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ABSTRACT 
 

The Self-Organizing Convolutional Map (SOCOM) combines convolutional neural networks, 

clustering via self-organizing maps, and learning through gradient backpropagation into a 

novel unified unsupervised deep architecture. The proposed clustering and training procedures 

reflect the model’s degree of integration and synergy between its constituting modules. The 

SOCOM prototype is in position to carry out unsupervised classification and clustering tasks 

based upon the distributed higher level representations that are produced by its underlying 

convolutional deep architecture, without necessitating target or label information at any stage 

of its training and inference operations. Due to its convolutional component SOCOM has the 

intrinsic capability to model signals consisting of one or more channels like grayscale and 

colored images. 
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1. INTRODUCTION 
 

Probably the most common bottleneck encountered in many deep learning approaches like 

Convolutional Neural Networks (CNNs) is the requirement for big labeled datasets. Constructing 

these datasets is a costly time-consuming procedure that frequently might end up proving 

infeasible for various reasons. The obvious answer to this problem is devising deep learning 

models that can be trained with unlabeled/uncategorized data, in other words, invent 

unsupervised learning algorithms for such deep networks. Aligned with this ongoing research 

direction one can trace a number of works that combine or hybridize Self-Organizing Maps 

(SOMs) with CNNs. 

 

The gamut of these approaches –including the present one– is quite widespread, spanning the 

range from purely unsupervised learning algorithms up to semi (or even full) supervised ones, 

and from shallow networks up to architectures containing multiple hidden layers; for instance [1], 

[2], [3] and [4]. Meeting both requirements i.e. building a deep SOM and training it in a purely 

unsupervised way has proven to be a complex and difficult task. Only a small number of models 

exist that can be classified as unsupervised beyond any doubt [5], [6]and [7]. Equally few are the 

approaches that extend beyond the three hidden layer limit [8], [9] and [6]. 
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The Self-Organizing Convolutional Map (SOCOM) is an attempt to overcome, at a certain extent, 

the aforementioned limitations. Its key characteristics and contributions are: (1) A deep 

architecture that is in position to expand beyond the trivial, and not particularity deep, three 

hidden layer limit. (2) An end-to-end purely unsupervised learning algorithm that does not 

necessitate the targets/labels of the training samples at any stage. 

 

The organization and structure of the remainder of this paper is as follows. Section 2 presents in 

detail the SOCOM both architecturally and operationally, and subsequently, analyses the key 

components of the corresponding feed-forward and backpropagation procedures. Section 3 

contains experimental (comparative) results and performance evaluations with different 

algorithms. Also, (practical) application issues are discussed in this section. In section 4, a 

summary is given and conclusions are drawn. Finally, section 5 gives hints for future work and 

suggestions for potential expansions. 

 

2. SOCOM PROTOTYPE 
 

A generic and at the same time characteristic SOCOM architecture consisting of multiple 

convolutional, pooling, fully-connected and self-organizing layers is illustrated in Figure 1. The 

basis of the mathematically expressed algorithmic learning procedures is presented in the 

following subsection. This section describes the main functionality and key methods of the 

SOCOM from a more macroscopic operational point of view. 
 

 
 

Figure 1. Detailed architecture of a SOCOM paradigm consisting of the following layers: 

input  convolutionalReLU  convolutional  ReLUpooling  convolutional  ReLU  pooling 

 fully-connected   fully-connected   fully-connected output neural map. 

 

The input layer of the SOCOM accepts any type of numerical data arranged in vectors, matrices 

(e.g. grayscale images) or volumes (e.g. colored images or successive images that exhibit a 

spatiotemporal correlation). The explicit assumption of CNNs that the inputs are images, 

something that makes the information propagation more efficient to implement and hugely 

reduces the network’s parameter count, still holds in the SOCOM paradigm but does not a priori 

exclude all other types of input data. 

 

As can be seen, a SOCOM comprises of a sequence of different layers with adjustable 

parameters. Each respective layer transforms one volume of activations to another via a 

differentiable function, thus facilitating the use of backpropagation during training. Stacking 

these layers in series eventually forms a full SOCOM architecture (Figure 1). 

 

Similarly to other CNNs the convolutional layer consists of a set (or bank) of tunable 

filters/kernels. Despite of its usually small size, every filter extends through the full depth of the 

input volume. During the forward propagation each filter slides along the width and height of the 

input volume by performing convolutions. Strictly mathematically speaking the convolution 

operation carried out here is the same as cross-correlation except that the kernel is rotated by 

1800. In the long run this procedure yields a two-dimensional activation map that contains the 

responses of the respective filter at each spatial position. The hypothesis (which is currently 
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backed up by several experimental findings in the literature) is that the network will tune its 

filters so that they activate when they trace some type of visual feature, edge, or pattern. Stacking 

the activation maps generated by the respective layer’s bank of filters produces the activation 

volume (or feature map) that is fed to the following (hidden) layer. As has been discussed, the 

units in a layer are only connected to a small region of the layer before it. This underlying weight 

sharing strategy, which is the aftereffect of using small filters, ends up reducing the overall 

number of trainable weights hence introducing sparsity, and at the same time, making the 

architecture suitable for manipulating images. 

 

Neural networks’ essential characteristic of nonlinearity (frequently in the form of the sigmoidal 

or hyperbolic tangent functions) is retained in CNNs by applying element-wise a non-saturating 

function to the activation volume of the preceding convolutional layer. The norm, that also the 

SOCOM adheres to, is to apply the rectified linear unit (ReLU) function to each individual 

activation produced by the convolutional layer. It has been shown, that such nonlinearities result 

in richer and more elaborate representations along the network architecture. 

 

At certain points in the convolutional-ReLU layer hierarchy a pooling layer is inserted. 

Essentially, pooling performs a downsampling operation solely along the width and height spatial 

dimensions of the input volume. The reduction of such blocks of activations to just a single value 

has several positive aftereffects: (1) the number of parameters and related computations is 

reduced, (2) sparseness is introduced, and (3) overfitting is avoided. 

 

After several convolutional and pooling layers, it is common to transition to fully-connected 

layers where the high-level abstract representations are formed. These densely connected layers 

are identical to the layers of the standard multilayer neural network. The first fully-connected 

layer decomposes the activations of its input volume into a one-dimensional vector and connects 

them to every unit it has. Subsequent layers consist of units which receive all the activations from 

the previous layer and perform a dot product followed by a nonlinearity. Fully-connected layers 

are not spatially arranged anymore something that prohibits the use of convolutional layers after a 

fully-connected layer. 

 

Finally, a SOM lattice of topologically arranged neurons acts as the output layer. Each of its 

neurons receives the activations of every unit in the last fully-connected layer. The magnitude of 

each neuron’s activation is based on a distance metric between the input activations and its 

codebook parameters. The neural mapping of the input image coincides with the position of the 

neuron that produces the optimal fit with respect to the computed activations and the 

neighborhood kernel (which has been defined over the topology of the neural grid). Apart from 

mapping this particular type of nonlinear projection can be further exploited for data clustering 

and visualization. 

 

It is also interesting to note that the proposed SOCOM architecture is in position to incorporate 

any number of layers (from the previous types) in any permutation. There are only two 

limitations: (1) after the first fully-connected layer convolutional layers cannot be used, (2) the 

output layer needs to be a SOM grid. 

 

2.1. Forward Propagation 
 

As has been demonstrated a generic SOCOM architecture consists of an input layer, L hidden 

layers (convolutional, ReLU, pooling and fully-connected ones) and an output layer (viz. lattice 

of ordered neurons). The novel component of the SOCOM is its neural output map and in 

particular the different from the norm energy function that is associated with it. 
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The output layer that consists of 𝐺 topologically arranged neurons performs a mapping of its 

input representations onto its neural map. More specifically, the projection of an input 

representation on the SOCOM plane is defined as the neuron yielding the lowest weighted 

squared Euclidean distance between the last hidden layer’s outputs 𝑜𝑖
𝐿and its corresponding 

codebook parameters 𝑢𝑔,𝑖 where weighting refers to the neighborhood kernel/function ℎ𝑒,𝑔 

defined over the topology of the neural grid. Frequently, this neuron (denoted as 𝑐) is referred to 

as “winner”. Algorithmically, this best-matching winner neuron is given by: 

 

𝑐 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑒

∑ ℎ𝑒,𝑔 ∑(𝑜𝑖
𝐿 − 𝑢𝑔,𝑖)

2
𝑃−1

𝑖=0

𝐺−1

𝑔=0

 (eq. 1) 

 

where𝑃 is the total number of units in the last hidden layer 𝐿. Additionally, this particular type of 

nonlinear projection can be further exploited for data clustering and visualization procedures. 

 

2.2. Backpropagation 
 

The purpose of being in positon to compute an error or loss function is dual. First, a definite 

quantification/assessment of the network’s performance is obtained. Second, learning takes place 

via the optimization of the network’s weights to minimize this specific error. This error function 

can be a number of different things, such as binary cross-entropy or sum of squared residuals. 

Differently from supervised approaches, learning in the case of SOCOM does not necessitate any 

type of desired or target values at any stage; thus giving rise to a pure unsupervised deep learning 

algorithm. The corresponding error/cost/loss function (or alternatively, the penalty term) is 

symbolized as 𝐸 and is defined as: 

 

𝐸 = ∑ 𝑁(𝑐)

𝐺−1

𝑐=0

∑ ℎ𝑐,𝑑

𝐺−1

𝑑=0

1

2
∑(𝑜𝑖

𝐿 − 𝑢𝑑,𝑖)
2

𝑃−1

𝑖=0

 (eq. 2) 

 

Where 
 

𝑁(𝑐) = {
1, 𝑐 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑒
∑ ℎ𝑒,𝑑

𝐺−1

𝑑=0

∑(𝑜𝑖
𝐿 − 𝑢𝑑,𝑖)

2
𝑃−1

𝑖=0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (eq. 3) 

 

For gradient descent backpropagation the updates that need to be performed are for the weights, 

the biases and the deltas. The utilized energy formula by the SOCOM is in accordance with the 

variation proposed in [10]and has been applied in a number of hybrid SOM networks [11], [12]. 

 

3. EXPERIMENTS 
 

The experimental investigation strategy that has been followed serves a dual purpose. First, a 

(mainly quantitative) comparison against a comprehensive series of similar/related deep SOMs is 

achieved. These models cover the full range of SOMs that extend beyond the mainstream two 

layer architecture (a single input layer connected to an output neural map) by employing at least 

one intermediate hidden layer between their inputs and outputs. Second, the conducted 

experiments act as a proof of concept for the proposed network by tangibly 

demonstrating/verifying its capabilities and clustering performance, given the modelling problem 

under consideration. 
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Following the justified requirement of comparing the SOCOM approach with an as wide as 

possible gamut of likewise SOM approaches the MNIST benchmark choice was unavoidable 

since: (1) the landslide of published deep SOMs report results (frequently, exclusively only) on 

the MNIST dataset, (2) it is traditionally the entry point dataset of experimental investigation 

when it comes to testing deep learning algorithms. The MNIST benchmark used in the current 

experimental setup is Yann LeCun’s version [13] which contains handwritten numerical digits 

that have been size-normalized and centered in a fixed-size image. The dataset consists of 60000 

training examples and 10000 testing examples; it is an almost balanced collection where the 

highest deviating category (in terms of sample size) is the handwritten digit “1” (approximately 

11.2% in the train set and 11.4% in the test set instead of the expected 10%). 

 

Before moving further an important point should be made. An end-to-end purely unsupervised 

learning algorithm that does not necessitate the targets/labels of the training samples at any stage. 

If these are provided they can potentially be used, but, typically, an unsupervised model should 

be is in position to function even when these are absent or missing. Nevertheless, there is merely 

a handful of approaches that adhere to strict unsupervised training criteria [5], [6], [7]and the 

ones reporting results on the MNIST database are specifically indicated in Table 1. Frequently, in 

the literature, an “unsupervised” model with a supervised or self/semi-supervised training 

procedure is proposed. Apart from the fact that this defeats the purpose and it is deluding, it is 

practically of questionable use. If the targets/labels of the input data are utilized during training 

then why resort in clustering results (which are intrinsically of coarser/qualitative nature) when 

the alternative of classification results (which are more detailed/informative) is on the table. 

 

Evaluating the quality of a clustering output and, in particular in the case of SOMs, of a mapping 

output is a non-trivial task that has been tackled by introducing various internal and external 

criteria. Internal criteria are more qualitative in the sense that they evaluate clustering results 

indirectly (e.g. by means of organization, compactness/sparseness, isolation and preservation), 

whereas external are more quantitative since by measuring the match between clustering and 

external (e.g. human-based) categorizations they are in position to provide more precise 

assessments. In the related literature, the most widely used external criterion, in particular for 

clustering tasks, is purity: 
 

𝑃𝑈𝑅 =
1

𝑆
∑ max

1≤𝑡≤𝑇
|𝑠𝑝 ∩ 𝑠𝑡|

𝑃

𝑝=1

. (eq. 4) 

 

The subscript 𝑝 denotes the partitioning of a set of 𝑆 samples into 𝑃 distinct clusters (a posteriori 

estimated by the model); similarly, the subscript 𝑡 denotes the assignment of these samples into 𝑇 

categories (a priori defined in the dataset). As expected its resulting values lie in the [0, 1] 
interval. Obviously purity identifies with accuracy given that the majority voting principle is 

utilized for labeling each individual cluster. Although purity intuitively is rather 

straightforward/precise it tends to favor small (in sample numbers) clusters like singletons. 

 

On a related note, a distinction should be drawn between obtaining accuracies with a posterior 

labeling of neurons (based on data labels) and obtaining accuracies with the addition of a 

supervised model/layer (like MLP, SVM or fully-connected Softmax network). Obviously, the 

latter approaches’ results are misleading since the unsupervised networks’ outputs are treated as 

input features to a supervised network (which is obviously trained in a supervised manner). This 

type of experimental testing does reveal characteristics of the unsupervised module’s output 

feature space but is by no means indicative of the network’s clustering capabilities and 

performance. 
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The SOCOM architecture that has been utilized in the present series of experiments closely 

follows that of resnet18 [14] upon which appropriate modifications have been carried out. 

Specifically, the first hidden 2D convolutional layer has been replaced by a 2D convolutional 

layer that accepts single channel signals/images, the last fully-connected layer has been removed, 

an output layer implementing the neural map has been added, followed by an 1D pooling layer 

for facilitating the backpropagation optimization algorithm. Standard stochastic gradient descent 

backpropagation with momentum [15] is used for training the network. Transfer learning [16]is 

also utilized for obtaining the initial weight/parameter values of the hidden layers that are shared 

with the resnet18 architecture. The codebook parameters have been initialized according to the 

methodology described in [17], using a uniform distribution. The lower and upper limits of the 

value ranges used for the learning rate and momentum hyper-parameters have been estimated 

according to the technique described in [18]. Output neurons are arranged onto a 2D hexagonal 

grid; the Gaussian neighborhood kernels’ standard deviations start with a value equal to half the 

largest dimension on the grid and decrease linearly to one map unit, during training. The 

performance (in terms of accuracy) and main characteristics of a list of indicative deep SOMs 

including SOCOM are summarized in Table 1. 
 

Table 1. The architectural/algorithmic characteristics of various deep SOMs and their respective accuracies 

on the MNIST dataset. 
 

Model/Network 
Accuracy 

(%) 
End-to-End Unsupervised Learning 

Number of 

Layers 

(Aly, 2020)[4] 99.43 
 

3 

(Braga, 2020)[19] 98.36 
 

4 

SOCOM 97.35 ● 20 

(Wang, 2017)[9] 96.7 
 

8 

(Liu, 2015)[2] 96.17 
 

3 

(Friedlander, 2018)[5] 87.7 ● 3 

(Wickramasinghe, 2019)[3] 87.12 
 

2 

(Wickramasinghe, 2018)[20] 84.87 
 

2 

 

As can be seen the proposed SOCOM outperforms the majority of previous approaches by 

utilizing a purely unsupervised learning algorithm which is capable of handling (through the 

backpropagation of gradients) all the necessary computations needed for adjusting the underlying 

deep architecture. All the rest of the approaches, apart from [5], use extensively label/target 

information throughout their training procedures for reaching the reported accuracy rates. This 

observation further demonstrates the capabilities of the SOCOM since it is in position to perform 

better against (or almost at par with) models that access richer information like the label/class 

information of input images of handwritten digits. It should be noted that by taking into 

consideration the other purely unsupervised deep SOM the SOCOM achieves nearly 10% 

improved accuracy. Last, it is also important to reiterate that algorithmically the SOCOM model 

is not restricted to single channel input signals (like the grayscale MNIST images) but it is 

capable of incorporating three channel inputs (i.e. colored images) or input volumes of higher 

dimensions. This can be accomplished in a straightforward way by not replacing the first hidden 

convolutional layer’s filter shape with the downscaled one used in these experiments. 
 

4. SUMMARY 
 

One of the central dogmas in the field of machine learning (which differently from dogmas in 

other domains, is continuously being backup up experimentally) is that the stratification of 



Computer Science & Information Technology (CS & IT)                                     31 

several levels of nonlinearity is the key to tackle complex recognition tasks, infer higher-level 

correlations between variables and representations of data, and, in general, mimic and model the 

way human perception and ingenuity function. SOCOM aligns with the ongoing research towards 

combining nonlinearities of neurons into networks for modelling highly complex and 

increasingly varying functions. It is doing this by trying to remain loyal to the unsupervised 

learning guidelines of necessitating as less label information as possible.  
 

It has been shown, both algorithmically (i.e. in theory) and experimentally (i.e. in practice), that 

this first working SOCOM prototype is in position to incorporate a deep architecture (evidently 

deeper in comparison to the deep SOMs reported in the literature) which is trained with a 

gradient backpropagation algorithm tailored to meet the requirements of the architecture’s 

complexity, depth and parameter size. As has been discussed previously, the proposed algorithm 

not only is along the lines of the optimization methods which are proven to work with deep 

networks but also keeps the required label/target information to a minimum. Further, due to the 

fact that the first hidden layers of SOCOM’s architecture are convolutional, the data that can be 

modelled are not restricted to grayscale images (i.e. single channel ones) but instead can consist 

of an arbitrary number of channels e.g. colored images (i.e. three channels) or even sequences of 

images/signals; such data rarely can be processed by the currently published deep SOMs. 
 

5. FUTURE WORK 
 

It is reasonable that this proof-of-concept study of the SOCOM prototype could give rise to a 

number of closely-related research directions pointing towards expanding and enriching the 

model, and towards making full use of its clustering capabilities in real-world complex problems. 

More specifically, an omnidirectional research plan could involve: (1) The construction of deeper 

SOCOMs based for instance on the resnet34, resnet50 and resnet152 architectures [14]. (2) 

Gradually utilizing the backpropagation flow of gradients in adjusting/tuning layers further deep 

down the architecture. (3) Incorporating diverse deep network configurations that are based upon 

other well-known paradigms like Alexnet[21], VGG [22], and GoogLeNet[23]. (4) In depth and 

in detail analysis and evaluation of the various optimization methods provided by the Pytorch 

framework. (5) Using existing deep learning visualization techniques up to the last hidden 

representation layer, and, subsequently, treating visualizations as “inputs” to the ordered neuron 

output array. The final objective in this case is having either a visualization of what the map 

models/clusters [24] or a projection of the achieved higher-level representations onto the output 

map. 
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