MODEL-BASED SYSTEMS ENGINEERING
APPROACH WITH SYSML FOR AN AUTOMATIC
FLIGHT CONTROL SYSTEM

Haluk Altay and M. Furkan Solmazgil
Teknopark Istanbul, Turkish Aerospace, Istanbul, Turkey

ABSTRACT

Systems engineering is the most important branch of engineering in interdisciplinary study.
Successfully performing a multidisciplinary complex system is one of the most challenging tasks
of systems engineering. Multidisciplinary study brings problems such as defining complex
systems, ensuring communication between stakeholders, and common language among different
design teams. In solving such problems, traditional systems engineering approach cannot
provide an efficient solution. In this paper, a model-based systems engineering approach is
applied with a case study and the approach is found to be more efficient. In the case study, the
design of the helicopter automatic flight control system was realized by applying model-based
design processes with integration of tools. Requirement management, system architecture
management and model-based systems engineering processes are explained and applied of the
case study. Finally, model-based systems engineering approach is proven to be effective
compared with the traditional systems engineering methods for complex systems in aviation and
defence industries.

KEYWORDS

Model-Based Systems Engineering, Automatic Flight Control System, SysML.

1. INTRODUCTION

In order to understand Model-based systems Engineering, it is necessary to know the definition
and scope of the systems engineering. The definition of systems engineering is defined as follows
in the references.

“Systems engineering is an interdisciplinary approach and means to enable the realization of
successful systems.” [1]

“Systems engineering is a discipline that concentrates on the design and application of the whole
(system) as distinct from the parts. It involves looking at a problem in its entirety, considering all
the facets and all the variables and relating the social to the technical aspect.” [2]

Considering these reference definitions, within the scope of this case study, the definition of
systems engineering is made as follows.

“Systems engineering is a multidisciplinary and common mind approach that ensures successful
realization of systems.”

David C. Wyld et al. (Eds): CMC, NCO, SOFT, CDKP, MLT, ICAITA - 2021
pp. 01-19, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111101

http://airccse.org/cscp.html
http://airccse.org/csit/V11N11.html
https://doi.org/10.5121/csit.2021.111101

2 Computer Science & Information Technology (CS & IT)

The definition of model-based systems engineering is defined as follows in the references.
“Model-based systems engineering (MBSE) is the formalized application of modelling to support
system requirements, design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later life cycle phases.” [3]
Considering these reference definitions, within the scope of this case study, the definition of
model-based systems engineering is made as follows.

“Model-based systems engineering is an approach to successfully realize systems driven by a
model, with a consistent set of views that reflect multiple perspectives of the system.”

The traditional systems engineering definition has been made to the systems engineering
activities carried out before the model-based systems engineering approach. Traditional systems
engineering has three main problems, such as being inadequate in defining complex systems,
communication between stakeholders, and common language and interpretation among different
design teams. In the case study, model-based systems engineering processes are applied and as a
result, main problems are eliminated. Model-based systems engineering approach has multiple
advantages over traditional systems engineering.

Automatic generation of most of system documents by using the developed models.

Since the models can be measured, it is easy to control and manage in complex systems.

Consistency for all information in the system architecture thanks to the models.

Ensuring traceability in the life cycle stages of the system with using SysML for

modelling and maintaining tool integration.

e Easier to access information since a certain systematic is applied while the model is
being established.

e More understandable communication establishment thanks to the representation of
requirements as a model and the use of a common language for this model.

e Improving communication as a result of the establishment of common terminology and

concepts between all stakeholders and design teams of a system.

It is important for companies that model-based systems engineering benefits are directly related
to cost, time or resource savings. Adapting the model-based systems engineering approach to
reflect the company's working principles is the most critical point for the efficiency of this
process.

2. DESIGN METHOD

In the INCOSE System Engineering Handbook document that there are 6 different methods of
model-based systems engineering. [1] These methods are INCOSE Object-Oriented Systems
Engineering Method (OOSEM), IBM Rational Telelogic Harmony-SE, IBM Rational Unified
Process for Systems Engineering (RUP-SE), Vitech MBSE Methodology, JPL State Analysis
(SA) and Dori Object — Process Methodology (OPM).

The methods that mentioned above have been examined and a suitable method has been
determined for the flight control system. The method created is shown in Figure 1.

Computer Science & Information Technology (CS & IT) 3

I . 1
— : Reqrurem-ent : <

1 Analysis 1 2

1 1
- i ' g
S I | N
. N

oy 1 1
S | System Fum.'twnal » §
= 1 Analysis 1 =
] 1 1)
| $ LB
5 1 1]

= 1 . 1
I 1N System Ar{fhttecture e E
) I Design i g
3 I 1 ®
= I i I S
1 N : 3
o Detailed System | =

- : Architecture Design :

(R 1

N ’

e e ———————— -

Figure 1. Model-Based Systems Engineering (MBSE) process

Model-based System Engineering processes; requirements analysis, system functional analysis,
system architecture design and detailed system architecture design. Requirement and system
architecture management are required throughout MBSE processes. By this means, process
traceability and an iterative design are provided. The method followed from the customer
requirements that are the input of the MBSE process to the system requirements and the system
architecture that are the outputs of the process are shown in Figure 2.

[Customer
 Requirement |
I st o i S e S =
/ Requirement \
/ : \
I Analysis :
L
: Requirement Loop :
I
1
: [System Functional i
I \ Analysis i
: 'Y 1
1 Architecture Loop :
1 y
I System Architectm‘e} i
: Design :
I
| ! :
i VEstBoation [Detailed System | !
‘\ Architecture Desi I
N S S S T o ,’
System)
Requirement

Figure 2. Model-Based Systems Engineering (MBSE) process with input and outputs [4]

4 Computer Science & Information Technology (CS & IT)

In the case study of helicopter automatic flight control system, Model-based System Engineering
process was carried out with reference to the ARP4754A document and the relevant sections of
the DO-178C / 331 standard document listed below.

ARP-4754A Section 4.5 Allocation of System Requirements to Items
ARP-4754A Section 5.3 Requirements Capture

ARP-4754A Section 5.4 Requirements Validation

DO-178C/D0O-331 Section 2.1 System Requirements Allocation to Software
DO-178C Table A-2 Software Development Process

DO-178C Table A-3 Verification of Outputs of Software Requirement Process

3. DESIGN

Helicopter automatic flight control system architecture design was realized by using SysML with
the Model-based systems engineering approach. The design process was carried out in
accordance with the method described above.

3.1. Requirement Management

Requirement management is an iterative process that continues throughout model-based systems
engineering processes of the case study. Requirement management covers the following
processes:

Definition of requirements

Validation of requirements

Traceability and verification of requirements
Transfer and synchronization of requirements.

In the requirement management, managing the requirements with a single software ensures that
each stage is carried out more efficiently. In this case study, DOORS software was selected for
requirement management processes. The relationship between the requirements in the DOORS
and the model elements in the system architecture which is modelled with SysML was created by
using IBM Rational Rhapsody.

3.1.1. Definition of Requirements
Within the scope of the case study three set of requirements were created by using DOORS:

e Contractual requirements that defining the behaviours that are targeted to occur in the
system and received from costumer.

e System requirements that defining all functions and properties of system.

e Software requirements that taken as reference when designing flight control computer
and implementing the software.

Requirement sets are defined in a hierarchy as in Figure 3. Thus, the levels at which the
requirements are created, and which standards are used as the source when deriving the
requirement sets are shown in Figure 3.

Computer Science & Information Technology (CS & IT) 5

bdd [Package] RegArchitecture [RequirementArchitecture]
LO Contractual

ContractualRequirements

AN
V «Blodk
L1 Aircraft FUEERD
«deriveReqt» «trace» /'I|
L2 System 5 v
' | U = ARP4754A
DO «pe?iveReqT;
SystemRequirements N B
«deriveReqt» Blocks
. = AS94900
:"oEcieriveReqt»
/\ N «deriveReqts 3| R
E E N D0325
L3 Subsystem; : «deriveReqt»
«deriveReqts | «traces -
H «Blocks
L4 Item POt
SoftwaréRequire'ments
Block
«deriveReqts FB DOi?l;C

Figure 3. Requirement hierarchy

Unique ID assignment is made to each requirement in the requirement set. In addition, attributes
that define requirements specifically are created for requirement sets. Object type means of

complies (MoC) and requirement source / reference attributes were defined for system
requirements.

Obiject type refers to type of the requirements according to its content. The created object
types are Information, Heading, Design Guideline, Structural Requirements and
Functional Requirements.

Means of compliance (MoC), expresses with which method to validate the requirements.
The created MoC are Compliance Statement, Design Review, Calculation/Analysis,
Safety Assessment, Laboratory Tests, Ground Tests, Flight Tests, Design
Inspection/Audit, Simulation and Equipment Qualification.

Object Reference refers to the source of the created requirements. The created object
references are Engineering Judgment, Contractual Requirements and Standards.

An example of the ID and attributes defined in the requirements is as in Figure 4.

6 Computer Science & Information Technology (CS & IT)
P | P RV T EE A Attribute
D Automatic Fight Control System requiements §fobiectTipe | MoC | Object Reference
AFCS_82 |4 1.2.2.2 Attitude Hold (ATT) Function Heading
AFCS_83 MATT which is FCC outer loop provides long-term inputs by trimming the | Information
flight controls to the position required to maintain the selected flying
attitude by FCC or pilot. ATT Function is designed to be a hands-off
flying.
AFCS_35 JBFCC shall have long term pitch attitude hold, long term roll attitude hold %] Structural MoC 1- Design Review c4M
and long term yaw attitude hold (ATT) capabilities. Requirement
AFCS_92 | 1.2.2.2.1 Pitch Hold Function Heading
AFCS_93 [BThe Attitude Hold Function for the Pitch Axis (Pitch Hold Function) shall *] Design C33M
track and maintain the pitch angle reference. Guideline ADS-33E-PRF
AFCS_304 [MPitch Hold Function shall operate when Pitch Hold Engagement is "1 Functional MoC 2 - Calcuabion/Analyss
engaged. Requirement
AFCS_308 [The Pitch Hold Function shall be inoperative when the Pitch Hold ™ Functional MoC 2 - Calcuation/Analysis ~ C34M
Engagement is deactivated. Requirement
AFCS_98 P The Pitch Hold Function shall operate whenever the autopilot is engaged *| Functional MoC 2 - Calculation/Analysis
and no other longitudinal mode is engaged. Requirement
AFCS_102 |4 1.2.2.2.1.1 Pitch Hold Performance Heading
AFCS_105 | AFCS shal be capable to keep the helicopter in desred pitch attitude in + 2*| Functional MoC 2-Calculation/Analysis C28M
degrees within the operational fight envelope in wind conditions less than | Requirement
5 knots.
AFCS_106 14 1.2.2.2.1.2 Pitch Hold Limit Heading
AFCS_296 | ' The Pitch Hokd Function shal Imit the closed bop control pitch angle *| Functional MoC 2-Calcuation/Analysis DO-325 2.2.1.1.1 f
between £15 deg with 3 tolerance of +10%. Requirement

Figure 4. Requirements in DOORS with attribute columns
3.1.2. Validation of Requirements
It indicates that the requirements are complete and correct. Validation process is usually done
using a checklist of requirements. Requirements are updated by considering the missing and

inaccurate statements resulting from the checklist and analysis.

Table 1. Example of requirement validation checks [7]

Correctness Checklist

Is it identifiable as a requirement?

Is the requirement redundant?

Does the requirement conflict with others?

Is it physically possible to meet the requirements?

Is the requirement set better suited to be combined into a
single requirement?

QP WIN|F-

3.1.3. Validation of Requirements

Traceability in requirements defines the whole life process of requirements. The life process of
requirements starts from where its history and source are based and continues to new
requirements that will be created throughout the development period. The requirement set with
more general expressions is defined as the highest level, and the requirement set with all the
details to design a system is defined as the lowest level. Traceability between requirements
occurs when a lower level requirement meets a higher-level requirement. In this case study,
traceability has been provided between the lowest level software requirement set and the highest-
level customer requirement set with the connections. Traceability of the requirements is very
important for verifying the requirements. Verification of requirements are defined as
demonstrating that the system is designed correctly according to customer requirements as a
result of implementation of the requirements. The requirement validation process begins after the
design is finished and checks that the design has been made in accordance with the requirements.

Computer Science & Information Technology (CS & IT) 7

There are several methods (MoC) for requirement verification. Some of the requirement
validation methods are shown in Table 2.

Table 2. Means of compliances

MoC MoC Associated Compliance | Definition
Code Description Documents
MoC 1 | Design Descriptions Compliance is proven by the design
Review Drawings review minutes, system description
documents, drawings, etc.
MoC 2 | Calculation Substantiation reports Compliance is proven by an analysis
and Analysis activity and report, such as static and

fatigue strength analysis, load
analysis, platform performance
analysis, off-line simulation
modelling analysis etc

MoC 3 | Safety Safety analysis Compliance is proven by reference
Assessment to the safety documentation defined
in Safety Program Plan.

MoC 4 | Laboratory Test programs Compliance is proven by tests done
tests Test reports on i.e. a specific rig test, subsystem
bench test or system integration test
activity

Before the verification of the requirements, test scenarios are created according the requirements.
The models developed at the design stage are tested to verify the requirements. If the system
features in requirements are satisfied completely in the test results, requirements are considered
verified.

3.1.4. Transfer and Synchronization of Requirements

By transfer and synchronization between the IBM Rational Rhapsody that is created models of
requirements and "DOORS" that is managed of the requirements were provided to continuous
integration between requirements and models. As shown in Figure 5, integration is provided by
using IBM Rational Rhapsody Gateway add on.

(1) Requremerts]

e
Wi, (=]

~.

S

[UML Modsl |

Figure 5. Requirements and model connection in IBM Rational Rhapsody Gateway
3.2. System Architecture Management

System architecture management is carried out with SysML which is a visual / graphic based
architectural modelling language used in systems engineering applications. SysML has a
grammar and vocabulary just like any of the natural languages we speak in this World (ex.
English, Japanese etc.) [5]. Models are created to develop system architectures with SysML.

8

Computer Science & Information Technology (CS & IT)

SysML models are examined under three main titles structural, behavioural and requirement.
Various diagrams are used to create SysML models. SysML diagrams are shown in Figure 6.

SysML Diagrams

Behavior Requirement Structure

Diagrams Diagram Diagrams
Activity Sequence State Machine Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram

:

Parametric
Diagram

Figure 6. SysML taxonomy

The structural expression of a model answers the question: What is the system? Structural models
are used to

define the system,

define system components,

define system features,

define system constraints,

define the system model organization,

determine their behaviour,

define the relationships between system elements.

The behavioural expression of a model answers the question: How is the system behaves?
Behavioural models are used to

define the behaviour of the system,

define use case of the system,

define functions of system,

define activities of system,

define sequence of behaviour,

define operations within the system elements.

Within the context of the case study, a hierarchy was created using SysML that contains the
packages related to the its contents. The hierarchy shown in Figure 7 is the model organization of
the system and was created using packages.

Computer Science & Information Technology (CS & IT) 9
= ‘&3 KMS_Helicopter

+-[) Components
=~ Packages
=57 Analysis
+-(=% Actors
#-(2 Allocations
> Comments
(= Functions
(2» Satisfactions
#-L0 Use Case Diagrams
(2 Use Cases
=57 Architecture
_ Block Definition Diagrams
f Blocks
. Internal Block Diagrams
#-10 Package Diagrams
(= Parts
-5 GatewayProjectFiles
#-1J Controlled Files
=-£7 HelicopterModelLibrary
= Blocks
(s Dependencies
Packages
+-(Units
#1571 PredefinedTypes (REF)
+ D Requirements
+-[) Profiles
+-(Settings

¥
+
+
4
T
+
+
+
+
¥
¥

Figure 7. Case study model organization

System architecture management is provided by this model organization. Model organization was
created with 6 different packages:

e The "Analysis" package consists of behavioural models and requirement analysis
including Use Case Diagrams, Activity Diagrams, Sequence Diagrams.

e The "Architecture" package consists of structural models containing Block Definition
Diagrams, Internal Block Diagrams and Package Diagrams.

o The “GatewayProjectFiles” package, consists of IBM Rational Rhapsody Gateway
project files that provide communication between DOORS software used in requirement
management and IBM Rational Rhapsody software where the system architecture is
realized, and which contain various relationships between each other.

e The “HelicopterModelLibrary” package is a library containing the model elements,
relationships, units and sub-packages used in the study.

e The "PredefinedTypes" package consists of models containing stereotypes representing
the features to be used in the case study. It is defined automatically when the SysML
project is created.

e The "Requirements" package includes models of requirements created within the scope
of the case study and requirements found in the DOORS software.

3.3. Model-Based Systems Engineering Processes

Model-based systems Engineering (MBSE) is an approach used to reveal the needs that involve
different perspectives of stakeholders, which one of the problems of systems engineering, and to
analyse these requirements with models and make them more detailed and understandable. Thus,
in complex systems like a helicopter, the entire process from customer requirements to system
requirements and system architecture can be explained with this approach. In this process,
requirements analysis, functional analysis, system architecture design and detailed system
architecture design phases are carried out respectively.

10 Computer Science & Information Technology (CS & IT)
3.3.1. Requirement Analysis

The requirements analysis process is the first phase of the model-based systems engineering
process. The input of the requirements analysis process is the customer requirements, and the
output is the use case models of the system. The requirements analysis process includes the
design steps listed below:

e Examining customer requirements and determining required behaviours (use case)

o Derivation of preliminary system requirements for the use case determined with
reference to customer requirements and standards

e Linking the derived system requirements to customer requirements.

Models are used when expressing targeted behaviours (use case) in the model-based systems
engineering process. In SysML, the use case that is created with using phrases and actors of the
system are expressed with the Use Case Diagram. After classification of customer requirements,
use cases and actors are built in use case diagrams shown in Figure 8 to link the related
requirements. It is intended to cover all customer requirements during the use case definition
process. In addition to the actors and system boundary have been defined.

uc [Package] Analysis [AFCS]

AFCS
Generate cockpit Stabilize helicopter
I control inputs %
UG with Reas includes UCwith Reqs
Ucw eqs. 4. > ot e
i e . fanelude Activity fo Sum Autopilot functions
Activity - ce K
- . .- - command with in each
: *yinc\ud‘e‘x;‘w\ 3 principle axes
N A UC with Reqgs
Track and maintain o Activity
Pilot the selected flying ",
+, «includes atttitude
E - UCwith Regs
«includé»
: | wificluder
Generate heading o B
'\\ reference in high . .
speed . "
UC with Reqs «nclude» ",
Activity T
N dides Flant
Set lateral vmclude\n -
accelaration to zero " Give feedback from
inhighspeed Lo sensor
UCwith Regs sincludex» UG with Reas

Activity

Each use case refined by
requirements which are
shown in separate use
case diagrams that can be
reached by hyperlink

Figure 8. Use Case Diagram example from case study

After creating the success and establishing connections, preliminary system requirements started
to be produced. The system requirements derived for “stabilized helicopter” use case and the
“refine” connection between use case and system requirements in the Use Case Diagrams are
linked as shown in Figure 9. Thus, system requirements have been created for the relevant use

case.

Computer Science & Information Technology (CS & IT)

uc [Package] Analysis [Stabilize helicopter]

cross-coupling effects
by decoupling the
dynamic control effects
of necessary axes by
the other axes,

automatically engage
when ATT Engage
Switch is active.

engaged with the
disengagement of the
the ATT.

wlromDDORSs wlromDDORSs «lromDOORSS eTromD0OASs
AFCS_356 AFCS_64 AFCS_65 AFCS_66
ID = AFCS_356 ID = AFCS_g4 ID = AFCS_65 ID = AFCS_B6
g&i;ﬁt‘ﬂ?ha" The SAS shall The SAS shall remain The SAS shall remain

engaged during an
override condition.

I 7
e arefines arefiner -7
«refines “-. RS . .- arefines
Stabilize helicopter :
arefing “.
«refinex 4 arefines . «refines -
A= ;) 3
«ramDOORS= =MramDOORS= *MramDOORS= =(romDOORS=
AFCS_38 AFCS_68 AFCS_73 AFCS_78
1D = AFCS_38 ID = AFCS_68 ID = AFCS_73 ID = AFCS_78
The Stabiity The Stability The Stability

AFCS shall provide
automatic stabilization
of the helicopter to
enhance the handling
qualities of the aircraft
according to
ADS33-E-PRF,

Augmentation Function
for the Pitch Axis (Pitch
SA) shall provide the
aircraft pitch
stabilization by
generating commands
considering pitch rate
and pitch angle of the
helicopter.

Augmentation Function
for the Roll Axis (Roll
5A) shall provide the
aircraft roll stabilization
by generating
commands considering
roll rate and roll angle
of the helicopter.

Augmentation Function
for the Yaw Axiz (Yaw
SA) shall pravide the
aircraft yaw
stabilization by
generating commands
considering yaw rate
and yaw angle of the
helicopter.

11

+— System Use Case Diagram

Figure 9. Use Case Diagram example with refine dependency
3.3.2. System Functional Analysis

The functional analysis process is the second phase of the Model-based System Engineering
process. Functional analysis is defined as a systematic process for defining and associating the
functions that a system must perform in order to be successful. The functional analysis process is
carried out for the following steps.

e To define all the functions that the system must fulfil to meet the requirements in a
graphical model.

¢ Allocation of detail requirements created as a result of detailing system requirements

o Defining sub-functions required for each function by making functional decomposition

e Explain what to do and how to do it before implementing the requirements.

The steps in the functional analysis process are shown in the Figure 10. [6]

12 Computer Science & Information Technology (CS & IT)

Functional analysis

el Define use case Define use case Db
e functicnal flow sCenarios functlonal
conftext interfaces
v
Define state — erify and validate Add
baszed behavior use case model traceability

Figure 10. Functional analysis process

In the functional analysis process, which is one of the model-based systems engineering
processes, the definition of the model content is determined by the use case. The creation of the
detailed use case functional flow is provided by Activity Diagrams. While creating activity
diagrams, actions are determined firstly, and control flow is obtained by taking into account the
order of realization of these actions.

In the process of defining the scenarios of the use case, it is determined how a system can
perform its use cases and whether there are any conflicts or conflicts between the lower level
functions (actions) while performing these behaviours.

In the process of defining functional interfaces, the basic interactions between the system and the
environment and the interconnections of the behaviours of the system components are defined.
The inputs containing the data received from the outside of the actions and the outputs containing
the data given out are determined.

Activity Diagrams created for the realization of the use cases that are desired to be in the system
during the verification and validation of the use case model are verified by animations.

In the process of ensuring traceability, which is the final stage of functional analysis, it is shown
that all requirements are covered by connecting requirements with Use case diagram components.
The connection relationship is provided by “satisfy”.

The Activity Diagram shows the dynamic aspects of a system and the action-to-action control
flow. It defines the basic interactions between the system and the environment, or the
interconnections of the behaviour of the components. An Activity Diagram allows you to
accurately transfer the most complex behavioural goals by creating different scenarios with
various types of action. The "SAS" Activity Diagram created for the "stabilized helicopter" use
case is as shown in Figure 11 with the data flow.

Computer Science & Information Technology (CS & IT) 13

_l

ModeSelectionInputs Get ATT Engage |
Switch status
ATTEngageSwitchStatus
Get SAS Engage
Switch status.
SASEngageSwilchStatus

t [Use Case] Stabilze helicopter [SAS]

L |
ATTENgageSwichStatus = = SASEngageSwitchstatus = 2R
T — T - —
mel | fnel |
! |
! |
L, e}

Stabilize in roll pitch,
yaw axes and
alleviate cross
coupling effects

SAS_Rol_cmd 5 et
[

SAS_Pitch_cmd

SAS_Yaw_cmd
P ;-snsvnud
E

-

Figure 11. Activity Diagram example from case study

As a result of the creation of Activity Diagrams, the big picture of the behaviour of the helicopter
automatic flight control system is revealed. The output of the functional analysis process is
considered to be the creation of the functional architecture of the system and its definition of the
functionality of the system. According to the ARP4754A document, the output of this process is
defined as the determination of the scenarios and actions required for the realization of the use
case of the system and the resulting functional requirements.[7]

Functional requirements define the functional infrastructure of the system, specify what the
system will do in detail, express the necessary characteristics of the system and the constraints in
the system solution. By obtaining functional requirements, the system requirements resulting
from the requirement analysis are revised. Some of the functional requirements that are the output
of the functional analysis process are as shown in Figure 12.

I ID l Automatic Flight Control System requirements ﬂ I Object Type

AFCS_18 ﬂSAS Engage Switch shall be a manual ON/OFF switch to establish * Functional
engagement of SA Functions. Requirement

AFCS_348 MThe SAS Engage Switch shall remain its status when the Trim Release ¥ Functional
Button is pressed or released. Requirement

AFCS_251 PMThe output commands of Autopilot Functions shall be summed Functional
separately for each principal control axis. Requirement

AFCS_70 MExcept where otherwise specified, 3 damping ratio of at least 0.3 critical ¥ Functional
shall be provided for nonstructural AFCF controlled mode responses. Requirement

Specified damping requirements apply only to the response characteristics
for perturbations an order of magnitude greater than the allowable residual

oscillation.
AFCS_292 The Pitch SA Function shall imit the closed loop control pitch angle * Functional
between %15 deg with 2 tolerance of +10%. Requirement

Figure 12. Functional requirements example from case study on DOORS

14 Computer Science & Information Technology (CS & IT)
3.3.3. System Architecture Design

The system architecture design process is the third phase of the Model-based systems engineering
process. System architecture is defined as the conceptual model that defines the structure,
behaviour and formality of the system.[8] In the system architecture design process, functional
requirements are classified, a structural model component specific to each class is created, and
functions are allocated to structural model components. Structural architectural and structural
requirements obtain as a result of this process. While performing the system architecture design
process in the case study, the path as follows:

Defining basic system functions

Classification of functions and creation of functional architecture

Creation of structural components from functional architecture

Allocation of system level operations to structural model components as shown in Figure
Creation of structural architecture

Obtaining structural requirements

The system architecture design process focuses on the development of a structural architecture
that can perform the necessary functions within the limits of the estimated performance
constraints. Structural models created in the system architecture design process,

show which parts of the system will consist,

show what the relationships between the parts will be,

define the details / features of the internal structure of the parts,
create the structural architecture of the system in a hierarchically.

Block Definition Diagram and Internal Block Diagram are created with SysML to define a
structural architecture. In this case study, the structural architecture of the system was created
hierarchically with different Block Definition Diagrams. Within the scope of this article, the
design of the “SAS” system architecture was handled step by step by taking the "Stabilized
helicopter" use case and the "SAS Activity Diagram" created during the functional analysis
process.

Block .I| Allocation - | Action

SAFunction / SAFunction (—Jgenerate SASCmd
SASEngagement SASEngagement (CJengageSAS

SASEngagement) SASEngagement (getSASEngage SwitchStatus
SASEngageSwitch 5ASEngageSwitch (—)get SASEngage SwitchStatus
SASEngageSwitch ' SA5Engage Switch (—check SASEngage Switch Status
SASReference . SASReference (CJgenerate SASReferences

Figure 13. Block and action allocation table

Computer Science & Information Technology (CS & IT)

15

sasen 1
«IramDOORS
AFCS_64 =Block® *[ramDOORS=
SASEngagement AFCS_353
ID = AFCS_B4
COpesors ID = AFC5_353
The 5AS shall automatically [<7 - --oooo | &= engageSAS(Jvoid
engage when ATT Engage straces | oetATTEngageSwichStatus()void -| The sas shall engage when
Switch is active. L > SAS En Switch is acti
Provg Forts pemO? gage Switch is active.
«fraces
ATT_Engage_Swich: Cockpk
43 SAS_Engage_Swixh:Cockpt
— o =il @ SAS_EngagementEngagementi |
AFCS_65 by —
ID = AFCS_65 Abetedtom ctraces 2 AFCS. 335
(—JengageSAS =
A ID = AFCS_335
The 545 shall remain (5) getsASEngageSwichStatus —
engaged with the SAS Engagement shall have
disengagement of the the engagement of each axis
ATT. y : which Roll (Roll SAS
- 5 straced Engagement), Pitch (Pitch
B &'t‘mce» «tracew y SAS Engagement) and Yaw
e g ' {Yaw SAS Engagement).
: L Vi
= IramDOORS= =lramDOORS= «fromDOORS=
AFC5_66 AFC5_275 AFC5_276
ID = AFC5_66 ID = AFC5_275 ID = AFC5_276

The SAS shall engage
automatically when
autopilot is engaged.

The SAS shall remain
engaged during an override
condition,

The SAS shall remain
engaged when autopilot is
disengaged.

Figure 14. SAS Block definition diagram

It provides a visual representation to manage architectural system complexity and create a
communication and coordination mechanism between components. The output of the system
architecture process is conceptual models that define the structure, behaviour and formality of the
system. These models are designed with Block Definition Diagrams. As a result of the creation of
Block Definition Diagrams, the structural architecture and structural requirements of the
helicopter automatic flight control system were revealed. With the obtain of structural
requirements, the system requirements that obtained as a result of the needs analysis were
revised.

Some of the structural requirements that are the output of the system architecture design process
are as shown in Figure 15.

| ID | Automatic Flight Control System requirements E | Object Type

AFCS_2 ﬁAFCS shall consist of Cockpit Control Inputs, Flight Contral Computer Structural
and Sensors models. Requirement

AFCS_6 ﬁCOCkpit Control Inputs shall consist of Flight Control Inputs and Mode ¥ Structural
Selection Inputs. Requirement

¥ Structural

AFCS_14 MMode Selection Inputs shall consist of switches/buttons (etc.) for each
autopilot modes engagement. Requirement

AFCS_33 BMAFCC shall provides helicopter flight control system that includes Autnpilot' Structural
Functions and Autopilot Logics. Requirement

Autopilet Functions shall have Stability Augmentation (SA), Attitude Hold ¥ Structural
(ATT), Rell Heading Hold, Side Slip Functiens. Requirement

AFCS_34 [MFCC shall have short term pitch, short term roll and short term yaw Structural
stability augmentation (SA) in all flight regimes. Requirement

AFCS_335 ’iSAS Engagement shall have engagement of each axis which Roll (Roll Structural

AFCS_37
>

*

SAS Engagement), Pitch (Pitch SAS Engagement) and Yaw (Yaw SAS Requirement
Engagement).

Figure 15. Structural requirements example from case study on DOORS

16 Computer Science & Information Technology (CS & IT)
3.3.4. Detailed System Architecture Design

The final stage of the process of Model-based systems engineering is the detailing of the system
architecture. The detailing of the system architecture aims to explain in which order the structural
architectural components of the system operate in accordance with the scenarios and to show the
communication between the components. The system architecture developed using SysML is
detailed with Sequence Diagrams. The process of obtaining Sequence Diagram in SysML is as
shown in Figure 16. [9]

b W . I
//; — T, \
T | ==
// Ao T_\k‘_-___ R T M1 I
T
Sub 1 g A1 suet
. r Z op)
4 . 1 opz ops [
> reqActvas3
— fose) \
- - 1 ! Cremrue
Al - op- -+ opd ops
paraliel op2()
A2 — —
P toms
opf| |5
Use Case Diagram
Activity Diagram

Sequence Diagram

Figure 16. Process of the obtaining Sequence Diagram

When creating Sequence Diagram, a scenario is selected firstly from Activity diagram. The
blocks in which the actions that are active in the selected scenario are allocated are added to the
Sequence Diagram as a "lifeline” model component. Communication between the "Lifeline"
model components is provided by messages. The detailing process of the system architecture was
carried out in all the Activity Diagrams that the output of the system functional analysis in the
case study. As an example of the system architecture detailing process, the helicopter automatic
flight control subsystem “SAS” is detailed with the Sequence Diagram as shown in Figure 17.

sd [Use Case] Stabikze helicopter [SAS]
Pilot ModeSelectioninputs. sasengswitch | | ModeSelectionlnputs. attengswitch | | Autopio tLogic::Engagements.saseng | | AutopiotLogic::References.sasref | | AFCS.sensor: | [AutopliotFunctions.sas Plant
SASEngageSwitch ATTEngageSwitch :SASEngagement SASReference Sensors unc
parale
amSASEngageswitch) |-
le checkSASEngageSwitchs tatus()
sendSASEngageSwitchStatus()
amATTEngageSwitch() |
¢ ChecKATTENgageSwitchStatus()

sendATTEngageSwitchStatus()

engageSAS()

-

sendSASEngagementStatus(

payalel

- generateSASReferences()

sendSASReference()
¢ GEtAtBtdeValue)
sendAttitudevakueQ
¢ SeRatevaiue(
sendRatevalue()
generateSASCmd()

.-

sendSASCmd()

Figure 17. Sequence Diagram example from case study

Computer Science & Information Technology (CS & IT) 17

During the system detailing process, the messages transmitted between the blocks in Sequence
Diagrams are examined and the interfaces of the subsystems are created. The interfaces are
shown in Internal Block Diagrams in SysML. The interface has been defined for all blocks
created in the system. The helicopter and AFCS system interface to be used in the design is
shown in Figure 18.

bd [Block] Simulazon [SmudatorculPort]

1 afcs:AFCS
_— l ant:h tﬂ
R T 1 feakcC
Cod@iTOFCC CodkpitToFCC FCCtoPlant ECCtoPlant Pimt
e S 1] [PR < B L 1] -
flo Sensor|
-3

Figure 18. Internal Block Diagram example from case study

Interface blocks of helicopter automatic flight control system is shown Figure 19.

T 7 T T TinterfaceBlocks 1 [7 77 TinterfaceBock» 1
| CockpitToFCC | FCCtoPlant |
[Seos T T T | ports

| @Fﬁd\tContmI:Figh(Cmb’ol

| {3 Coll_cmd_per:StublnterfaceBlock
| [{3{ModeSelection:ModeSelection

@Cyc_lat_cmd |_per:StublInterfaceBlock I
| @Cyc_lon_cmd |_per:StubInterfaceBlock |
| @Pedal_cmd |_per:StubInterfaceBlock |

f____Herchea_nocor____i

| FlightControl e e e e =]

[Gpors BN 1
@BeepTrim:BeepTrim Plant

| i Coll_per:StublnterfaceBlock L______;m_______l

| {3 Altitude_dt:StubInterfaceBlock
| @Ioas_lmotszsmblnnerfaceﬁlod(
@Ny _g:StublnterfaceBlock

|

| ¢ Cyc_lon_per:StublnterfaceBlock |
|

3|P_deg_s:StublnterfaceBlock I
|

|

|

|

| @pedal |_per:StublnterfaceBlock

|
{3 Cyc_lat_per:StublnterfaceBlock :
|
{3 TrimRelease_Button:StublnterfaceBlock |

| @Phi_deg:SubInterfaceBlodc

| @]Psi_deg:smblnterfaceﬂlod

| @Q_deg_szsmblnterfaceﬂod(
@R_deg_s:smblnterfaceslodc
@Theta_deg:smblntzrfaceﬁiod(

r T dinterfaceBlocks 7 |
BeepTrim

() Ports
I @thm_Down:SmblnherfaceBIod(|
| @Plld‘_up:su.blnherf’ace&od(|
I {3(Roll_Down:StublnterfaceBlock |
@ Roll_Up:StubInterfaceBlock
I {3 Yaw_Down:StublnterfaceBlock |
| @ Yaw_Up:StublnterfaceBlock |

r____:\te_rface_alock_»_____-|
Sensor |

() Ports I

@]mede_dtxsnbmterfacealock |

| [{3{Kias_knots:StubnterfaceBlock |
@]Ny _g:StublnterfaceBlock

| {34P_deg_s:StublnterfaceBlock |

| @Phn_deg:Sh.bInterfaceBlod(I

|

|

|

| s — — — | — | t— to— wo— s— s— st

l «interfaceBlocks |
ModeSelection

| {34Psi_deg:StublnterfaceBlock

| @Q_deg_s:SmbInterfaceBlod:
3R _deg_s:StubInterfaceBlock
{3 Theta_deg:StublnterfaceBlock

{3|ATT_Engage_Switch:StublnterfaceBlock I
| EsAs_Engage_Switch:StubinterfaceBlock |

!
|

| | () Ports
!

|

|

Figure 19. Interface block of AFCS case study

18 Computer Science & Information Technology (CS & IT)
4. CONCLUSION

The model-based systems engineering process covers the requirements and system architecture
stages of model-based design processes. Accordingly, requirements management, system
architecture management and model-based systems engineering design processes have been
developed.

Within the scope of the requirements management study, the requirements were defined in the
DOORS software, a checklist was created for the validation of the requirements, the requirement
was traceable, the requirement validation methods were defined, and the transfer methods were
developed to use the requirements in different software.

Within the scope of the system architecture management study, the model organization for the
helicopter automatic flight control system was realized in IBM Rational Rhapsody software with
using SysML.

The following were found in the model-based systems engineering design processes.

o As afirst stage the requirement analysis study, use case were revealed by reference to the
customer requirements and the requirements were associated with the use cases.

e As a second stage the system functional analysis study, functional requirements of the
system were revealed by developing functional architecture and functional models.

e Within the scope of the system architecture design study, structural requirements of the
system were revealed by developing structural architecture and structural models.

® Within the scope of the detailed system architecture design study, the system's operating
scenarios and system interfaces have been created.

With the model-based systems engineering approach and application of this study, a solution was
found to the main problems of traditional system engineering. Model-based systems engineering
approach is more systematic than traditional systems engineering but requires more preparation
before implementation. As a result, a case study has shown that it is a more efficient design
process for management and traceability.

5. FUTURE WORKS & LIMITATION

Similar to the work done in this article in the future, it can be applied in all aircraft design
processes. More detailed testing and verification can be done using an advanced simulation
infrastructure program. Traceability can be achieved by providing integration between programs
where designs in different disciplines are realized and systems engineering designs.

As a limitation of the study, according to the methodology applied in this study, the requirements
and system architecture stages of the model-based design stages are carried out for the automatic
flight control system.

ACKNOWLEDGMENT

The material is based upon work supported by Turkish Aerospace Modelling and Simulation
department. The authors would like to thank modelling and simulation co-workers for them
supports.

Computer Science & Information Technology (CS & IT) 19

REFERENCES

[1]
2]
[3]
[4]

[5]
[6]

INCOSE, Systems Engineering Handbook, INCOSE, 2004.

S. Team, Systems Engineering Manual, FAA, 2014.

Incose, Systems Engineering Vision 2020, Incose, 2007.

Karagoz, Esma & Reilley, Kevin & Mavris, Dimitri. (2019). Model-Based Approach to the
Requirements Analysis for a Conceptual Aircraft Sizing and Synthesis Problem. 10.2514/6.2019-
0498.

S. Friedenthal, A. Moore, and R. Steiner.OMG Systems Modelling Language Tutorial, 2009.

IBM, “IBM Knowladge Center,” IBM, [Online]. Available:
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.ibm.rhp.sysml.doc/topics/rhp_c
_functional_analysis.html. [Accessed 5 September 2020].

[7] SAE, “ARP4754 - Guidelines for Development of Civil Aircraft and Systems,” SAE, 2010.

[8] S.P.J.Holt, SysML for Systems Engineering 2nd Edition, 2013.

[91 H. Hoffmann, System Engineering Best Practices with the Rational Solution for Systems and
Software Engineering, IBM, 2009.

AUTHORS

Haluk Altay

He is a graduate of Yildiz Technical University Mechatronics Engineering addition a

student of M.Sc Istanbul Technical Universty Mechatronics Engineering. He has been

involved in academic research for the past two years and worked several projects for the

past three on modelling, flight mechanics and controls. He has experienced in Model

Based Systems Engineering, Flight Mechanics and Dynamics, Aircraft Design, System /
Identification at Turkish Aerospace. <

Muhammed Furkan Solmazgul

Furkan Solmazgil has been involved in model-based systems engineering projects since
2018. He is currently working as a design engineer at Turkish Aerospace. He graduated
from Istanbul Commerce University in Mechatronics Engineering.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Model-Based Systems Engineering, Automatic Flight Control System, SysML.

