] and HugeNews datasets, both 
consisting of large volumes of articles. Therefore, covering a depth of various domains for text 

summarization. The pre-training objective, Gap Sentence Generation (GSG), is also similar to the 

target downstream task, i.e., generating abstractive summaries from an input of masked 

sentences. The masking scheme in GSG suggests that masking important spans of sentences of an 
article leads to a better performance. The model is adaptable and can be fine-tuned on limited 

data, achieving human performance.      

 

3.8. ELECTRA 
 

The replaced token detection (RTD) is a sample-efficient pre-training objective as it leads to 
faster training by classifying all the input tokens instead of working on just 15% masked tokens, 

as in MLM. It is noticeable that the model consistently performs better at CoLA [26], as it 

roughly matches RTD’s purpose. During pre-training, the generator (G) performs MLM, 
followed by replacing the [MASK] token with convincing substitutes using the maximum 

likelihood. The discriminator (D) then detects whether tokens in the modified sentence have been 

replaced or not. Finally, after the pre-training, the generator is removed from the architecture. 

The model is optimized by sharing embeddings between the two encoders and selecting an 
efficient generator size that reduces training compute. The paper further explores training 

ELECTRA ++ models by training them longer on a bigger dataset and creating more efficient 

models by distilling them. 
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3.9. GPT-3 
 

GPT-3 is a remarkable language model capable of achieving near human performance in Natural 

Language Generation (NLG) downstream tasks such as writing poems, songs, and even a novel. 
On the contrary, it performs notably dull on natural language inference (NLI) tasks such as ANLI 

[26], WIC [27] and on many reading comprehension tasks such as DROP [28], MultiRC [29], 

RACE [13] and QuAC [30]. Surprisingly, GPT-3 performs worse than GPT on RACE-H and 
RACE-M datasets, scoring 10.6 and 4.8 points less, respectively. GPT-3 focuses less on research 

value and more on occupying top scores on the leaderboard. To conclude, GPT-3 has exceptional 

skills for text generative tasks though it lacks language inference capabilities and needs 

development in semantic understanding of the natural language. 
 

4. COMPARATIVE ANALYSIS 
 

The comparative analysis of the language model spans the following topics: 

  
Table 1.  Brief statistics about various language models. 

 

Model Year 

Part of the 

Transformer 

used 

Pretraining 

Objective used 
Dataset Size 

Total Train 

Compute* 

Vocabulary 

Embeddings 

and its size 

BERT 2018, Oct Encoder 
Denoising 

(MLM + NSP) 
16GB 1.9E+20 WordPiece -30k 

Transforme

r-XL 
2019, Jan Decoder 

Autoregressive 
LM 

Not 
Specified 

Not 
Specified 

Not Specified 

XLNet 
2019, 
June 

Decoder Permutation LM 158GB 3.9E+21 
SentencePiece - 

32k 

RoBERTa 2019, July Encoder 
Denoising 

(Dynamic MLM) 
160GB 3.2E+21 

Byte-Pair 
Encoding - 50k 

ALBERT 
2019, 
Sept 

Encoder 
Denoising 

(MLM + SOP) 
16 GB 3.1E+22 

SentencePiece - 
30k 

T5 2019, Oct 
Encoder + 
Decoder 

Denoising 
(Span based 

MLM) 
750GB 3.30E+22 

SentencePiece – 
32k 

PEGASUS 2019, Dec 
Encoder + 
Decoder 

GSG 4.5 TB 
Not 

Specified 
Unigram – 96k 

ELECTRA  2020, Mar Encoder 
Discriminating 
(MLM + RTD) 

16GB 3.1E+21 
WordPiece – 

30k 

GPT-3 
2020, 
June 

Decoder 
Autoregressive 

LM 
45 TB 

(unfiltered) 
3.14E+23 

Byte-Pair 
Encoding 

 
*Total train compute corresponds to the computing power consumed by the largest variant of the 

model. 

 

4.1. Autoregressive Models (AR) 
 

GPT is the first transformer implementation of the Autoregressive Language Model. 
Transformer-XL performs far better than GPT because the segment-level recurrence captures 

longer dependencies than vanilla Transformer, on which GPT is based. XLNet introduces 

bidirectionality in the autoregressive model and integrates Transformer-XL’s recurrence and 
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outperforms many AR models. GPT-3’s enormous model has a relatively simple pre-training 
procedure, yet the few-shot learning approach achieves state-of-the-art result in many 

downstream tasks. 

 

4.2. Autoencoding Models (AE) 
 

BERT is the first transformer model to be pre-trained on the MLM objective giving rise to the 
first deep bidirectional pre-trained model. The dynamic masking strategy proposed by RoBERTa 

is better than the static masking strategy employed in BERT. It produces different corrupted 

versions of the masked sentences that help in avoiding repetitions of examples. ALBERT and T5 

improve it further by masking spans of words. This strategy provides significant speedup during 
training and also ensures a balance between the length of the masked spans. Too much masking 

would fail to provide enough context for prediction whereas too little masking would make it 

computationally expensive. While PEGASUS is a sequence to sequence model, it masks whole 
sentences which makes it even more challenging.  

 

4.3. Sequence to Sequence Models (SeqtoSeq) 
 

SeqtoSeq models include both the parts of the Transformer, i.e., encoder and decoder. These 

models are generally used for language translations and generating abstractive summaries. The 
performance of PEGASUS, T5, and the vanilla Transformer on the CNN/DM [16] benchmark 

test is compared.  
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R1 R2 RL

 
 

Fig. 1. ROGUE scores on CNN/DailyMail on different language models. Best viewed in colour. 

 

PEGASUS outperforms every model because of two significant reasons. Firstly, it is a pre-trained 

model fine-tuned for text summarization tasks whereas, T5 is a multitask language model. 

Secondly, it is fine-tuned on extra training data that provides an edge. 

 

4.4. Performance on Machine Translation tasks 
 

On the WMT benchmark, although T5 and GPT-3 achieve a significant increase over the vanilla 

transformer, they are still behind the state-of-the-art solution. As for both the models a large 

portion of the training data is in English, therefore, pre-training on multilingual data can be 
beneficial. Also, the state-of-the-art models for machine translation are specially trained with 

back-translation [31][32], a data augmentation technique that obtains substantial improvement in 

machine translation tasks. 
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Fig. 2. BLEU scores on WMT for different language models. Best viewed in colour. 

 

4.5. Performance on QA benchmarks 
 
Question Answer tasks evaluate the logical reasoning abilities of the model. SQuAD 2.0, a 

reading comprehension benchmark is one of the prominent methods for testing QA abilities. 
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Fig. 3. Exact Match on SQUAD2.0 scored by various language models. Black bars represent Autoencoding 

(AE) models and grey bars represent autoregressive (AR) models. 

 

AE models perform better than AR models because bidirectional context leads to better 

reasoning. XLNet scores marginally higher than RoBERTa, owing to two factors. Firstly, it is 
trained on additional data and secondly, it uses a layer-wise learning rate scheduler, while 

RoBERTa uses a uniform learning rate. It is noteworthy that ALBERT and ELECTRA are 30x 

and 47x smaller in comparison to T5, respectively. Also, ELECTRA consumes only 10% of the 

compute power required for pre-training T5. Considering this and the marginal performance 
gains of T5, ALBERT and ELECTRA emerge as strong competitors. 

 

4.6. Performance on NLI benchmarks 
 

Natural Language Inference tasks evaluate the semantical understanding between the sentences. 

Recognizing textual entailment (RTE) [33] is a common NLI task in GLUE and SuperGLUE, 
where the model predicts if meaning of one sentence can be inferred from another. The 
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conclusions are similar to the previous section. AE models perform better. GPT-3 lacks 
semantical understanding and performs comparably to BERT. 
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Fig. 4. Accuracy scores on RTE on different language models. Black bars represent AE models and grey 

bars represent AR models.  

 

4.7. Increasing demand for computing power 
 
It has become a fact that bigger models trained on large volumes of data are naturally better at 

NLP tasks. For such training, a lot of compute power is required. Below is the total computing 

power used by different language models in their pre-training phase. 
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Fig. 5. The required training compute power for the largest variant of various language models. (plotted in 

log scale) 

 

The increasing demand for energy resources can be observed as language models have evolved 

from BERT to GPT-3. ELECTRA efficiently demonstrates the balance between the computative 
power consumed and its remarkable capability. 

 

4.8. Unwanted Gender Bias in models 
 

The datasets used by language models are often compiled from online repositories such as 

Wikipedia, books, the internet, social media platforms, etc. In these sources, traces of human 
stereotypes and biases such as a male doctor and female nurse can be spotted easily. Winogender 

Schema [34], is a SuperGLUE diagnostic tool that evaluates a model’s gender-parity and the 

accuracy with which a model can predict stereotypical sentences.   
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Fig. 6. Accuracy on Winogender scheme scored by various language models. 

 
BERT and GPT-3 both suffer from gender bias, getting it right just over 50% of the time, 

whereas T5 tops the leader board. GPT-3’s low scores can be accounted for as most occupations 

in the training data were associated with males. Unless the datasets are filtered thoroughly, biases 
will propagate into the language model. 

 

4.9. Ineffectiveness of Next Sentence Prediction 
 

NSP is a binary classification pre-training objective where the model learns sentence relationship 

by predicting if sentence 2 correctly follows sentence 1. The ineffectiveness raises from the kind 
of data used for training and testing. In the training data, sentences in the positive class correctly 

follow each other whereas sentences in the negative class are created by concatenating random 

sentences from two separate documents. Since the probability of mismatching topics is relatively 
higher, predicting negative class becomes easier, i.e., the model might excel in NSP without 

learning much about the sentimental relationship in sentences. Consequently, RoBERTa, XLNet, 

and ELECTRA chose not to include it and ALBERT replaced it with SOP, making it challenging 

by predicting the order of two consecutive sentences. 
 

5. CONCLUSIONS 
 

In this paper, a comparative analysis of transformer-based language models has been presented. 
The evaluation spans across various aspects such as language modeling methodology, design 

choices, compute power, accuracy scores on popular benchmarks, and shortcomings. With the 

introduction of Transformers, the process of developing language models has streamlined. The 

shift from pre-trained word embeddings to pre-trained language models marks the beginning of a 
new epoch. The tradition of pre-training massive models on large volumes of data to achieve 

state-of-the-art results has now become very common. It is also noteworthy that due to its 

valuable contribution to deep bidirectional representations, BERT has established itself as a 
baseline model. Despite the brilliance of state-of-the-art language models, prominent limitations 

such as the malicious utilization of language models, increasing consumption of energy 

resources, and the presence of stereotypical biases, lays the groundwork for future researches. 
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