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ABSTRACT

We propose a new method of multimodal image translation, called InfoMUNIT, which is an exten-
sion of the state-of-the-art method MUNIT. Our method allows controlling the style of the generated
images and improves their quality and diversity. It learns to maximize the mutual information be-
tween a subset of style code and the distribution of the output images. Experiments show that our
model cannot only translate one image from the source domain to multiple images in the target do-
main but also explore and manipulate features of the outputs without annotation. Furthermore, it
achieves a superior diversity and a competitive image quality to state-of-the-art methods in multiple
image translation tasks.
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1. Introduction

Image-to-image translation can be described as the general problem of mapping an image
from one domain to another domain. This seemingly simple approach is the foundation
of many applications in the field of computer vision such as colorization [1], style transfer
[2], super-resolution [3], denoising, inpainting [4]. Moreover, image-to-image translation
has been also applied for data augmentation and achieved competitive results [5] [6] [7].
Based on the availability of data, the problem can be considered as supervised learning
where the dataset contains paired samples; or unsupervised learning where the dataset
consists of two independent sets of images. This work focuses on the unsupervised image-
to-image problem which is more applicable due to its ease of obtaining data but also more
challenged in terms of training.

Unsupervised image-to-image translation leads us to the idea that an image in a domain
can be translated into multiple images in the second domain, which means the translation
can be multimodal. For example, in image colorization, one image can be colored in
multiple ways. Some methods [8] [9] have been proposed to use a noisy vector as an
additional input of the decoder. The style of the generated images can then be manipulated
by changing the values of the style-vector. However, the style-vectors in existing methods
are entangled and the translated images are not interpretable as a result. Lacking control
over features of the output can be problematic when important information are linked
to these features. In the work of Cohen et al. [10], it is shown that CycleGAN was
adding/removing tumors from images when transforming MRI images from Flair to T1,
especially when there is an imbalance among classes in the training data. Therefore,
learning to control the features of the translated images is essential. In this paper, we
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propose some improvements on MUNIT [9] - a standard in the field of multimodal image
translation - by applying the mutual information maximization technique. Our method,
called InfoMUNIT, generates more diverse images and especially can manipulate their
textural and structural features without requiring any annotation.

2. Related Works

2.1. Multimodal unsupervised image-to-image translation

The translation of images from one domain to another has been a challenging problem in
computer vision. Thanks to the evolution of convolutional neural networks, especially gen-
erative adversarial networks (GANs) [11], many deep learning models have been recently
proposed to address the problem of image translation and achieved impressive outcomes.

The research of Isola et al. in [12] is one of the earliest works on image-to-image trans-
lation based on GANs. In [13], the method is upgraded using multi-scale generators and
discriminators to translate high-resolution images. These methods require paired data for
training which is not usually available in practice.

Learning to translate images using unpaired data is more challenging than with paired
data because we do not know exactly which data-point in the source domain corresponds
to which one in the target domain. Thus, it is reasonable to add some constraints to the
training when it is possible. One popular assumption in most image-to-image translation
research is that the structure of an image must not be changed too much by the translation.
This is similar to language translation, in which, a phrase must have the same meaning
after being translated to another language. Shrivastava et al. [14] propose a training
strategy in which, a deep network learns to transform the style of synthesized images to
make them look more real. To preserve the annotation, they add a pixel-wise loss between
the input and output of the style transfer network. Similar approaches are applied in later
works such as specific-task loss [15], semantic features [16], or distance between pairs of
input samples [17] and so on. These constraints are useful for some specific tasks and
datasets but cannot be applied robustly.

Cycle consistency is another well-known loss function being used in many bi-direction
image translation models such as DualGAN [18], CycleGAN [19], and DiscoGAN [20].
In these networks, an image being translated from domain A to domain B can be also
translated backward to obtain the original image. As this cycle loss is not domain related,
it can be applied to most of the bi-direction translation models. In [21], Almahairi et
al. extend CycleGAN for learning a many-to-many mapping by combining images with
noises. Despite its ease of use, cycle loss does not assure any consistency in terms of
annotation which means labels of images can be flipped by the translation. Hoffman et al.
[7] proposed to use both cycle consistency and semantic consistency during the training.
However, this semantic constraint is not always accessible because it requires a pretrained
classifier of a similar dataset.

Another way to preserve the structural information after the transformation is to define
a shared latent space where domain-independent features are stored. In UNIT [6], Liu
et al. propose to break the translation into two stages: encoding the source image to
a latent code and then decoding this code to an image in the target domain. To gain
some control over features of the translated image, Huang et al. develop MUNIT as an
extension of UNIT, by splitting the latent code into two parts: content and style. With
this network, multimodal translation can be done by combining a content code of an image
with randomized style codes. The output images inherit content (or structure) from the
input image but differ in style (Eg. textures or colors). In DRIT++ [22], a similar idea to
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MUNIT is introduced but differs slightly in style transformation techniques. Both MUNIT
and DRIT++ store image style in a completely entangled manner, they offer no control
over the style of output images despite their diversity. In this work, we extend MUNIT by
disentangling the style code without requiring any additional annotations or pretrained
networks.

2.2. Unsupervised disentangled representation learning
Learning the features of images in an unsupervised fashion has received attention from
the computer vision community for years.

Most methods in the early stage were based on restricted Boltzmann machines [23] and
stacked auto-encoders [24]. Models in [25] and [26] were proposed for semi-supervised
learning and achieved promising results on the MNIST dataset. In [27], a GANs-based
method were shown to represent the dataset in a code space where basic linear structures
are supported.

Another branch of research uses labeled data to learn disentangled representation. The
representation is divided into two parts: one for the given labels and on for other fea-
tures. Similar fashions of training can be found in different model structures such as
bilinear models [28], multi-view perceptron [29], variational autoencoders (VAEs) [30] and
adversarial autoencoder [31].

For minimizing the dependency on variation labels, weakly supervised methods were devel-
oped. Reed et al. [32] propose correspondence-based training strategies for a higher-order
Boltzmann machine consisting of hidden units groups and each group represent a factor
of variation. A similar technique is applied to VAE in [33] to manipulate brightness and
pose in images of 3D objects. These two methods share one drawback that they require
grouped data points which are difficult to collect in real-life applications.

There are not many works on completely unsupervised disentangled representation learn-
ing. In [34], hossRBM is introduced as a generalized version of spike-and-slab restricted
Boltzmann machine, which entangles variation factors using its higher-order interactions
on latent variables. However, the method is not effective in terms of computation cost.

In InfoGAN [35], Chen et al. develop an extension of GAN which maximizes the mutual
information between certain variables in the latent code and samples from an unlabeled
dataset. This technique enables the model to learn the disentangled representation of
images without asking for labels. In this work, we upgrade MUNIT with the mutual
information learning objective from InfoGAN to enable it to manipulate features of the
translated images.

3. Method

Our objective is to translate images from a source domain A to a target domain B, and at
the same time to learn the representation of the target domain. Following the idea called
partially shared latent space in [9], we assume that each image can be encoded as a content
code which contains general structural information and a style code which defines how the
image will look like. In the state-of-the-art methods, this style latent code is entangled. In
this work, we disentangle this style code by maximizing the mutual information between
this code and the generated image.

3.1. Network architecture
Let xA and xB be two images from domain A and B respectively. Our objective is
to learn a function FA→B that projects images from domain A to domain B, x̂A→B =
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FA→B(xA). This function can be decomposed into parts: the encoder and the generator.
The encoder Ec

A extracts the content code cA from the image. The content code is a
matrix representing the content of an image independently of its style. The generator
GB generates images in domain B from an content code and a style code s : x̂A→B =
GB(cA, s) = GB(Ec

A(xA), [s′, i]). Since we want a one-to-many projection, a style code sB
is inputted in the generator to introduce variability in the generated images. The style
code s is a vector created by concatenating two parts s′ and i where s′ stores entangled
style of the generated images, i contains disentangled features of the generated images. s′

and i are drawn from a normal distribution N(0, I). The generator learns a function that
links the points from a Gaussian distribution to the different ways to apply the style of
domain B to a content code. In the same way, we define the function that projects images
from domain B to domain A with generator GA and encoder Ec

A. Notice that the content
space and style space are common to both domains. This is the generators that project
a couple of points from these common spaces to the image sub-spaces corresponding to
their domain.

For the learning of these functions, we need to complete our architecture with autoencoders
and discriminators. Autoencoders are used to reconstruct the original images from their
decomposition into a content code and a style code. Let Es

A (resp. Es
B) denote the encoder

that extracts from an image of domain A (resp. B) its style code sA = [s′A, iA] (resp. sB =
[s′B, iB]). The autoencoder of domain A is therefore defined by x̂A = GA(Ec

A(xA), Es
A(xA)).

Autoencoders are also used to reconstruct the content ĉA = Ec
A(GB(cA, s)) and style

codes ŝ = Es
B(GB(cA, s)). The discriminator DB is used to align the distribution of

images produced by the generator GB with the distribution of original images from domain
A. It is also used to disentangle the style variables contained in the vector i. In the
same way, we define the autoencoders x̂B = GB(Ec

B(xB), Es
B(xB)), ĉB = Ec

B(GA(cB, s)),
ŝ = Es

A(GA(cB, s)) and discriminator DA. Figure 1 shows the complete architecture of
InfoMUNIT.

3.2. Model learning

The training of our model consists to minimize a combination of reconstruction losses and
adversarial losses while maximizing the variational mutual information.

Similar to most auto-encoder based architecture, the encoders EC
A and ES

A compress input
images to content code and style code while the generator GA takes them to reconstruct
the original image from domain A. The image reconstruction loss LxA

rec makes sure the
encoder and decoder inverse each other. L1 loss is chosen for the image reconstruction as
it usually obtains well the sharpness of the reconstructed image. For the same reason, we
have similar reconstruction losses for content code LcArec and style code LsArec.

LxA
rec = ExA∼p(xA)[‖ GA(Ec

A(xA), Es
A(xA))− xA ‖1] (1)

LxB
rec = ExB∼p(xB)[‖ GB(Ec

B(xB), Es
B(xB))− xB ‖1] (2)

LcArec = EcA∼p(cA),s∼ p(s)[‖ Ec
B(GB(cA), s)− cA ‖1] (3)

LcBrec = EcA∼p(cB),s∼p(s)[‖ Ec
A(GA(cB), s)− cB ‖1] (4)
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Real	/	Fake

Real	/	Fake

Figure 1: Overview of InfoMUNIT. In this structure, each image is encoded by two
encoders into a style code and a content code, and reconstructed by a decoder (also

called generator). For translating an image from a domain to another domain, we firstly
extract its content code, then combine it with a random style code, and send them both

to the generator of the target domain. A part of the style code is used to store
disentangled features of output images. We also train a pair of discriminators to

distinguish between generated images and real images for each domain. The generators
are also trained to maximize the mutual information between features being extracted by

those discriminators and the disentangled part in the style code.

Lsrec = EcA∼p(cA),s∼p(s)[‖ Es
B(GB(cA), s)− s ‖1]

+ EcB∼p(cB),s∼p(s)[‖ Es
A(GA(cB), s)− s ‖1] (5)

where p(xA) (resp. p(xB)) is the distribution of images from domain A (resp. B), p(cA)
(resp. p(cB)) is the distribution of content code extracted from images from domain A
(resp. B), and p(s) is the distribution of style code that is the unit Gaussian distribution
N(0, I). Note that the distributions p(cA) and p(cB) are unknown and the learning set do
not contains examples of cA and cB., we need there fore to generate cA and cB samples
from the encoders and training images cA = (Ec

A(xA)) and cB = (Ec
B(xB)).

The objective of the adversarial losses associated to the discriminators is to align the
distributions of the real images with the distribution of the generated images. Like in
the GAN, the discriminators try to predict if an image is a real one or an artificial image
produced the generator. When the generators are frozen, the generators try to fool the
discriminators in generating images close to the real ones. The adversarial losses are
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defined by:

LAadv = ExB∼p(xB),s∼p(s)[log(1−DA(GA(EC
B (xB); s)))]

+ExA∼p(xA)[logDA(xA)] (6)

LBadv = ExA∼p(xA),s∼p(s)[log(1−DB(GB(EC
A (xA); s)))]

+ExB∼p(xB)[logDB(xB)] (7)

where the output of the discriminator DA(x) (resp. DB(x) ) is the probability that the
image x is a real image from the domain A (resp. B).

Inspired by the idea of InfoGAN [35], we want a part of the style code to be disentangled
features of the output in order to control and improve the diversity of the translated
images. The style code is split into two parts s = [s′, i]. To encourage the subvector
i to represent disentangled features of the output, we maximize the mutual information
between i and the generated images.

I(i, GB(cA, [s, i])) and I(i, GA(cB, [s, i])) (8)

In practice, maximizing this mutual information is not achievable without access to the
distribution P (i|x) which is not available in our case. However, according to [36], we can
define an additional distribution Q(i|x) as an approximation of P (i|x), and get a lower
bound of the mutual information term. Thus we have:

I(i, GB(cA, [s, i])) ≥ Lmi(GB, QB) =

Ei∼p(i),xA→B∼P (GB(cA,[s′,i]))[logQB(i|xA→B)] (9)

Where p(i) is a normal distribution and P (GB(cA, [s
′, i])) is the distribution of the images

generated by GB with the style vector [s′, i]. In practice, QB shares the same layers of the
discriminator DB as they both extract features from GB(cA, [s

′, i]) . QB is implemented
as a secondary output of the discriminator DB that is notes î. This means the closer
the vector i and predicted vector î are, the more mutual information between i and the
generated image is achieved. In the same way, we define Lmi(GA, QA).

The learning of our model consists both to minimize the total loss w.r.t the encoders and
generators and to maximize it w.r.t the discriminators :

min
EA,EB ,GA,GB

max
DA,DB

L(EA, EB, GA, GB, DA, DB) =

LxA

dis + LxB

dis + λx(LxA
rec + LxB

rec) + λc(LcArec + LcBrec)
+λs(Lsrec)− λmi(Lmi(GA, QA) + Lmi(GB, QB)) (10)

where λx, λc, λs and λmi represent the importance of each loss. In our trainings, we set
λx = 10, λc = λs = λmi = 1 as the image reconstruction is the most important loss in our
structure.

4. Experiments

4.1. Implementation Details

Our network consists of a content encoder, a style encoder, a generator, and a discriminator
for each domain. We give the implementation details of each of these network.
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4.1.1. Content Encoder

Input images are firstly led to the content encoder where they are down-sampled by strided
convolutional layers and further processed by residual blocks. We apply Instance Normal-
ization for all convolutional layers in the content encoder. The output of the content
encoder is the content code in a form of a tensor.

4.1.2. Style Encoder

Similarly, the style encoder also down-samples input images using strided convolutional
layers and a global pooling layer. A fully connected (FC) layer is applied to produce a style
code as a vector consisting of 8 digits, in which, 2 final digits represent the information
code (disentangled style) Ii of the image.

4.1.3. Generator

The generator takes content code and style code as inputs to reconstruct the initial input
image. The content code goes through residual blocks and upsampling layers. These
residual blocks are upgraded with Adaptive Instance Normalization (AdaIn) layers [37]
which receive style parameters from a multilayer perception (MLP) which has the style
code as its input.

4.1.4. Multi-purpose Discriminator

Our discriminator consists of two branches. The first branch is a traditional discrimina-
tor which can be found in most of the GAN-based models. The second branch consists
of convolutional blocks to learn the Q distribution. These two branches share the first
convolutional blocks.

4.1.5. Hyperparameters

In all our experiments in the paper, we apply Adam optimizer with β1 and β2 as 0.5 and
0.999 respectively. The learning rate is initially set to 0.0001, with a weight decay of 0.0001
applied every 100 thousand iterations. Our weight losses are λx = 10, λc = λs = λmi = 1.

4.1.6. Baselines

We compare our proposed method InfoMUNIT with following unpaired image-to-image
translation techniques: CycleGAN[19], MUNIT[9] and DRIT++[22]. The training proce-
dures of those methods are done using official source code and configurations provided by
their authors on GitHub.com.

4.2. Evaluation

We use three performance measures that estimate the quality and the diversity of the
generated images, to compare InfoMUNIT with the baselines.

4.2.1. Conditional Inception Score

Based on Inception Score (IS) [38], Huang et al. [9] introduced Conditional Inception Score
(CIS) specified for evaluation of multimodal image-to-image tasks. While IS measures the
quality and diversity of all generated images at once, CIS focuses on the diversity of images
that are translated from the same input image. Having multiple input images in the test
set, we compute CIS for each group of images generated from the same input, and finally,
take the mean CIS for the whole test set.
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4.2.2. Frechet Inception Distance

Frechet Inception Distance (FID) [39] computes the distance between the set of generated
images and the set images in the target domain. It is computed by calculated the distance
between the Inception feature vectors for the two sets of images. Thus, FID can be used
for evaluating networks that are trained on specific datasets without requiring a classifier
pretrained on an alike dataset. The lower FID we have, the more realistic the generated
images are. Normally, those feature vectors are taken from the third pooling layer of the
Inception model which contains 2048 features. Due to the small size of our datasets, we
compute the distance using features of the second pooling layer containing 192 features.

4.2.3. LPIPS Distance

The translation diversity is also measured by LPIPS distance which is shown in [40] to
be highly correlated with human judgment. We compute LPIPS distance on generated
samples of each input image, then take the average value. The larger distance among
them, the more diverse they are.

4.3. Datasets

We use multiple datasets for evaluating InfoMUNIT and compare its performance with
state-of-the-art techniques on the task of image-to-image translation. Each dataset con-
tains two sets of images and our network is trained to transform images between the two
domains. We crop and down-sample all images to the size of 64× 64, in RGB-color mode.

4.3.1. Edges↔Shoes and Edges↔Bags

These two datasets contain images of shoes and handbags along with their edges, intro-
duced in the work of Isola et al. [12]. The edges↔shoes dataset contains 138667 pairs of
samples while the edges↔bags dataset contains 49925 pairs. From each dataset, we keep
200 pairs of samples for testing and the rest for training. Note that we do not use the
paired information of these two datasets.

4.3.2. Cats↔Dogs

The dataset is comprised of 1364 photos of dogs and 871 photos of cats, cropped to their
heads [22]. We keep 100 images from each set for testing while the rest is used for training.

4.3.3. Portraits (Painted↔Real)

This dataset consists of 1814 painted portraits and real 6452 portraits captured by cameras
[22]. We keep 100 images from each set for testing while using the rest for training.

5. Results

5.1. Image Quality

The qualitative comparison of InfoMUNIT and other methods is shown in Figure 2. The
objective of InfoMUNIT is to increase the diversity and ability to control features of
generated images compared to MUNIT and the state-of-the-art, while not hurting their
quality. As being shown in Figure 2, the quality of images generated by InfoMUNIT are
at least as good as the images from other methods. The result is confirmed in Table 1
where we apply FID to quantitatively evaluate the realism of the generated images. Even
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&	GT MUNIT InfoMUNITCycleGAN DRIT++

Figure 2: Random samples generated by our method and baselines, trained on two
datasets: edges→bags (left) and cats→dogs (right). The input images (and

ground-truths) are displayed in the first column. Other columns show random outputs of
baseline methods and InfoMUNIT.

Table 1: Frechet Inception Distance (FID). Lower value means better performance.

InfoMUNIT MUNIT CycleGAN DRIT++

edge2bag 2.81 2.56 4.23 1.69

bag2edge 7.68 8.52 58.53 5.64

edge2shoe 1.28 1.44 4.86 1.13

shoe2edge 4.69 8.83 88.03 4.24

dog2cat 9.24 13.48 2.56 21.59

cat2dog 6.31 6.31 2.02 18.14

paint2real 2.96 3.02 2.56 7.29

real2paint 8.60 8.51 3.97 18.85

Average 5.45 6.58 20.84 9.82

though InfoMUNIT does not out outperform other methods in terms of image quality in
any task, its performance is stable across all tasks. The performance of InfoMUNIT is
close to the best method for each datatset. InfoMUNIT gives performance equivalent or
better than MUNIT. This shows that the disentangled features have also an impact on
the quality of the images. Notice that DRIT++ is the best for the first four tasks but
totally fails in the last four tasks. This is illustrated by the strange dog images generated
by DRIT++ in the Figure 2. On the opposite, CycleGAN gives the best performance for
the last four tasks but is bad in the first four tasks and especially in the bag2edge and
shoe2edge tasks. On average, InfoMUNIT achieves the best FID value among the four
image-to-image translation methods. The good quality of images generated by InfoMUNIT
is stable on multiple datasets.

5.2. Image Diversity

Table 2 and Table 3 respectively shows the CIS and LPIPS scores that evaluate the
diversity of generated images. CycleGAN is not a multimodal method, it can generate
only one output from one input so it does therefore not appear in this table. The LPIPS
and CIS scores of InfoMUNIT are clearly superior to the scores of DRIT++ and MUNIT.
The only exceptions are for the shoe2edge task where the LPIPS of DRIT++ is higher and
for the real2paint task where the LPIPS of MUNIT is higher. In both cases the LPIPS
of InfoMUNIT is very close to the best score and still higher than the LPIPS of the third
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Table 2: LPIPS distance. Higher value means better performance.

InfoMUNIT MUNIT DRIT++

edge2bag 3.00 2.07 2.13

bag2edge 2.01 1.07 1.60

edge2shoe 2.35 2.23 1.76

shoe2edge 1.44 1.00 1.51

dog2cat 2.24 1.97 1.11

cat2dog 2.65 2.24 1.09

paint2real 1.96 1.91 1.74

real2paint 2.14 2.26 1.14

Average 2.40 1.88 1.51

Table 3: Conditional Inception Score (CIS). Higher value means better performance.

InfoMUNIT MUNIT DRIT++

edge2bag 0.42 0.29 0.30

bag2edge 0.35 0.04 0.22

edge2shoe 0.26 0.24 0.22

shoe2edge 0.24 0.00 0.12

dog2cat 0.32 0.32 0.04

cat2dog 0.30 0.28 0.03

paint2real 0.25 0.25 0.11

real2paint 0.33 0.30 0.06

Average 0.31 0.21 0.14

method. Over all datasets, the scores of InfoMUNIT are significantly better than the other
methods. Figure 3 and Figure 4 illustrate the higher diversity of InfoMUNIT compared to
MUNIT. This results show that InfoMUNIT generates significantly more diverse outputs
than MUNIT and DRIT++.

5.3. Controlling Features

In this subsection, we show the advantage of InfoMUNIT over its predecessor MUNIT in
manipulating features. From Figure 3, we can observe that varying values of style code
in MUNIT can lead to slight changes like color of the object. With InfoMUNIT, we can
significantly manipulate the features of the object. The first disentangled feature controls
the size of the bag and the second one control the color from white to black. We also
notice that InfoMUNIT is able to propose different textures of the bag.

The performance of InfoMUNIT on the edges→shoes task is illustrated in Figure 4 and
Figure 5. While MUNIT can only change some small details of the shoes, we can signif-
icantly manipulate the color of the shoes with InfoMUNIT. Varying the first info style
code makes the color changed from bright to dark, while varying the second one changes
the color from cold to warm. In Figure 4, we can see that the first info style code is also
responsible for the style of the shoes. From the left to the right, it turns a sneaker to a
pump and makes it darker at the same time. This effect makes sense as pumps are more
likely to have dark colors than sneakers.

Please note that the value of each disentangled feature in this test is plotted from −2 to 2
instead of −1 to 1 in the training phase, which means the generator is receiving style code
values that it has never seen before. This explains why the images on the border looks a
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(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 3: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→bags task.

(a)	Input

(b)	Varying	two	last	digits	of	style	code	of	MUNIT

(c)	Varying	two	last	digits	of	style	code	of	InfoMUNIT

Figure 4: Manipulating two last digits in the style code of MUNIT and InfoMUNIT on
edges→shoes task.

bit extreme.

5.4. The length of information latent code

We perform some experiments to investigate the impact of the length of information latent
code i on the generated images in varying this value from 1 to 8. Table 4 shows some of
these results on the edge2shoe datasets. We see that the FID, CIS and LPIPS weakly vary
with the length of i. We conclude from these results that the quality and diversity of the
generated images by InfoMUNIT are robust to the length of the information latent code.

6. Conclusion

We proposed an extension of MUNIT called InfoMUNIT which can manipulate features of
the translated images. Our method is demonstrated in multiple image-to-image translation
tasks. It achieves comparable translated image quality to state-of-the-art approaches
and outperforms them in terms of outputs diversity. Moreover, our method improves
the control of the user on the generated images, this kind of tool can make the image
manipulation method more usable for real life applications.
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(a)	Input

(b)	Outputs	generated	by	InfoMUNIT	

Figure 5: Combination of the two last digits in the style code of InfoMUNIT on
edges→shoes task. From left to right (b), we vary the value of the first information

latent code. From top to bottom, we vary the second one.

Table 4: Performance of InfoMUNIT with different lengths of information latent code.

Length of i 1 2 4 6 8

FID 2.99 2.81 3.19 3.11 3.37

CIS 2.59 3.00 3.64 3.61 3.65

LPIPS 0.42 0.42 0.47 0.47 0.46
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