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ABSTRACT 
 
Machine learning models present a risk of adversarial attack when deployed in production. 

Quantifying the contributing factors and uncertainties using empirical measures could assist the 
industry with assessing the risk of downloading and deploying common model types. This work 

proposes modifying the traditional Drake Equation’s formalism to estimate the number of 

potentially successful adversarial attacks on a deployed model. The Drake Equation is famously 

used for parameterizing uncertainties and it has been used in many research fields outside of its 

original intentions to estimate the number of radio-capable extra-terrestrial civilizations. While 

previous work has outlined methods for discovering vulnerabilities in public model 

architectures, the proposed equation seeks to provide a semi-quantitative benchmark for 

evaluating and estimating the potential risk factors for adversarial attacks. 
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1. INTRODUCTION 
 

This short note explores a simple version of a probabilistic equation for machine learning (ML), 

specifically to defend trained models from adversarial attacks. Probabilistic frameworks like the 
Drake Equation (predicting the number of alien civilizations [1-2]) offer a heuristic for traditional 

factor analysis, particularly helpful in the face of uncertainty. In that spirit, we adopt the basic 

formalism of its original population-based assessment by including both the leading factors and 

their corresponding loss fractions. The goal is less to provide a new ML risk model as much as to 
explore the practical factors needed to consider before fielding a new model [3]. Other work has 

detailed already much of the successes and failures in defending predictive models:  

 
1) diversifying or augmenting training data [5] 

2) ensembling and model voting [6] 

3) obfuscating [7] 

4) active learning[8] 
5) protecting model descriptions or firewalling (e.g. nation-state security) [9] 

 

All these strategies (plus many others not included here [3]) should appear in one or more 
proposed terms for this modified Drake Equation.   

 

http://airccse.org/cscp.html
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2. MODIFYING THE DRAKE EQUATION 
 
The format of the note is first to present the main factors for model defense, followed by an 

explanation and examples to support each included factor.  We explore the interpretation of each 

factor where possible with an illustrative case mined from the AI Incidents database [4]. It is 

worth noting that other than these early efforts [4] to catalog adversarial attacks, less research has 
previously attempted to count or quantify systematically the failures of a given machine learning 

model in the wild. For example, should an adversarial attack be scored based on its frequency, 

severity, or difficulty to patch once a vulnerability gets discovered? This paucity of data further 
motivates the development of a modified Drake Equation, principally as a heuristic framework 

for understanding contributing factors and assessing their uncertainties. The structure of the note 

isolates each factor in reference to its more familiar population-based input, so for instance, the 

time that an attacker might probe a model’s vulnerabilities maps to the original Drake Equation’s 
reference to the time that a radio-aware civilization might broadcast its identity. An appealing 

aspect of the original format stems from its hierarchical factors from large to small fractional 

contributions as they change over time. One ultimately wants to understand the dependencies 
while solving for the machine learning model’s attack surface, as measured by N, the number of 

successful adversarial attacks. 

 
To defend a machine learning model, the number of successful adversarial attacks, N, is 

proportional to the model’s size, R, as measured by its popularity (e.g. YOLO), sponsoring 

enterprise size (e.g. Microsoft, Google, Facebook), or monoculture of adoption (e.g. 

convolutional neural networks). The proposed modifications to the Drake Equation are described 
below: 

 

𝑁 = 𝑅 ∗ 𝑓𝑝 ∗ 𝑛𝑒 ∗ 𝑓𝑙 ∗ 𝑓𝑖 ∗ 𝑓𝑐 ∗ 𝐿 

 
𝑁 =  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 

𝑅 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑠𝑖𝑧𝑒 
𝑓𝑝 =  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑, 𝑛𝑎𝑚𝑒𝑑, 𝑜𝑝𝑒𝑛 𝑠𝑜𝑢𝑟𝑐𝑒𝑑 𝑜𝑟 𝑓𝑖𝑒𝑙𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑙𝑑 

𝑛𝑒  = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝒆𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑚𝑒𝑚𝑜𝑟𝑦, 𝑏𝑖𝑙𝑙𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
𝑓𝑙  =  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝒍𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜, 𝑎𝑠 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

/𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑦𝑏𝑟𝑖𝑑 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 
𝑓𝑖 =  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝒊𝑛𝑝𝑢𝑡 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑦 𝑎𝑛𝑑 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑡𝑒𝑝𝑠 

𝑓𝑐  =  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝒄𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑜𝑟 𝑙𝑜𝑔𝑔𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟𝑠  
𝐿 
=  𝒍𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠 𝑐𝑎𝑛 𝑞𝑢𝑒𝑟𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑟 𝑡𝑖𝑚𝑒𝑜𝑢𝑡𝑠 

 

2.1. R-Average Enterprise Size 
 
In the original Drake Equation, this factor traditionally relates to a rate of new star formation. We 

generalize the rate of new ML models created, R, by an aggregate of overall enterprise size. This 

approach mirrors the literature on monoculture in computer operating systems (e.g. MS 
Windows) as a primary indicator to motivate cyber-attacks. The corresponding figure in 

defending ML models derives from a similar feature, namely that attacking large enterprise 

models like Google’s Perspective API and OpenAI’s Generative Pretrained Transformer (GPT-3) 

is more likely than probing or disabling a smaller, private, or novelty ML model. 
 

One can hypothesize that the community’s attraction to leader boards [4] and state-of-the-art 

(SOTA) competitions further drives the ML community to more singular ecosystems that may 
prove more difficult to defend from adversaries than a diversified one. As a figure of merit when 
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describing the cyber-risks for a monopoly in operating systems [10], the entire ecosystem may 
become unstable when the market share and global adoption reach 43% and more directed attacks 

garner hacker’s attention. One ML-specific metric of whether a given type of neural network 

dominates its ecosystem can be approximated by search trend monitors. For example, by using 

Google Trends [11], the current popularity of three core approaches to modeling the neural 
architecture itself shows that convolutional networks (CNN) capture 72% market share, 

compared to graph neural networks (25%) and capsule networks (2%).  An attacker that knows 

the unique weaknesses of CNNs (such as their inability to grasp long-range spatial relations. 
complex hierarchies, and symmetries [12-13]) may profitably attack those specific design 

elements, particularly given their monopoly as deployed models. 

 

2.2. Fp- Fraction Published, Named, Open-Sourced, or Fielded in the Wild 
 

In the original Drake Equation, this first factor in a hierarchical loss fraction stems from the 
number of stars with planets. In an adversarial attack, this factor similarly appears at the top of 

the hierarchy, namely how much is known about the model’s origins.  The literature spans model 

security from black-box (no knowledge) to white-box (full-knowledge), such that given a known 
or discoverable model structure, the attacker may also potentially know the weights and training 

dataset. This is most well-known in the release of GPT-2 versus GPT-3, where for some time the 

GPT-3 API was not available to researchers. When Open AI initially open-sourced its models, 

the company furthermore specifically withheld its larger one (1554M) to suppress the 
possibilities for abuse.  

 

2.3. Ne - Average Number of Engineered Parameters 
 

In the original Drake Equation, this second factor considers the number of planets capable of 

supporting life. In an adversarial attack, the relevant context would include model complexity, 
either as its memory, number of parameters, or layers of network architecture. A breakdown of 

computing ne for a CNN could be as simple as a baseline of the number of parameters or number 

of layers. For object detectors, the relevant complexity often arises from the way the model 
searches for its characteristic anchor sizes and bounding boxes, whether multi-stage like a region-

proposal network (R-CNN) or single-stage frameworks like YOLO. 

 

2.4. Fl- Fraction of Learning Ratio 
 

In the original Drake Equation, this third factor refers to planets that spawn life at some point. In 
an adversarial attack, this fraction includes losses for well-trained models that possess large and 

diverse data. Previous work has proposed using Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) to evaluate model performance against dataset diversity and this style 

of metric may provide a baseline for this factor [14]. 
 

2.5. Fi- Fraction of Input Supervisory Guidance 

 
In the original Drake Equation, this fourth factor addresses the rise of intelligent life from more 

primitive forms. In the machine learning context, this fraction includes the standard quality 

checks that separate a fieldable model from an experiment or lab bench demonstration. This 
factor corresponds to the breakpoint in many adversarial defenses, such that a prototype moves 

into production based on disciplined quality checks.  Has the model seen out-of-vocabulary terms 

if a natural language processor? Is there a high fraction of augmented examples for each class?  
One traditional image approach augments training data with more diverse object types, usually 

including different lighting, viewing angles, or noise. Paleyes, et al. [15] describe 38 factors 
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attacking 15 systems that contribute to a failed productization of an ML model. At any one of 
these steps, ranging from data-collection to performance monitoring, there exist adversarial 

attacks that can poison the entire process. Wang et al. [16] define in detail the adversarial attack 

to each of these systems. 

 

2.6. Fc- Fraction of Completed Queries that Return Detectable or Logged Answers 

 

In the original Drake Equation, this fifth factor delineates the rise of technological capabilities 
such as radio transmission that travels at the speed of light and thus renders a distant galaxy 

observable. For adversarial attacks, this fraction defines the likelihood that an outside observer 

can understand the model type, its sensitivities, or its vulnerabilities. Particularly in the black-box 
approach where an attacker must launch a question-and-answer format to understand how the 

model works, this fraction restricts the obtainable universe of effective attacks. In experiments for 

text and image classifiers, Kalin, et. al [17] found that model architectures are easily discovered 
with strategic probing if the architecture is public. In this new equation, fc is related 

proportionally to fp factor. 

 

2.7. L–Length of Time that Attackers Can Query without Consequence or Timeouts 

 

In the original Drake Equation, this final factor introduces the notion of time, particularly how 

long a civilization might survive its technology before self-destructing or its evolutionary time to 
propagate signals to an outside observer. Like the numerical count of accepted API requests (fc), 

the length of time to automate or web-scrape the API with new queries offers a secondary line of 

defense not in space (count) but in time. Despite a more mature field, software engineering for 
APIs still suffers from vulnerable code being written into production systems [18]. 

 

3. MISSING BUT NOT FORGOTTEN 
 

This modification of the Drake Equation focuses on metrics that can be directly measured in a 
production environment. Missing elements in this heuristic might include additional pre-

production factors for diversity, size, and quality of the input data, training lengths (epochs), and 

other historical elements that may or may not propagate usefully to the final model and its 
vulnerabilities.  The collected metrics can then be used to refine the model performance against 

known benchmarks. For instance, common model types are easily discoverable via their input 

data and/or architecture [17]. 
 

4. AXIOMS 
 

Axiom 1: Architecture and Dataset Metrics are related 

 
The Learning Ratio, Parameters, and Guidance variables stem from the architectural design of the 

model. This equation is divided into two primary Adversarial fractional components: 

Architecture and Dataset. For teams to use the likelihood of successful adversarial attack 
assessment to improve their models, they will need to understand the contribution of architecture 

and dataset design to the overall adversarial risk. The first fraction defines the key parameters 

related to architecture and their overall contribution to adversarial risk: 

 

𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 = 𝑅 ∗  
𝑓𝑝 ∗ 𝑛𝑒 ∗ 𝑓𝑙

𝑁
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The second fraction defines the dataset metrics responsible for dataset contributions to 
adversarial risk: 

 

𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑅 ∗ 
𝑓𝑖 ∗ 𝑓𝑐 ∗ 𝐿

𝑁
 

 

5. EXPERIMENTS 
 

This framework is designed to work on large and small works. In the following experiments, the 

focus is on baselining the effective ranges of the factors, showing sample risk factors for common 
model architectures, and understanding the relative effect each factor has on itself and the risk 

factor.  

 

5.1. Experimental Design 
 

Each factor needs to be defined in terms of operating bounds to apply this new framework to 

current models. For the experiments, the following operating ranges for the variables were chosen 
to highlight the current capabilities that exist within the machine learning community today: 

 

 R - Average Enterprise Size 
o Range [0, n authors] 
o Enterprise Size is computed as the Number of Authors as it can be difficult to 

find the actual number of employees in a particular organization 

 fp- fraction published, named, open-sourced, or fielded in the wild 

o Three values: Not Published 0.0, Published but not open source 0.5, Published 
and Open Source 1.0 

o For example, GPT-3 is fielded in the wild but is not open source: 0.5 

 ne - average number of engineered parameters 

o Stepped Range [0,1] based on Number of Model Parameters 

 fl- fraction of learning ratio 

o Stepped Range [0,1] as a relative factor to State of the Art (SOTA) performance 
o For example, the first benchmark in the model category is 0.1 and SOTA is 1 

 fi - fraction of input supervisory guidance 

o Range [0,1] 

o Is training data sufficiently large and diverse?  

 fc - fraction of completed queries that return detectable or logged answers 
o Range [0,1] 

o Estimated High Query Rate on the model 

 L– Length of time that attackers can query without consequence or timeouts 

o How long has the model been in public? Years [0, n] 
 

As with the original formulation of the Drake Equation, each parameter represents an estimate of 

best guesses for factors in the wild. This modification to the Drake Equation will provide 

organizations the ability to benchmark, evaluate, and track the adversarial risk of their models in 
production. As a team observes the adversarial risk reduction on their model, there are factors 

within this equation that can directly be attributed to that reduced risk. 

 

5.2. Empirical Results 
 

Using the factor ranges described in the experiment design, six popular models were estimated as 
samples of how to apply this formulation. Figure 1 is sorted from top adversarial risk to lowest 
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risk. In the example of ‘MyModel’, the model is not deployed and therefore does not contain 
adversarial risk from outside actors. 

 

 
Figure 1: Summary of Models Explored with Modified Drake Equation. Six Popular model architectures 

are benchmarked along with a custom model based on MobileNetV2’s design. The table is sorted by 

estimated Adversarial Risk N in the last column.Aa/Ad represent the Adversarial Fraction for architecture 

and dataset respectively. 

 

When exploring this formulation, it’s incredible to see that newer, larger architectures are less 
vulnerable than older models. This is on purpose though as older models will have more 

vulnerabilities appear since they have been in circulation longer. There are further improvements 

that could be made to these experiments – for instance, the exploration of architectures could be 
split into text and computer vision. Each category of model architectures can have its boundary 

conditions. For instance, transformers technologies like BERT and GPT have revolutionized NLP 

problems over the last few years. Their properties may warrant a deeper exploration of parameter 
dependencies. 

 

5.3. Correlation Analysis 
 

The next experiment in this work is to understand the dependency of each factor on adversarial 

risk. Building a correlation matrix using the assumptions above, Figure 2 shows the relative 

importance of each factor to itself, the other factors, and to adversarial risk. 
 

X-Correl R Fp Ne Fl Fi Fc L N

R 1.000 -0.061 0.619 0.305 0.049 -0.083 -0.439 0.116

Fp -0.061 1.000 0.034 -0.063 0.788 1.000 0.606 0.406

Ne 0.619 0.034 1.000 0.848 0.428 0.018 -0.240 0.669

Fl 0.305 -0.063 0.848 1.000 0.439 -0.073 0.038 0.735

Fi 0.049 0.788 0.428 0.439 1.000 0.783 0.482 0.599

Fc -0.083 1.000 0.018 -0.073 0.783 1.000 0.611 0.404

L -0.439 0.606 -0.240 0.038 0.482 0.611 1.000 0.145

N 0.116 0.406 0.669 0.735 0.599 0.404 0.145 1.000  
 

Figure 2: Cross-correlation of variables to the Modified Drake Equation including Adversarial Risk. 

 
Within Figure 2, there are a few surprising things that come out of the correlation analysis. Here 

are the key observations: 

 

 The most correlated variable when predicting adversarial risk is fraction of the learning 

ratio (0.735) 

 The fraction of learning ratio is highly correlated to the number of parameters (𝜌(𝑓𝑙 , 𝑁𝑒) 

= 0.848) 

Model R Fp Ne Fl Fi Fc L Aa Ad N

T5 9 1 0.8 1 1 1 2 0.50 1.25 14.40

VGG19 2 1 0.6 1 1 1 6 0.17 1.67 7.20

GPT3 31 0.5 1 1 0.75 0.5 1 2.67 2.00 5.81

BERT 4 1 0.6 0.75 1 1 2 0.50 2.22 3.60

FastText 4 1 0.1 0.7 1 1 4 0.25 14.29 1.12

MoibleNetV2 5 1 0.1 0.5 0.5 1 3 0.67 20.00 0.38

MyModel 1 0 0.2 0.75 0.2 0.05 1 0.00
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 The fraction of input supervisory guidance is highly correlated to fraction published 

(0.788) 

 The fraction completed queries is highly correlated to fraction published (𝜌(𝑓𝑐 , 𝑓𝑝) = 

1.000) 

 

Intuitively, the fraction of learning ratio being most correlated to adversarial risk represents that 
the most popular models have the most people trying to attack them. The goal is to track and 

reduce the adversarial risk to a model and this framework provides a starting benchmark. 

 

6. SUMMARY AND FUTURE WORK 
 

This work supports an established heuristic framework in analogy to the traditional Drake 

Equation. This simple formalism amounts to a summary of relevant factors. The basic equation 

has been modified elsewhere for detecting bio signatures in planet-hunting (Seager equation 
[19]), sociology (best choice problem [20]), infection risks [21], AI singularity [22], social justice 

[23], and other diverse probabilistic assessments [24]. Ultimately, its main purpose follows from 

assessing the multiple uncertainties that may vary by several orders of magnitude. For example, 
as ML builders consider whether to privatize or to open-source their models, they may intuitively 

favour one course over another given a perceived risk for model compromise. Is it true in practice 

that privatizing a model lowers the risk, or does it increase the attack surface because the model 
never gets hardened by peers?  One would like to provide a framework for these important 

decisions and assist the ML community to identify the data needed for sensitivity analysis and the 

evaluation of consequences.  

 
The biggest challenge in finding novel utility for this framework shares much in common with 

Drake’s original notion. How to quantify each factor? What if the factors show strong 

correlations? How do the factors change with time, particularly if both the builders and attackers 
modify their behaviour? What are the appropriate units to assess ML risks, either as the number 

or severity of adversarial attacks? One informative output that previous technical papers often 

ignore in assessing model risk is the scale of the overall ecosystem (R). In the literature for 

cybersecurity, for example, the monoculture aspect for operating systems has proven most 
predictive of the next generation’s attacks.  In this view, the SOTA leader boards [4] might 

benefit from encouraging a more diverse model ecosystem, such that niche YOLO attacks cannot 

propagate throughout the whole ML community and its applications, particularly when a few 
fractional percentage improvements separate the field into universal adoption strategies. Future 

work should highlight the data sources for evaluating each factor. For instance, the publications 

dataset from Cornell’s arXiv supports extensive topic analysis for extracting the popularity of ML 
models, their relevant attack methods, and promising defensive styles [26].  Classification 

methods for attack types [27] may also guide the practical counting or scoring for the universe of 

adversarial ML threats. 
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