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ABSTRACT 
 
Graph neural networks (GNNs) have been emerging as powerful learning tools for 
recommendation systems, social networks and knowledge graphs. In these domains, the scale of 
graph data is immense, so that distributed graph learning is required for efficient GNNs 
training. Graph partition-based methods are widely adopted to scale the graph training. 
However, most of the previous works focus on scalability other than the accuracy and are not 
thoroughly evaluated on large-scale graphs. In this paper, we introduce ADGraph (accurate 
and distributed training on large graphs), exploring how to improve accuracy while keeping 
large-scale graph training scalability. Firstly, to maintain complete neighbourhood information 
of the training nodes after graph partitioning, we assign l-hop neighbours of the training nodes 
to the same partition. We also analyse the accuracy and runtime performance of graph training, 
with different l-hop settings. Secondly, multi-layer neighbourhood sampling is performed on 
each partition, so that the mini-batch generated can accurately train target nodes. We study the 
relationship between convergence accuracy and the sampled layers. We also find that partial 
neighbourhood sampling can achieve better performance than full neighbourhood sampling. 
Thirdly, to further overcome the generalization error caused by large-batch training, we choose 
to reduce batchsize after graph partitioned and apply the linear scaling rule in distributed 
optimization. We evaluate ADGraph using GraphSage and GAT models with ogbn-products and 
Reddit datasets on 32 GPUs. Experimental results show that ADGraph achieves better 
performance than the benchmark accuracy of GraphSage and GAT, while getting 24-29 times 
speedup on 32 GPUs. 
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1. INTRODUCTION 
 
Graph neural networks (GNNs) are becoming more and more influential in solving various 
challenges in many practical applications, such as social networks [1], paper citations [2], 
biological networks [3, 4], product customer relationships [5], recommendation systems [1], and 
knowledge graphs [6], which data can be naturally represented as graph structures. The graph 
data structure is widely used to model data with complex connections between elements because 
of good expressive ability. The powerful function of GNNs in modelling the dependency 
relationship between graph nodes has made a great breakthrough in the research field related to 
graph analysis, which is an emerging field in deep learning [7, 8]. 
 
Simultaneously, the scale of graphs in industry domains has developed rapidly [9]. For example, 
the social network maintained by Facebook has nearly 2 billion users, and Amazon's customer 
shopping network has hundreds of millions of nodes. Larger datasets and network structures can 
improve the accuracy of tasks. Technologies that can effectively analyse and process large-scale 
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graph data have gradually become one of the research hotspots in academia and industry 
currently [10].  However, compared with real-world graphs, many optimizations on graph 
datasets mainly focus on small datasets. For example, Cora [11, 12], Citeseer [13, 14], Pubmed 
[15] and Blog [16]. Their specific parameters are shown in Table 1. Most of the evaluations are 
carried out for small graphs on a single machine, and there are only 2700 to 20000 nodes in the 
tasks of node classification. There are a few kinds of research on distributed training for large-
scale graphs. Even though some authors aim at distributed graph learning, these small datasets 
are mainly used for training [17-19]. Because models are widely developed on these small 
datasets, most models cannot be extended to larger graphs.  GraphSage [20] and Cluster-GCN [5]  
provide a method to perform random mini-batch training does not need to read graph features of 
all nodes into GPU or CPU memory. However, these two mini-batch training methods are still 
limited in accelerating the training of large-scale graph datasets in a single machine. 
 
A few works have been developed to scale GNNs training on large graph data in the distributed 
clusters. However, they focus on the scalability other than the accuracy, such as NeuGraph  [21] 
and PCGCN [22] aim to speedup GNNs training. However, there is no discussion about the 
changes in the accuracy of graph training [23]. Some GNNs frameworks [19, 24] built-in 
industrial scene adopt distributed mini-batch training. Nevertheless, none of these frameworks 
uses appropriate graph partitioning to maximize the accuracy of GNNs training. Moreover, for 
distributed deep learning training on multiple GPUs, it remains a problem that as the GPU 
number increases, the training accuracy decreases [25]. 
 

Table 1. Small datasets used in graph neural networks. 
 

Datasets vertex edge feature label 
Core 2708 5429 1433 7 

Citeseer 3327 4732 3703 6 
Pubmed 19417 44338 500 3 

Blog 10400 678300 128 32 
 
We introduce ADGraph, which uses neighbourhood-contained graph partition, multi-layers 
neighbourhood sampling and overcoming generalization error method in distributed GNNs 
training. On the one hand, the training of graph models on large-scale datasets can be accelerated 
through multi-GPU training. On the other hand, the distributed graph learning can still maintain 
high training accuracy through appropriate graph partition, neighbour sampling and distributed 
optimization methods. In order to verify our proposed methods, we train GraphSage and GAT 
model with two large-scale graph datasets (ogbn-products and Reddit) on GPU clusters, which 
significantly reduces training time. We also use a graph partition that includes neighbourhoods 
and a multi-layer neighbourhood sampling strategy. Even in a distributed environment, it can 
achieve the same accuracy as single-GPU training. In summary, our contributions are as follows: 
 
 We use neighbourhood contained graph partition to ensure the completeness of training 

nodes information in each partition. Then, the mini-batch generated from multi-layers 
neighbourhood sampling can train nodes accurately. 

 We combine a distributed optimization method with graph learning. We use the data 
synchronization method and linear scaling rule in the distributed training. This further 
improves the training accuracy of the GNN models. 

 We test the GraphSage and GAT model on the ogbn-products and Reddit datasets. 
Experimental results show that the test accuracy on 32 GPUs is better than the benchmark 
accuracy using GraphSage and GAT models. The running time is accelerated 24-29 times on 
different datasets. 
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The remainder of this paper is organized as follows. Section 2 introduces the background of 
distributed GNNs training. We present ADGraph training methods in Section 3. Section 4 
evaluates and analyses the key technologies to fulfil accurate and large-scale GNNs training. 
Finally, we conclude the paper in Section 5. 
 
2. BACKGROUND 
 
2.1. Graph Neural Networks 
 
Graph neural networks (GNNs) are representative work in deep learning. Training neural network 
on graph data has been widely used because its model accuracy is much higher than that of 
traditional multi-layer perceptron [26]. GNNs layers generate intermediate embedding by 
aggregating the information from the in-edge neighbours of the target nodes. After superimposing 
several GNNs layers, the final embedding is obtained, which integrates the whole receptive field 
of the target node. Specifically, the graph neural networks iteratively update the node 
representation according to: 
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Where hi

l+1
 is the embedding of node i in the (l+1)-th layer. Ni is the node set connect with node i. 

Ni represents the in-edge number of node i. σ() represents the nonlinear activation function. Wl is 
the learnable parameters of layer l. GNNs first aggregate all values from the in-edge neighbours 
of each node to obtain new values for these nodes. After that, GNNs propagate this new value to 
target nodes throughout-edges. After l times of such aggregation and propagation, the calculation 
of GNNs is completed. 
 
GraphSage [20] only needs to aggregate data sampled from the graph, without considering other 
nodes. GraphSage provides different ways to aggregate information of adjacent nodes. In the 
average version of GraphSage, the update formula of node embedding is Equation (2). 
GraphSage can form a mini-batch by sampling a specific size of neighbour nodes and does not 
need to get the adjacency matrix of the whole graph. This is very useful in training large-scale 
datasets.  
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Graph Attention Network (GAT) [27] aggregates features of neighbouring vertices to the central 
node and learns new nodes features by using local stationary on Graph. GAT makes use of the 
attention coefficient and introduces anisotropy into the neighbourhood aggregation function. This 
network adopts a multi-head structure to increase the learning ability. Equation (3) is the updated 
formula of GAT, where k

lW are k linear projections heads, and e is the attention coefficient of 
each head. GAT has stronger learning ability because the model can better capture correlation 
between node features [28]. 
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2.2. Parameter Sever architecture and data parallelism 
 
Parameter server (PS) is one of the commonly used frameworks for distributed deep learning 
[29]. PS aims to improve the training efficiency of big data and large models while maintaining 
accuracy. There are two parts in Parameter Server architecture: parameter server (PS) and 
worker. As shown in Figure 1, PS maintains a global shared parameter and updates all parameters 
together. Each worker is responsible for handling local training tasks, obtaining the latest model 
parameters from PS nodes, and sending model gradients generated by the local worker to PS [30]. 
 

 
 

Figure 1. The architecture of the parameter server. 
 
The mainstream method of distributed deep learning is data parallelism, which has higher 
training efficiency [31]. As shown in the Figure 2, In data parallel method, the whole dataset is 
divided into multiple machines. Each machine has a local copy of the model and updates the local 
model with the assigned data [32]. In the synchronous update, gradients of different batches are 
calculated at each worker. Gradients are averaged across machines to apply consistent updates to 
model copies in each worker [33]. This synchronization method is widely used in large-scale 
systems. 
 

 
 

Figure 2. The process of data parallelism. 
 
2.3. Large mini-batch Stochastic Gradient Descent 
 
When mini-batch is used for GNNs training on multi-GPUs, linear scaling rule can reduce the 
training error caused by large mini-batch. After the mini-batch training is completed, stochastic 
gradient descent (SGD) [34] performs the following update: 
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Here β is a mini-batch sampled from the neighbourhood of target nodes in partitioned graphs. t is 
the update times and η is the learning rate. n=|β| is the mini-batch size. According to Equation 
(4), when learning rate η and batchsize are n, after k iterations of SGD, Equation (5) can be 
obtained: 
 

                                                       
1 ( , )

j

t k t t j
j k x

w w l x w
n β

η+ +
< ∈

= − ∇∑∑                                   (5) 

 
 
On the other hand, using mini-batch of size kn and learning rate η̂  to update once can get: 
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According to Equations (5), (6), it can be seen that the results of updating k times with a small-
batch and updating once with a large-batch are different. Therefore, in order to keep the weights 
unchanged in both cases after SGD update. Set learning rate ˆ=kη η  when updating large batches, 
and the updated results wt+k and 

1ˆ tw +
 will be approximately the same [35].  That is, linear scaling 

rule can reduce the distributed GNNs training error on Multiple GPUs.  
 
3. ADGRAPH TRAINING METHODS 
 
The difference between distributed training of graph neural networks and traditional distributed 
training lies in graph partition and mini-batch sampling. The overall structure of distributed 
training with four machines is shown in Figure 3. Specifically, there are three processes in graph 
distributed training: Graph Server, Sampler and Trainer. The Graph Server process needs to run 
on each machine to store the graph partitions (including graph structure, nodes features and nodes 
labels). Sampler process samples nodes from Graph Server and generate mini-batch required by 
trainer process. It can be noticed that a sampler process can obtain data from multiple Graph 
Servers. Trainer process can only obtain mini-batch from the sampler on its local machine. Then, 
the trainer calls the all-reduce primitive to update model parameters.  
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Figure 3．Distributed graph neural networks training process. 
 
The training process starts with the partition of graph data and then carries out mini-batch 
training. The steps performed in each mini-batch training process include: (1) Sampling the 
neighbourhood of target nodes from a local partition to generate mini-batch. (2) Obtaining 
features and labels involved in mini-batch from the global graph data. (3) Performing forward 
and backward propagation on the features to calculate the gradients of each layer. (4) Trainer 
process uses all-reduce to accumulate gradients. Then the trainer applies averaged gradients to 
update parameters of the model. 
 
3.1. Graph partition containing neighbourhood information 
 
Graph partitioning is the first step in distributed graph learning. Firstly, nodes are assigned to 
partitions using METIS [36] or random graph partitioning algorithm. Then the partitioned graph 
structure is constructed according to the result of node allocation. Finally, node features are 
segmented according to the partition results. We partition the graph structure, node features and 
labels, and distribute them on cluster machines in distributed training. There are two potential 
problems after graph partition: (1) Deleting some edges between nodes may affect performance. 
(2) Graph clustering algorithm (METIS partition) tends to cluster similar nodes together, 
resulting in the distribution of node categories different from the original dataset. Therefore, 
estimation of the gradient is biased when performing SGD updates.  
  
We solve these two problems by two methods, namely partition graph with the intact 
neighbourhood of target nodes and increasing batch label entropy. 
 
3.1.1. Keeping the neighbourhood information of the target nodes intact 
 
According to Equation 1, nodes in the l-hop neighbourhood of the target nodes contain enough 
and necessary information for training the l-layer GNNs model. Therefore, in l-layers GNNs 
model, the embedding of target node only depends on its l-hop neighbourhood, rather than the 
entire graph.  
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Figure 4. Example of graph partition(b) is the original graph, (a) is the direct partition of the graph without 
keeping the neighbourhood of I, the partition in (c) repeatedly stores the 2-hop neighbour B and C. 

 
After graph partition, nodes at the subgraph boundary are stored in two adjacent subgraphs. For 
completeness and efficiency, each partition contains not only nodes and edges belonging to itself, 
but also l-hop neighbourhoods of nodes in other partitions. As shown in Figure 4, (b) is the 
original graph. It is assumed that the GNNs model has two layers, thus, generating the embedding 
of node I needs the complete information of 1-hop neighbour HKL and 2-hop neighbour BCJ. 
Graph (a) is the result of partitioning Graph (b). Due to the lack of connection between AB and 
AC, the embedding of I on the partitioned subgraph will lack the information of B and C, 
resulting in inaccurate generating the embedding of I. By contraries, Graph (c) keeps the 
neighbourhood of I. Although subgraph becomes smaller after graph partition, the information to 
generate the embedding of I is intact. Therefore, this partition method ensures the accuracy of 
model training. 
 
The l-hop neighbourhood of target nodes can provide enough information for the target nodes in 
the partition which avoids missing connection information after partition. Even after graph 
partition, the data in each partition is intact. This ensures the convergence accuracy when training 
l-layer GNNs, and it can achieve the same performance as that without partition. 
 
3.1.2. Increase batch label entropy  
 
Distributed graph learning is the training of graph neural networks by using the graph data to 
predict and simulate unknown large-scale graph data. Therefore, each mini-batch should be 
generally representative. We should generalize rules from existing graph data to make decisions 
on unknown graph data. If the training data is not representative, the rules will be poorly 
summarized, and significant deviations will be generated in the inference process on unknown 
graph data.  
 
Vanilla Cluster-GCN [5] shows that METIS method partitions the graph into a large number of 
partitions, and nodes in the partitions tend to specific categories. Generating mini-batch from 
these partitions may lead to lack of representativeness of mini-batches. In this case, label entropy 
of most mini-batches is smaller than that of random partition. This indicates that the label 
distribution of mini-batches is biased towards some specific labels. This will increase the 
variance between different batch and may affect the convergence of SGD. 
 
In order to avoid label deviation, we do not partition the graph into a large number subgraph. We 
set the number of partitions consistent with the number of machines. This can reduce network 
communication when the neighbourhood expands and make each batch have various labels that 
will not bias towards specific labels. In Figure 5, ogbn-products dataset is divided into eight 
partitions by METIS and random methods to show the example of label distribution. We 
calculate entropy according to the label distribution of each batch. It can be seen that the label 
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entropy of the mini-batches from METIS partition and random partition is similar. Therefore, the 
convergence of SGD will not be affected by METIS partition. 
 

 
 

Figure 5. The label entropy of each batch when ogbn-products is partition into 8 parts. 
 

3.2. Multi-layer neighbourhood sampling 
 
Single-layer subgraph can only perform forward propagation once. Therefore, multi-layer 
neighbourhood sampling is required to generate the mini-batch when compute multi-layer GNNs. 
However, the degrees of nodes in a large graph are generally vast, multi-layer subgraph sampling 
will cause exponential expansion of neighbour nodes which consumes lots of memory. We use 
partial neighbourhood sampling for multi-layer GNN. For different hop neighbourhoods of the 
target nodes, a fixed number of neighbours are sampled. Due to the neighbours of the target 
nodes are randomly sampled, all neighbours will participate in training after multiple epochs. The 
clustering coefficient is a popular measure of how clustered a node’s local neighbourhood is. 
GraphSage [20] has proved that partial neighbourhoods sampling is capable of approximating 
clustering coefficients to an arbitrary degree of precision, even when the node feature inputs are 
sampled from an absolutely continuous random distribution. 
 

 
 

Figure 6. Multi-layer neighbourhood sampling to generate a mini-batch. 
 
Figure 6 shows the process of multi-layer neighbourhood sampling: 1) For each gradient descent 
step, we select some target nodes to calculate their final representations at l-th layer. 2) Then, 
obtain part of 1-hop neighbours of the target nodes at l-1 layer, and obtain part of the 2-hop 
neighbours of the target nodes at l-2 layer. 3) This process continues till the input layer.  The 
iteratively constructing dependency graph of multi-layer neighbourhood sampling generates a 
mini-batch. The forward calculation process is the opposite, which is calculated from (c) to (a). 
 
Since the sampled mini-batch contains l-hop neighbourhood of the target nodes v, the information 
is intact when perform l-layers GNNs to calculate the embedding of target nodes. The embedding 
of the target nodes in l-th layer is calculated from the equation as follows: 
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Where A is the subgraph represented in adjacency matrix in each mini-batch, X is the feature 
matrix, W is the weight parameter of each layer, and its loss function can be expressed as: 
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In each step, we first sample the mini-batch of target nodes v, then perform SGD to update the 
parameters based on the gradient L. The gradient calculation and update only require the 
adjacency matrix A and node features X of the current mini-batch, ensuring the accuracy of the 
embedding in the last layer. Since the k-hop neighbourhood contains sufficient and necessary 
information for training GNNs model, trainers become independent of each other. They train 
mini-batch without additional communication with other trainers. Therefore, training of the 
GNNs model is similar to that of conventional deep learning.  
 
3.3. Overcoming generalization errors of distributed GNNs training 
 
In graph deep learning, it is stated that model trained with large batchsize is often inferior to that 
with small batchsize [37]. [38] found that when the training accuracy is consistent, the 
generalization performance of a model trained with large batchsize will be significantly lower 
than model trained with small batchsize. 
 
Unlike single GPU training, data is sampled from the same dataset in each step. The batchsize is 
small compared to the entire data set, which can ensure sufficient parameter updates. However, in 
distributed GNNs training, the subset on each machine becomes smaller after graph partition. 
Each trainer samples mini-batch from the local partition. A larger batchsize will cause the 
parameter update insufficient, resulting in larger generalization errors. After graph partition, the 
batchsize should be reduced, which can increase the amount of model parameter updates. In this 
way, an accurate model can be trained efficiently under distributed training. 
 
Although the generalization performance of the model can be guaranteed by increasing the 
amounts of updates, this will affect the benefits of distributed training. In order to maintain the 
accuracy of training and generalization while training on multiple machines, the linear learning 
rate scaling rule has a particularly important role in distributed learning. Because this allows data 
parallelism to be extended to more GPUs, it also improves the distributed training accuracy.  
Facebook large-scale training [25]  has proved that small batch and large batch SGD updates not 
only get the same final precision model, but also match the training curves very well. We prove 
that the linear scaling rule is effective in the large-scale real-world graphs through experiments. 
 
4. EVALUATION AND ANALYSIS 
 
4.1. Experiment Setup 
 
In this section, focusing on the task of node classification, we will evaluate the efficiency and 
performance of the proposed methods through experiments on several GNNs models and 
datasets.  
 
GNNs models. We use the following two representative GNNs models in the experiment: 
GraphSage and GAT. Related concepts have been introduced in the background. Because they 
adopt different aggregation method of neighbours in the graph, we choose these models in 
experiment. Table 2 shows the default settings of parameters when training the two models. 
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Table 2.  Parameter settings for GNN models in the experiment. 

 
Models layers hiddens Sampled neighbours batchsize Epochs 

GraphSage 3 512 (10,10,10) 250 30 
GAT 3 128 (10,10,10) 250 30 

 
Table 3.  Large-scale graph data statistics. 

 
Datasets vertex edge feature label Avg degree 

ogbn-products 2,449,029 61,859,140 100 47 50 
Reddit 232,965 1,606,919 602 41 100 

 
Datasets. The real-world graph datasets used in the experiment are listed in Table 1. The Reddit 
[20] dataset is formed by Reddit online discussion forum, and ogbn-product [9] comes from 
Amazon product co-purchasing network. The feature column in table 1 represents the feature 
dimensions of each node, and the label column indicates the number of label categories. 
 
Experimental environment. We evaluated experimental results on GPU cluster and used up to 8 
machines on the cluster for training. Each machine has four Nvidia Tesla GPU and two Intel 
Xeon CPU, and machines are connected through InfiniBand ConnectX FDR 56GB/s internet. 
Operating system version used is Redhat4.8, and libraries of CUDA10.0 are used. Our 
experiments are carried out on Pytorch, a deep learning framework, and Deep graph Library 
(DGL) [39]. DGL is a Python package that interfaces between tensor-oriented frameworks (such 
as Pytorch and MXNet) and graph structure data, which makes it easy to implement GNNs. 
 
4.2. Comparison of Partition Methods 
 
We use random and METIS [36] methods to partition the datasets, and compare convergence 
accuracy and running time of the two methods. By increasing neighbour layers around the target 
nodes in each partition (hop=k means expanding the neighbourhood of the target nodes to the k-
th layers), the effect of neighbourhood partition with different layers is verified. 
 
Accuracy. The convergence accuracy of the experiment is shown in Figure 7. It can be seen that 
when hop=0, the performance gap between these two methods is the largest. Figure 9 shows the 
number of edges cut by the random and METIS partition when the hop=0. It can be noticed that 
the edges cut by METIS partition is much less than random partition. This is due to random 
partition randomly assigned nodes into partitions, which will increase the randomness of edge 
segmentation and make many neighbours of nodes disappear. However, METIS divides into 
clusters, and nodes with many connections will be partitioned into the same partition. The 
segmentation is mainly between clusters, which will significantly reduce cut edges. Therefore, 
under the METIS partition, similar nodes can be clustered together to capture the clustering and 
graph structure better. METIS partition preserves the graph structure better, and results obtained 
during information aggregation are more accurate than random partition. 
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(a) Training on partitioned ogbn-products dataset. 

 
（b）Training on partitioned Reddit dataset. 

 
Figure 7. Convergence accuracy after partition datasets with different hops. 

 
It can be seen from Figure 7 that when hop goes from 0 to 1, the convergence accuracy will 
increase significantly. The reason can be explained by Figure 10. Because of the strong 
connectivity among nodes in the graph, it will almost extend to the whole graph when expanding 
the 1-hop neighbourhood of the target nodes. When hops increase from 1 to 3, the convergence 
accuracy remains unchanged. Because the number of nodes in the extended neighbours is only 
slightly increased. Furthermore, when hops are greater than or equal to 1, the convergence 
accuracy of random partition and METIS partition is not much different. Because in these two 
methods, the number of nodes in the partitions is very similar, both can effectively expand the 
structure to the whole graph.  
 
Run time. Figure 8 shows that the epoch time of the METIS partition is similar to random 
partition when hop=0. However, the epoch time of METIS is much shorter than that of random 
partition when hops>0. Although random and METIS partition can be extended to the full graph, 
nodes connectivity in local machines are different. METIS partition can generate more closely 
connected clusters, while nodes in the partitions generated by a random partition are randomly 
connected. Therefore, the graph data read during training is different. Random partition requires 
more communication with other machines for nodes data. Cross-machine communication takes 
more time, which leads to longer epoch time for random partition. This shows that graph 
clustering is significant, and the partitions of graph should not be randomly generated. 
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(a)  Training on partitioned ogbn-products dataset. 

 
(a) Training on partitioned Reddit dataset. 

 
Figure 8. The epoch time after partition datasets with different hops. 

 

 
 

Figure 9. The number of cut edges after random and METIS partition. 
 

 
 

Figure 10. The average number of nodes in each partition as hops increase. 
 
4.3. Multi-Layer Neighbourhood Sampling 
 
When verifying the multi-layer sampling method, we fix the sampled neighbours for each node. 
We test convergence accuracy by increasing the sampled layers. Figure 11 shows the curves of 
training accuracy on 2 datasets, from which we can observe that the increase of layers can 
improve the training accuracy, but the improvement in accuracy after the third layer is not 
obvious.  It is worth noting that the training accuracy of GAT failed to converge within 30 epochs 
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and get a dramatic loss of accuracy when 4 layers are used. A possible reason is that the structure 
of deeper GAT is more complex and has more parameters, resulting in the optimization for 
deeper GAT becomes more difficult. 
 

 
 

Figure 11: The model accuracy changes with the increasing sampled layers. 
 
We test convergence accuracy and run time by changing the sampled neighbours from 2-32 
(sampled neighbours = k means sampling k neighbour nodes of the current nodes). It can be seen 
from Figure 12 that the sampled neighbours have a great influence on the training performance 
(For ogbn-products training GAT, the memory will be exceeded when sampled neighbours=32, 
so we set sampled neighbours to 24). When the number of sampled neighbours increases from 2 
to 16, the convergence accuracy can be greatly improved. However, when the number of sampled 
neighbours exceeds 16, there is almost no change in accuracy. This is because the neighbours are 
randomly sampled, and all nodes in the neighbourhood will participate in the training after 
several epochs. When sampled neighbours=16, the neighbourhood of target nodes can be 
captured effectively. In this situation, the training accuracy is the highest, and the accuracy is no 
more improved by increasing sampled neighbours. 
 

 
 

Figure 12. The model accuracy changes with the increasing sampled neighbours. 
 
Figure 13 shows the training epoch time changes as the sampled neighbours increasing.  We can 
notice that when the sampled neighbour doubles, the epoch time increases significantly. This is 
due to the increment of the sampling time and the model computation time caused by the adding 
of sampled neighbours. Balancing the performance gains and time consumption, the appropriate 
sampled neighbours can be chosen. In this way, ADGraph can optimize the convergence 
accuracy and guarantee training efficiency. 
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Figure 13. The increment of the run time with the adding sampled neighbours. 
 
4.4. Change Batch Size To Overcome Generalization Error 
 
In distributed GNNs training, the choice of batchsize is significant. In this experiment, we train 
the GraphSage model on ogbn-products and Reddit datasets with 1 to 32 GPUs. The batchsize on 
each GPU varies from 10 to 1000. Table 4 and Table 5 list the results. When there are few GPUs, 
and the batchsize is 10, convergence accuracy on the ogbn-products and Reddit datasets stops at 
26.94% and 14.83%, respectively. It can be noticed that small batchsize in the distributed graph 
model training cannot converge. When there are 1 and 2 GPUs, higher model accuracy can be 
obtained with 500 and 1000 batchsize, because the large number of training nodes can guarantee 
enough updates. As the number of machines increases, the number of training nodes on each 
machine decreases after the graph partition. If larger batchsize is applied, parameter updates on 
each machine will be reduced, resulting in poor convergence accuracy. Therefore, after graph 
partitioned, ADGraph can efficiently obtain an accurate model on 8 machines by reducing 
batchsize (batchsize = 250) and increasing the parameters updates of the model. 
 

Table 4. The test accuracy on ogbn-products with the increment of batchsize and GPUs. 
 

Batchsize/GPU 1 2 4 8 16 32 
10 26.94 26.94 26.98 30.84 55.83 56.74 
50 73.04 76.66 78.11 78.31 76.94 76.36 
100 75.84 78.51 79.31 78.19 78.87 78.68 
250 79.2 79.34 79.45 79.36 79.36 79.13 
500 79.4 79.35 79.02 78.61 77.86 74.52 

1000 79.3 79.25 78.61 77.48 76.65 72.8 
 

Table 5.  The test accuracy on Reddit with the increment of batchsize and GPUs. 
 

Batchsize/GPU 1 2 4 8 16 32 
10 14.83 14.83 14.84 15.04 15.2 15.22 
50 14.83 92.6 95.61 95.12 95.23 96.26 
100 94.96 95.79 96.4 96.27 96.12 96.32 
250 96.47 96.65 96.6 96.56 96.32 96.55 
500 96.69 96.68 96.64 96.44 96.14 93.34 

1000 96.67 96.54 96.36 96.13 95.45 92.39 
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4.5. Apply Learning Rate Scaling Rule 
 
Table 6 and Table 7 show the effect of using linear learning rate rule in distributed graph training. 
GPU=1 is the result of model training with unpartitioned datasets on DGL [39]. When GPU=32, 
ADGraph use the linear scaled learning rate to compare with the fixed learning rate. It can be 
seen that when applying a fixed learning rate, the model convergence accuracy is poor on 
multiple GPUs. When training on 32 GPUs, it can achieve similar accuracy to that of a single 
GPU training with the linear scaled learning rate. Experiments prove that the linear learning rate 
is effective in real-world graphs. 
 
It is worth noting that when training the GAT model on the ogbn-products dataset and the 
GraphSage model on the Reddit dataset, the convergence accuracy on 32 GPUs is even higher 
than that of a single GPU. This proves that distributed graph training of ADGraph has the same 
convergence performance as single GPU training on DGL. 
 

Table 6.  The performance gains of linear scaling rule on ogbn-products. 
 

Models Batchsize*GPUs Learning rate Accuracy (%) 
 
GraphSage 

250*1 0.003 79.2 
250*32 0.003 74.58 
250*32 0.096 79.13 

 
GAT 

250*1 0.0005 79.25 
250*32 0.0005 77.13 
250*32 0.016 80.18 

 
Table 7.  The performance gains of linear scaling rule on Reddit. 

 
Models Batchsize*GPUs Learning rate Accuracy (%) 

 
GraphSage 

250*1 0.0015 96.47 
250*32 0.0015 94.95 
250*32 0.048 96.55 

 
GAT 

250*1 0.0005 94.57 
250*32 0.0005 91.5 
250*32 0.016 94.41 

 
4.6. Run Time 
 
Figure 14 shows the curve of epoch time and step time as the GPU increases. The red curve is 
step time when GPUs changes from 1 to 32 (mini-batch size varies from 250 to 8000). The curve 
is relatively stable, and the increase in the number of GPUs did not significantly increase step 
time. The blue curve shows the reduction of each epoch time as the GPUs increases. The overall 
epoch time is continuously decreasing. In general, the epoch time of 32 GPUs is 24-29 times 
faster than the epoch time of a single GPU, which can significantly improve distributed graph 
training efficiency. The maximum scalability efficiency of ADGraph can reach 91%, which is 
higher than 83% of DistDGL [10] (The result was shown in the experiment of DistDGL). 
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(a) Training on Reddit dataset 

 
(b) Training on ogbn-products dataset 

 
Figure 14. The curve of epoch time and step time as the GPUs increase. 

 
5. CONCLUSION 
 
In this paper, we present ADGraph for accurate and distributed GNNs training on large graphs. 
We first used a graph partition method that contains the neighbourhood of the training nodes, and 
investigated the accuracy and time efficiency of the model training as the number of 
neighbourhood hops increases. Then the complete neighbourhood information of target nodes is 
obtained through multi-layer neighbourhood sampling. We also analyse the accuracy and runtime 
performance of graph training, with different l-hop settings. We found that the training time will 
increase dramatically as the increment of sampled neighbours and sampled layers, but the 
accuracy of the model not always increases. Then, we explored the influence of batchsize and the 
number of GPUs on the training of distributed GNNs. The results show that training on the graph 
partitions needs to reduce the batchsize appropriately. Finally, the linear scaling rule is applied to 
further improve the training accuracy. The distributed training accuracy can exceed the 
benchmark accuracy of GraphSage and GAT on DGL. The accuracy of training on 32 GPUs is 
the same as that of single GPU training, and there is a speedup of 24-29 times.  
 
We have also noticed that there are some shortcomings in the proposed methods. Although the 
graph partition maintains the integrity of the neighbourhood information of the target nodes, the 
expanded neighbourhood range is too large, causing the graph partition to lose its meaning. We 
also found that due to the dependencies between the partitions, the sampling process may 
communicate with other machines, which will affect the sampling speed. Later, we will study 
more accurate graph clustering in order to achieve a more reasonable graph partition. Another 
problem is that the data transfer time from the sampler process to the trainer process often takes 
up most of the time, resulting in low utilization of computing resources. We are trying data 
prefetching and caching technology to speed up training and improve the scalability efficiency of 
distributed training. 
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