
David C. Wyld et al. (Eds): MLIOB, SIPO, NET, DNLP, SOEA, AISCA - 2021

pp. 01-18, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111201

IDENTIFYING RANSOMWARE ACTORS

IN THE BITCOIN NETWORK

Siddhartha Dalal, Zihe Wang and Siddhanth Sabharwal

Columbia University, New York, USA

ABSTRACT

Due to the pseudo-anonymity of the Bitcoin network, users can hide behind their bitcoin

addresses that can be generated in unlimited quantity, on the fly, without any formal links

between them. Thus, it is being used for payment transfer by the actors involved in ransomware

and other illegal activities. The other activity we consider is related to gambling since gambling

is often used for transferring illegal funds. The question addressed here is that given temporally

limited graphs of Bitcoin transactions, to what extent can one identify common patterns

associated with these fraudulent activities and apply them to find other ransomware actors. The

problem is rather complex, given that thousands of addresses can belong to the same actor
without any obvious links between them and any common pattern of behavior. The main

contribution of this paper is to introduce and apply new algorithms for local clustering and

supervised graph machine learning for identifying malicious actors. We show that very local

subgraphs of the known such actors are sufficient to differentiate between ransomware, random

and gambling actors with 85% prediction accuracy on the test data set.

KEYWORDS

Ransomware Actors Identification, Graph Machine Learning, Local Clustering, Bitcoin

Network.

1. INTRODUCTION

Ransomware is a class of malicious software that, when installed on a computer, prevents a user

from accessing the computer usually through unbreakable encryption until a ransom is paid to the

attacker. In this type of attack, cybercriminals profit from the value victims assign to their
locked data and their willingness to pay a fee to regain access to them. Bitcoin is a popular

cryptocurrency used by ransomware actors to get ransom as it shields a person’s personal identity

by allowing them to transact using a Bitcoin address. Further, a bitcoin account holder (i.e., an
actor) can create and hide behind multiple bitcoin addresses onthefly. Many fraudulent actors

exploit this Bitcoin’s pseudo-anonymity for their nefarious purposes. Prominent recent

ransomware examples are Locky, SamSam, or WannaCry. As reported by Paquet-Clouston, et al

[1], the latter infected up to 300,000 victims in 150 countries and that their lower bound estimate
of the amount of bitcoin involved in ransomware transactions between 2013 to 2017 is morethan

22,967.94 bitcoins amounting to over a billion dollarsatthe current exchange rate of 1 BTC = $46,
491.11 [02/2021].

The goal of this investigation is to develop systematic ways to identify fraudulent actors in the

Bitcoin network through graph classification. This is done by collecting data from multiple public

sources on known ransomware addresses reported by their victims. These are used to generate

connected transaction graphs in a limited time window. Since an actor (i.e., an account holder) can
have many addresses, we identify the bitcoin addresses belonging to the same actor by a new

http://airccse.org/cscp.html
http://airccse.org/csit/V11N12.html
https://doi.org/10.5121/csit.2021.111201

2 Computer Science & Information Technology (CS & IT)

method of local clustering, create features from subgraphs of Actor-to-Transaction bipartite
graphs and identify other suspect ransomware actors using supervised machine learning. Figure 1

depicts the overall pipeline. Within the limitations discussed in this paper, we show that we can

identify ransomware and gambling actors compared to a random account with accuracy of around

85% on the test dataset.

Figure 1. Pipeline of the Approach: Acquisition, creation, wrangling and classification of data.

Transformations are indicated in blue boxes.

Specifically, Section 2 summarizes some of the previous work. Section 3 discusses the generation
of data by web scraping Bitcoin addresses that have been tagged as being a part of a scam by

other users in a number of public forums. Section 4 discusses and develops the corresponding

temporally limited transaction graphs and the corresponding local clustering strategies. Section 5
proposes ego-graphs generated for ransomware, gambling and random actors for analysis along

with several graph centrality metrics as features for supervised learning. Some data analysis is

described in Section 6. Strategy for the supervised learning is described in Section 7 with the

results of our analysis given in Section 8. Section 9 described limitations of our study and
suggests future directions, The final section, Section 10, gives conclusion along with a brief

discussion.

2. PREVIOUS WORK

Previous work on this topic can be divided in two parts. The first deals with how to cluster or link

various addresses owned by a single actor, and the second discusses ransomware payments.

Many of the so-called behavioral address clustering algorithms are heuristics based. Specifically,

Meiklejohn et al. [2] proposed two address-linking heuristics, namely (1) inputs spent to the same

transaction are controlled by the same actor and (2) change addresses are not reused. Change
addresses are commonly used by an account holder to preserve anonymity by creating multiple

addresses and transferring bitcoins between those addresses. Indeed, it is considered as a good

practice (Nakomoto [3]) to create a new address for transferring the remainder of bitcoins to this
newly created address after transferring money to another actor. Harrigan et al [4] highlight that

the clustering methods critically depend on the address reuse behavior. Goldfeder et al [5]

extends the heuristics to cover CoinJoin transactions. However, Kalodner et al [6]) found that

using these set of heuristics resulted in one super cluster of with 139 million addresses and many
clusters with over 20,000 addresses. This happens mainly because when taking transitive closure

of clusters, the errors are propagated across the entire bitcoin blockchain.

Another heuristic approach focuses on tracking IP-addresses, see Biryukov et al [7]. We do not

pursue this line of inquiry since the Bitcoin Blockchain doesn’t store the IP addresses; it has to be

Computer Science & Information Technology (CS & IT) 3

obtained by getting the log information from e-wallets or mempool. Further, these approaches
have a low success rate, from 11% to 60%, as described by Biryukov et al.

While we follow behavioral clustering ideas, we modify them in a number of ways including

local clustering. Specifics of algorithms are described in Section 4.

There have also been a number of attempts at using supervised learning to try to classify different

categories of actors. For example, Harlev et al [8] uses clustering provided by Chainalysis to
classify 434 clusters in different categories that include ransomware, Exchanges, mining pools,

gambling, etc. They use also various machine learning algorithms including decision trees,

boosting, random forests, etc. They report classification accuracy of 75% and higher. However,
since they used clustering provided by Chainalysis, it would not be possible to identify new

ransomware addresses without clustering. Further, since their reported results seem to be based on

training data with no cross-validation or test data, their results are likely to be highly optimistic and

overfitting (Hastie et al [9]).

Jordan et al [10] also consider a similar problem using graph motifs for classifying Exchanges,

Services, Gambling, etc. They mention accuracy of around 90%. The novelty of their approach is
the use of graph motifs to derive features for supervised machine learning. However, their

analysis doesn’t include ransomware actors. Further, their clustering algorithm uses only

transitive closure of input addresses. They do not take into account CoinJoin, Coinbase or burn
transactions. As mentioned in the clustering part earlier, this is likely to create many false

positives. Further, again the accuracy reported seems to be based only on training data. Zola et al

[11] also pursue motifs to do supervised learning. They improve results compared to a base model

by using cascading classifiers, which uses cascades across 1, 2 and 3 motifs. Their reported
results are impressive with accuracy score of up to 98%. However, again they do not consider

ransomware actors, nor does their clustering takes into account CoinJoin, change of address or

burn transactions.

An alternate approach based on deep learning has been proposed by Jung et al [12]. He

proposes the use of Graphical Convolutional Neural Net Models (GCN). Besides being a black

box, one of the major problems in using GCN is that each graph for GCN approach has to have
the same number of nodes, which is not the case here. Further, the work did not cluster the

addresses, and the reported accuracy of 72% is based on binary classification and only on training

data. Our results are better.

Encouraged by Jordan et al [10] and Zola et al [11], we pursue a more detailed approach. Our

contribution differ from them in a) our clustering algorithms are local and do take into account
CoinJoin, change of address and burn transactions; b) we use ego-graphs instead of motifs - ego-

graphs consider relationships between all the actors in the motif graphs, which include triangles,

c) our data set includes the ransomware category; d) our features set is based on various explainable

graph centrality metrics; finally e) our analysis is validated by using cross-validation as well as a
separate test dataset.

3. CREATION AND WRANGLING OF DATA

 3.1. Sources of Data

There were two key sources of data. First, sources that had addresses tagged as being associated
with ransomware, i.e., for our "ransomware" class. Second, a source that had a comparison set of

addresses that were not associated with ransomware, i.e. for our "random" and "gambling"

4 Computer Science & Information Technology (CS & IT)

classes. The random and gambling addresses are used as a comparison group for supervised
machine learning.

Before analyzing the transaction pattern of these addresses, we needed to compile all the Bitcoin

transaction data. It was downloaded from the Bitcoin Blockchain using Bitcoin Core [19] and we
then accessed the raw data files which contain the validated transactions. Our study included data till

July 2019 with 400,000,000 transactions and close to 40,000,000 addresses. The binary raw data

was converted to a more human accessible format for analysis using BlockSci [6], which is an in-
memory analytical database that allows for fast exploration over blocks and transactions due to

their sequential, append-only generation process. With this data we had access to the entire

transaction history for all addresses.

The first source consisted of creating a database of addresses of known ransomware actors.

People who have been victims or approached for ransom, often publish the bitcoin address where

bitcoins were asked to be sent as ransomware. Bitcoin WhosWho [21] and Bitcoin Abuse [22] were
the two main sites which have such user-submitted addresses. Besides these two sources, we

gathered information from the previously published literature [14] and law enforcement published

actions (e.g., SEC). Much of the work involved going to these websites and scrapping the relevant
information. All the addresses were collected in 2019.

The second source was Wallet Explorer [20]. It is a website that allows you to view the blocks and
the individual transactions inside that block. From there one can also view the addresses and

amounts involved in the transaction. The creator of the site Ales Janda wanted to associate

addresses with actors. To do this he registered with a variety of businesses that accepted Bitcoin and

transacted with those businesses. He then followed the Bitcoins he sent and catalogued which
"wallet bitcoins were merged with, or from which wallet it was withdrawn." [20]. He then

categorized each one of the businesses he catalogued addresses for into one of five categories:

Exchanges, Pools, Services/other, Gambling, and Old/historic. The addresses were collected from
Wallet Explorer in May 2019.

The Old/historic category contains many defunct businesses that early Bitcoin users used. The

addresses that are associated with these businesses have been catalogued and the transactions that
legitimate users had with these businesses have been web-scraped. Transactions associated with

this category are what we call our "Random" class. The reason we call it as such is simply because

the other businesses Janda compiled were all tagged with a specific category and these ones were
across many other miscellaneous categories.

The gambling addresses we have collected are all of the Bitcoin addresses that have sent or
received money from any of the associated gambling websites like CoinGaming, PocketDice, and

BitcoinPokerTables but are not directly tagged to those websites. These websites are primarily

designed so users can gamble using Bitcoin, however they sometimes have the added consequence

of allowing money laundering to occur as users can "clean" their stolen Bitcoin into cash [13].
Transactions associated with these gambling addresses are what we call our "Gambling" class.

In total we collected 143, 498 and 216 ransomware, random and gambling addresses.

 3.2. Graph Creation

 For analysis, we need to extract relevant data of ransomware, gambling and random addresses
from the Bitcoin Core. Bitcoin has three primary connected components: transactions, addresses and

bitcoin transferred. From these, transactions-address bipartite graph can be created. Transactions

are arranged in a set of sequentially linked blocks generated randomly approximately every 10
minutes (around 144 blocks per day). Each transaction has a set of input addresses, a set of output

Computer Science & Information Technology (CS & IT) 5

addresses and the amount of bitcoins transferred between them. There is also a transaction fee paid
to the miner- an address that created the block.

However, there is no input for the Coinbase transactions, which are algorithmic transfers of

bitcoins, one in each block to the corresponding miner.

 3.3. Transaction Graphs

In the simplest terms, the transaction graph consists of a directed acyclic graph (dag), T, A,W,

with transactions in the set T as nodes, input to output addresses in the set A as directed edges

between transactions, and the bitcoin transferred in the set W as edge weights. Except for the
transactions in the first block (the so-called genesis block) and Coinbase transactions, each

transaction node is connected to multiple previous transactions as input nodes. A transaction node

may not have an output node at a given time since there may be no transactions utilizing the output
addresses of that transaction as input address so far. Specifically, a directed edge from node X to

node Y means that an output address in X was an input address in Y and spent all of the Bitcoin

they received in X in Y.

Figure 2. Anatomy of Transaction Graph: the transaction on left is connected by two different addresses

(orange and blue) to two different transactions on right

Obviously, the transaction graph of the bitcoin transaction starts from the genesis block to the last

block being considered. However, our interest lies in the behavior of the entity represented by a

given address with the hope of identifying common patterns. Thus, we look at only the
transactions involving an address under consideration (a random, gambling or ransomware

address) and extend it iteratively to the transactions feeding the actor’s transaction and the

transactions being fed by the actor’s transactions. Towards that end, given an actor A, we identify the

first transaction TA involving that actor, and iteratively identify the transactions Tp feeding to TA and

transactions Tf being fed by it.

This defines children-parents relationship. This process is followed iteratively taking transitive

closure of all the children and parent transactions of Tp and Tf in the set of all transactions T.

Though this limits the cardinality of the newly formed transaction set TA corresponding to an

address A, the beginning of the chain can still reach the genesis block or Coinbase transactions.

TA can be further reduced for our problem. Based on looking at the behavior of a number of

6 Computer Science & Information Technology (CS & IT)

ransomware actors in their corresponding transaction graph TA, it was felt that just like many

other criminals, the ransomware artist, after receiving the payment would rapidly make a

succession of transactions to other addresses to make tracing difficult. Thus, it was decided to
concentrate only on temporally local behavior of the address in ±n blocks. Specifically, for

defining this local behavior, we restrict TA further from our recursion by using the following 3

rules.

1. Given a first transaction TA in TA by the address A under consideration, let the set TA,n in TA

represent all the transactions in blocks ±n height away from the block containing the

transaction TA. For example, if transaction TA was in block 10, 000 then the set TA,n represents
all the transactions between blocks 10, 000 ±n.

2. We further restrict TA,n when the output side is an address belonging to an exchange or

gambling business as identified by Wallet Explorer. We do this because the children

transactions links of the exchange node have many actors that have nothing to do with each

other. The analogy is with a bank or a casino; if an actor was to deposit money in the bank or
buy chips at the casino, we do not want to follow all the other actors who dealt with the bank

or redeemed chips at the casino as they aren’t necessarily linked to the actor of interest.

3. As an exception to the stopping criterion 1, we do not follow a Coinbase transaction

backward, wherea miner is awarded new bitcoins since there are no parent transactions.

Besides these criteria, we restricted TA,n further as stated below:

 Non-standard Scripts. There were several cases that Blocksci or various other explorers could

not parse the address and would return a NaN, which can result in a situation that the output of

source transaction or the input of the destination transaction or both are NaN. In this situation,
in order to prevent the loss of information, we created dummy addresses to replace the NaN,

unless we found an explorer which could parse the script. In that case we manually inserted the

correct address.

 Proof of Burn. OpReturn transactions where an address may burn bitcoin to save a data item on

the blockchain were assigned a string ’burn’ to replace the NaN.

 CoinJoin Transactions. For the Actor-to-Actor graph creation, we need to identify mixing
CoinJoin transactions. For more details on CoinJoin and other mixing transactions we refer to

[15]. Given the new services like Wasabi [23] and Samorai [24], the older proposed

identification rules do not work. We empirically modified rules used by BlockSci to tag
CoinJoin transactions with the following rules.

o If the transaction has less than 2 input or 3 output addresses, it is not a CoinJoin.

o if the number of input addresses is smaller than the half of the number of the output

addresses, the transaction is not a CoinJoin.

o if the number of the output addresses is less than 6 and all output amounts are equal, the
transaction is considered a CoinJoin.

o if the number of the output addresses is more than 6, the transaction is considered

CoinJoin if at least 5 output amounts are equal.

In summary, TA,n is the connected subgraph of the first transaction involving the actor A within n
blocks either side with the exceptions described in the previous paragraphs.

For building the weighted transaction graphs, each of the edge of transaction graph had weight
corresponding to transacted bitcoins. This required the information on the amount of input and

output bitcoins and transaction fees in each transaction, maintaining the equilibrium - namely:

Computer Science & Information Technology (CS & IT) 7

Input_amount = output_amount + transaction fees

As an example of TA,n Figure 3 depicts a sample of the directed transaction graph emanating from the

Actor ”12HaVrpXkLr2UnkM f 6X 9b on both sides. For ease of viewing all the self-loops have

been removed, multiple edges have been collapsed and with no weights.

Figure 3. Actor 12HaVrpXkLr2UnkMf6X9bY11cuNrZUdUnV Transactions

4. CREATION OF LOCAL CLUSTERING AND ACTOR-TO-ACTOR GRAPHS

Since we are interested in the behavior of an actor, we need the corresponding actor-to-actor
graph (not address-to-address graph). There are several difficulties with this. The main one lies with

identification of the set of all addresses used by an actor. This is mainly, as mentioned earlier, due

to bitcoin network allowing an account holder to create multiple bitcoin addresses on the fly. For
simplicity we call the set of all addresses owned by an actor as an entity set and the corresponding

graph is called an entity graph or an Actor-to-Actor graph.

As it is widely accepted, any address clustering scheme is imperfect, and ground truth is difficult to

obtain on a large scale, since it requires interacting with service providers. Many other heuristics

are possible, including those that account for the behavior of specific wallets. In our experiment

with the data going to July 2019, when applying such heuristics to the entire blockchain, we got
one super cluster containing more than 90% of addresses. This is primarily due to tumblers (the

services which mix bitcoins) and CoinJoin kinds of transactions where multiple parties combine

their transactions to preserve their anonymity. This is compounded by misattribution of the
change of address.

We considered several modifications to the basic logic of behavioral clustering. But, when
applied globally, all of them have exceptions which make a large number of false unions resulting

8 Computer Science & Information Technology (CS & IT)

in large clusters due to transitive closures. To limit potential for wrong clusters which gets
propagated across the entire bitcoin blockchain, we adopt a different strategy of creating local

clusters since our objective is mainly to identify scam artists who try to move bitcoin in a short

period of time soon after starting their ransomware related scam. As discussed by Kharraz et al

[16], just like any other crimes, ransomware artists move ransomware payments as quickly as
possible. Thus, we decided to apply the clustering algorithm discussed earlier only locally within

the temporal limit of n=±144 blocks; basically within ±1 day.

We also apply somewhat different logic to CoinJoin and other transactions as described in the

previous section. We may still have some false positives, but we will never have super clusters

due to transitive closure. Any large clusters effects will be felt only within a particular local graph
and not globally.

Specifically, we use the following rules:

1. Inputs spent to the same transaction are controlled by the same actor, thus, the entity set is the

union of all those addresses.
2. If there is only one change address, identified by it never being used prior to the current

transaction, consider it as a part of the input address set.

3. Exceptions to the rules 1 and 2 is when a transaction is identified as CoinJoin. In that case do
not take a union.

The pseudo-code for the clustering process is given below.

Algorithm 1 Generate Local Cluster

for all transactions in the graph do

if this is a CoinJoin transaction then

assign each input and output addresses as separate clusters.

else
if there is only one new address in output addresses of this transaction assign all input addresses

and output addresses as one cluster.

else
assign all input addresses as one cluster;

assign each input and output addresses as separate clusters.

end if end if

end for
After collected all address-cluster mapping, merge the mapping till there is only one cluster for

each address

For the weighted graph analysis, we need to find the bitcoin transfer between addresses. Since the
bitcoin transfer is defined between the sets of input addresses and output addresses, there is no

exact way to allocate the amount between a given input address and an output address unless one of

the sets has cardinality 1. We approximate the transfer by a proportional allocation rule. Namely,

given a transaction with input addresses: I1, …, Ix; input amounts: IA1, …, Iax; output addresses:

O1, …, Oy; and output amounts: OA1, …, Oay, the edge weight from Ii to Oj is computed by the

following formula: (Iai/ΣIAk)*Oaj, which is further adjusted by the transaction fee. This is an

approximation. For Actor-to-Actor graph, the weights are the sum of all individual weights of the
corresponding addresses.

The development described so far allow us to form Actor-to-Actor weighted graphs. Some of

these graphs after clustering had only a small number of nodes and were deleted. These were

Computer Science & Information Technology (CS & IT) 9

further sub-divided in training and test sets of 328 and 82 graphs (80−20%), respectively, for
supervised learning.

5. GRAPHS AND CENTRALITY FEATURES

 5.1. Subgraphs

Recall that the following the logic of the last sections, we consider the locally clustered Actor-to-

Actor graph from the connected transaction graph TA,1 for an actor A within ±144 blocks (±1 day).

The subgraph of all addresses within TA,1 is referred to simply as whole graph. For additional

analysis, we take several different kinds of subgraphs. Specifically, since our primary interest lies

in the actor under consideration, we created Ego subgraphs for the actor. Ego graph of order n of
a node is the subgraph formed by the nodes that are within the neighborhood of order n of the

node without considering the direction of the edges. Ego graphs are richer than standard motifs

since they also consider relationships between neighbors. Further, another set of subgraphs, called

simple graphs were obtained by removing loops of the nodes to itself, and collapsing multiple
edges to one edge. These subgraphs are considered since it is expected that the actor’s footprints

would be most visible in its direct transaction with other nearby actors. For example, the

ransomware actor’s footprints would be most visible in its interactions with the victims and other
nearby actors and co-conspirators. For further analysis we only considered ego1, ego2, ego3 and

the corresponding versions of simple graphs.

 5.2. Centrality features

For each of the subgraphs discussed above, we extracted a number of graph-based features:

i. Basic Statistics: # of Vertexes, # of Edges, Total bitcoins, Loops, Degree, Neighborhood size

ii. Centralities: Normalized Closeness, Betweenness, Page Rank, Cluster Coefficient, Coreness,
Hub and Authority

Definitions of each can be found in igraph [26] with more details in article [17]. Some are overall

graph parameters; the rest are restricted to the node of the actor under consideration. A number of
variants of these were considered where it made sense including weighted, unweighted and

directed. The creation of graph and extraction were all carried out by using Python igraph library

[26].

The task of computing graphs and its features was computationally intensive. For efficiency

reasons, we did not consider the graphs larger than one million unique addresses or more than 1/2

million transactions. As mentioned earlier, whole graph with only a small number of nodes and the
corresponding ego graphs were also removed, Finally, to balance the classes better a random

sample of size 155 was taken from random graphs. An 80-20 split between training and test data

with stratification resulted in the training set of 328 whole graphs (124 random, 80 ransom,124
gambling), and the test set of 82 whole graphs (31 random, 20 ransom, 31 gambling).

6. EXPLORATORY DATA ANALYSIS

In this section, we describe an exploratory analysis on some of the features generated in section 5.

Here, we used the ’boxen plot’ which centers a distribution at its median line; each successive level

outward contains half of the remaining data until it reaches to the outlier level. For details, see

seaborn [27].

10 Computer Science & Information Technology (CS & IT)

(a) # of vertices (b) # of edges

Figure 4. whole-simple graph

Figure 4 shows the number of vertices and edges in the whole-simple Actor-to-Actor graphs.
Recall that the whole graph is based on recursion of all connected transactions associated within 2

days of the actor. Thus, these graphs could be skinnier than the graphs over two days depending upon

the level of connections of the actor. We can see that for ‘random’ and ’gambling’ graphs, the
distribution does not differ a lot. However, there are many extreme values in ’ransom’ graphs and

it is flatter compared to other two. It reflects the nature of the ‘ransomware’ class where actors

will try to obfuscate their transaction patterns through complicated laundering, which also reflects
that the local clustering algorithm performs well.

For brevity, the rest of the analysis highlights only Ego-1-simple graphs for a few important

features found in the Results section since they are the simplest graphs of other actors who are in
close touch with the Actor. The analysis looks at the marginal distribution of the selected features

across all the actors separated by ransomware, random and gambling categories.

PageRank, also known as Google Rank, is a way of measuring the importance of website pages. The

assumption is that more important websites are likely to receive more links from other websites.

For more definition, see PageRank [28]. As seen in Figure 5, the ’ransom’ clusters tend to have
a higher PageRank, which means it is likely to receive more transactions from other clusters. This

makes senses when the ransomware attack is one wave after another and usually sent to lots of

users within a short period of time. Also, PageRank of random actor on average seems to be

lower than ransomware actors indicating that the ransomware actors are more often recipients of
funds.

Figure 5. Page-Rank

Computer Science & Information Technology (CS & IT) 11

Figure 6. Closeness

The closeness centrality of a vertex measures how easily other vertices can be reached from it (or

the other way: how easily it can be reached from the other vertices). For definition, see closeness
[26], [31]. The weighted-IN closeness of ego-1 simple graphs is shown in Figure 6. The

’gambling’ tends to have less centrality, which shows similar pattern as shown in Figure 5. This

suggests that gambling actors are not closely connected to other accounts. They have many more

outliers indicating that there are few very large gamblers and possibly the distribution is scale-
free.

Figure 7. Coreness normalized by # of vertices

In Figure 7, we show the coreness(All). The k-core of graph is a maximal subgraph in which each

vertex has at least degree k. The coreness of an Actor is k if it belongs to the k-core but not to the
(k+1)-core. For the definition, see coreness [29]. The coreness across graph is normalized by the

number of vertices since all the graphs have different number of vertices. From the figure, as

before, it can be noticed that the gambling graphs have a relatively low coreness.

Finally, Figure 8 shows, as one would have expected that cluster coefficients for gambling class is

much smaller and followed by ransomware class since both of those classes are directly involved

in possibly criminal activities and they would minimize their interactions with actors which are
more connected with each other.

12 Computer Science & Information Technology (CS & IT)

Figure 8. Unweighted Cluster Coefficient, Normal Scale

The comparative analysis of the marginal distributions of features reported so far suggests that

different classes behave somewhat differently from each other. For example, gambling actors

behavior is rather different than other actors in closeness, PageRank, cluster-coefficient and
coreness. Further, the PageRank of the ransomware actors is higher. This analysis indicates that

these features could be good candidates for any machine learning model.

7. MACHINE LEARNING ON ACTOR-ACTOR GRAPHS

For the purposes of supervised learning, the extracted whole graphs were divided in testing (20%)
and training (80%) graphs stratified by their categories. Further, for each whole graph only the

subgraphs of ego-graph 1, ego-graph 2, ego-graph 3 and their simple counterparts were extracted

for analysis because of their proximity to the actor under consideration. Only subsets of features

given in Table 1 were extracted from each of these graphs. The subset was obtained by keeping
only one of each set of highly correlated features. The graphs and the corresponding number of

features are shown in Table 1 below.

Table 1: Centrality Features Considered

 ego3 ego3-simple ego2 ego2-simple ego1 ego1-simple

of features 11 16 13 16 12 11

7.1. Models

We consider supervised learning in three stages shown in Table 2.

Table 2: Modeling Strategy/Stages

Learning Initial Intermediate Final

Type Multiple Classifiers Stacking Bagging

In the Initial stage multiple classifiers were fitted to each of the 6 sub-graphs. Since each
classifier has different strengths and weaknesses in different regions of the feature space, as an

intermediate model, we used ensemble learning technique of Stacking [18] to improve.

Specifically, the stacked model uses the predicted probabilities of each class by each classifier as
features and predicts the probability of each class by using a simple model (logistic in our case).

Even though we have 3 classes, since the probabilities add up to 1 for each of the six classifiers,

Computer Science & Information Technology (CS & IT) 13

there are 12 such linearly independent features. This process is depicted in Figure 9 with the six
different base classifiers we used for creating the ensemble.

Figure 9. Stacking Model

In the final Stacking-Bagging stage, we combine the results across different subgraphs by
creating a meta classifier (or called Final Classifier). It is a simple classifier (in our case logistic) that

uses the probabilities of each class in the subgraph stacked models as the feature set and fuses

them. This is analogous to bagging since we have 6 different data sets (subgraphs) each
containing estimated probabilities of each class. Just like in stacking we will have 12 features for

the six types of sub-graphs. The final attribution of the class is given to the class with highest

probability by the meta-classifier. This process is depicted in Figure 10. We used the predicted
probabilities from 6 graphs as new features and trained a final meta-classifier. We called this as

’stacking-bagging’ model.

To motivate efficacy of the stacking-bagging model, consider the simple fusing by averaging the
probabilities across 6 estimated probabilities for each data set. In that case, Mean Squared Error

(MSE) = Bias^2 +Variance. Each component on the bias term is roughly the same constant since

they are using the same type of estimators. The second
term=average_variance/6+∑Covariances/6. In our case, since each estimated probability use

different graphs, it is expected that the covariances would be relatively negligible. Thus, the

MSE will be substantially less compared to non-fusing.

Figure 10. Stacking-Bagging Model

14 Computer Science & Information Technology (CS & IT)

We used the cross-validation score on balanced-accuracy as our objective and finally ran our
model on our test set.

7.2. Cross Validation and Efficacy Metrics

To implement the strategy outlined in 6.1, and to measure its efficacy we used the training data

with cross validation for model selection. Specifically, when training the classifiers with grid-
search and cross-validation, we used 5-folds with stratification on labels and 80% of the data for

train-validation and 20% for testing. For the meta-classifier in the stacking model and for the

stacking-bagging model, we used Logistic Regression.

Since we have a multi-label classification problem, we used balanced accuracy or simply

Accuracy in tables), weighted precision (as Precision in tables), and weighted recall (as Recall in

tables) as our evaluating metrics. We refer to them simply as accuracy, precision and recall. For
definitions see scikit-learn [25].

8. RESULTS

Table 3 gives cross-validated accuracy on training data of the 6 base classifiers using the cross-
validation on the training data. Gradient boosting and Random Forest models seem to outperform

others with around 75% to 80% balanced accuracy. Taking a deep dive on feature importance,

Figure on the left side of Table 3 shows the 11 features included in Random Forest model for the
ego-1 simple graph. Besides the commonly used graph centrality features, it includes less used

features like coreness and cluster coefficient.

Table 3: Feature Importance of Ego-1-simple graph

Table 4: Balanced Accuracy of Classifiers for each graph

 ego-1-s ego-1 ego-2-s ego-2 ego-3-s ego-3

Naive Bayesian 0.4148 0.4324 0.5514 0.4034 0.5189 0.4047

Random Forest 0.7346 0.7924 0.7596 0.7966 0.7973 0.8171

Gradient Boosting 0.7255 0.7709 0.7456 0.7651 0.7829 0.8107

Adaptive Boosting 0.6911 0.6937 0.7111 0.7160 0.7444 0.7386

Logistic Regression 0.6162 0.6272 0.5862 0.6000 0.6101 0.5962

SVM 0.6126 0.6271 0.5997 0.6031 0.6298 0.5908

Stacking these models produces cross-validated balanced accuracy between 96% and 99%, a

Rank Feature Value

1 Closeness(wtd/out) 0.158

2 sum of weights 0.150

3 Closeness(uwtd/out) 0.126

4 # of vertices 0.119

5 Closeness(wtd/in) 0.101

6 cluster coefficient 0.092

7 Closeness(wtd/all) 0.081

8 Closeness(uwtd/in) 0.072

9 Coreness(all) 0.047

10 Authority 0.038

11 Coreness(IN) 0.016

Computer Science & Information Technology (CS & IT) 15

substantial improvement. It is interesting to note that ego-simple graphs tend to outperform their
corresponding ego graphs.

Table 5: Stacking Model: Performance by Cross-Validation

 Accuracy Precision Recall

Ego-1-simple 0.9932 0.9942 0.9939

Ego-1 0.9890 0.9910 0.9909

Ego-2-simple 0.9602 0.9661 0.9634

Ego-2 0.9662 0.9690 0.9664

Ego-3-simple 0.9917 0.9941 0.9939

Ego-3 0.9743 0.9735 0.9724

In the final stage, we build a bagging-stacking model on all six types of ego subgraphs leading to

the cross-validated accuracy of 1 and 85% on the test set as shown in Table 6. The corresponding
confusion matrix is given in Figure 11.

Table 6: Final Model Accuracy, Precision and Recall

 Cross-Validation Test

Accuracy 1 0.8537

Precision 1 0.8566

Recall 1 0.8537

As seen from the above table, the final model outperformed the stacking model as measured by

cross-validated accuracy of 1. Figure 11 gives the corresponding confusion matrix for the final
model on the test set. There is no systematic confusion evident in the confusion matrix.

Figure 11. Confusion Matrix of the test data

9. LIMITATIONS AND FUTURE WORK

Though our results indicate high accuracy, further improvement should be possible by improving
clustering algorithms, better ways to associate actors involved with non-standard scripts and

16 Computer Science & Information Technology (CS & IT)

Coinjoin transactions. Further, our data set is limited consisting of around 400 graphs, each with
thousands of nodes. Further, our ground truth is based on what is user- reported. Getting more

data which is more reliable would improve accuracy. Also, given that we are using stacking, it is

hard to interpret the final model. More interpretative models using a different machine learning

approach may be feasible. Finally, though we have not undertaken it here, it would be worthwhile
trying to identify actors from TOR since they are also likely to be involved in illegal activities

[30]. Another direction to explore would be to see how these techniques can be generalized to

other alternative crypto-currencies.

10. CONCLUSIONS

This paper addresses the key question of how to identify miscreants who are involved in

ransomware and in gambling compared to random actors. The problem is difficult due to the
pseudo-anonymity of the Bitcoin network. Specifically, the question addressed here is that given

temporally limited graphs of Bitcoin transactions, to what extent can one identify common

patterns associated with these fraudulent activities and apply them to find other similar actors. The
singular contributions of this paper include a) extraction and creation of transaction graphs

associated with the miscreant actors, b) clustering all the nodes of such graphs in common entities

controlling those accounts while taking into account different kinds of transactions, c) using
supervised learning novel algorithms to create models based on actor to actor ego graphs that

identify similar miscreants, d) validating the models on cross validated data with accuracy of 1

and on the test data set of around 85%.

11. ACKNOWLEDGEMENTS

We acknowledge Professor Lazaros Gallos, Jianqiong Zhan, Vatsal Randhar and Xiaoqi Wang for

helpful discussions and contributions. Financial support from School of Professional Studies,
Data Science Institute and Statistics Department at Columbia University is also gratefully

acknowledged. Computing support was provided by Habanero High Performance Computing

Cluster at Columbia University

REFERENCES

[1] Paquet-Clouston M, Haslhofer, B et al. “Ransomware payments in the Bitcoin ecosystem”, Journal

of Cybersecurity (2019).

[2] Meiklejohn, S. et al. “A fistful of bitcoins: characterizing payments among men with no names.”

Proceedings of the 2013 conference on Internet measurement conference (2013).

[3] Nakamoto, Satoshi. “Bitcoin: A Peer-to-Peer Electronic Cash System.” (2009).
[4] Harrigan, M. and Christoph Fretter. “The Unreasonable Effectiveness of Address Clustering.” 2016

Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,

Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and

Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (2016): 368-373.

[5] Goldfeder, Steven et al. “When the cookie meets the blockchain: Privacy risks of web payments via

cryptocurrencies.” Proceedings on Privacy Enhancing Technologies 2018 (2018): 179 - 199.

[6] Kalodner, Harry A. et al. “BlockSci: Design and applications of a blockchain analysis platform.”

ArXiv abs/1709.02489 (2020).

[7] Biryukov, A. et al. “Deanonymisation of Clients in Bitcoin P2P Network.” Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security (2014)

[8] Harlev, Mikkel Alexander et al. “Breaking Bad: De-Anonymising Entity Types on the Bitcoin
Blockchain Using Supervised Machine Learning.” HICSS (2018).

[9] Hastie, T., Tibshirani, R., Friedman, J. (2008), The Elements of Statistical Learning,

Springer

[10] Jourdan, M. et al. “Characterizing Entities in the Bitcoin Blockchain.” 2018 IEEE International

Computer Science & Information Technology (CS & IT) 17

Conference on Data Mining Workshops (ICDMW) (2018): 55-62.

[11] Zola, Francesco et al. “Cascading Machine Learning to Attack Bitcoin

Anonymity.” 2019 IEEE International Conference on Blockchain (Blockchain) (2019): 10-17.

[12] Jung, K. "Bitcoin Ransomware Detection with Scalable Graph Machine Learning", YOW! Data

Conference (2019).
[13] Fanusie, Y and Robinson, T. “Bitcoin Laundering: An Analysis of Illicit Flows into Digital Currency

Services,” Foundation for Defense of Democracies (2018),

http://defenddemocracy.org/content/uploads/documents/MEMO_Bitcoin _Laundering.pdf.

[14] Conti, M. et al. “On the Economic Significance of Ransomware Campaigns: A Bitcoin Transactions

Perspective.” Comput. Secur. 79 (2018): 162-189.

[15] Camino, R. et al. “Finding Suspicious Activities in Financial Transactions and Distributed Ledgers.”

2017 IEEE International Conference on Data Mining Workshops (ICDMW) (2017): 787-796.

[16] Kharraz, Amin et al. “Cutting the Gordian Knot: A Look Under the Hood of Ransomware Attacks.”

DIMVA (2015).

[17] Saxena, Akrati and S. Iyengar. “Centrality Measures in Complex Networks: A Survey.” ArXiv

abs/2011.07190 (2020).

[18] Wolpert, D.. “Stacked generalization.” Neural Networks 5 (1992): 241-259.
[19] “Download Bitcoin Core.” Bitcoin, bitcoin.org/en/download.

[20] WalletExplorer.com: Smart Bitcoin Block Explorer, www.walletexplorer.com/.

[21] Bitcoin Address Lookup, https://bitcoinwhoswho.com/

[22] Bitcoin Abuse Database, www.bitcoinabuse.com/.

[23] Wasabi Wallet - Bitcoin Privacy Wallet with Built-in CoinJoin, www.wasabiwallet.io/.

[24] Samourai Wallet, samouraiwallet.com/.

[25] “3.3. Metrics and Scoring: Quantifying the Quality of Predictions.” Scikit, scikit-

learn.org/stable/modules/model_evaluation.html# balanced-accuracy-score.

[26] “The Network Analysis Package.” Igraph, igraph.org/.

[27] “Seaborn Boxenplot.” Seaborn.boxenplot - Seaborn 0.11.1 Documentation,

seaborn.pydata.org/generated/seaborn.boxenplot.html#seaborn.boxenplot.
[28] “PageRank.” Wikipedia, Wikimedia Foundation, 20 Mar.

 2021, en.wikipedia.org/wiki/PageRank.

[29] Batagelj, V. and Matjaz Zaversnik. “An O(m) Algorithm for Cores Decomposition of Networks.”

ArXiv cs.DS/0310049 (2003)

[30] Nabki, Mhd Wesam Al et al. “Classifying Illegal Activities on Tor Network Based on Web Textual

Contents.” EACL (2017).

[31] Freeman, L.C. “Centrality in Social Networks I: Conceptual Clarification.” Social Networks

(1979), 1, 215-239.

http://defenddemocracy.org/content/uploads/documents/MEMO_Bitcoin
http://www.walletexplorer.com/
http://www.bitcoinabuse.com/
http://www.wasabiwallet.io/

18 Computer Science & Information Technology (CS & IT)

AUTHORS

Siddhartha Dalal is Professor of Practice at Columbia University. He received his MBA

and PhD from University of Rochester. Prior to joining Columbia, he was the Chief Data

Scientist and Senior VP at AIG, CTO at RAND Corporation, VP of Research at Xerox and

Chief Scientist and Executive Director at BellLabs/Bellcore. He also advised the US Army

and DoD on technologies. He has over 100 peer-reviewed publications, patents, and

monographs covering the areas of risk analysis, medical informatics, Bayesian statistics and

economics, image processing, and sensor networks. He has received several awards including from IEEE,
ASA, and ASQ, notably for his work on Space Shuttle Challenger disaster and for managing software risks.

The US Army has awarded him the Meritorious Civilian Service Medal.

Zihe Wang is currently a research staff associate at Columbia University. He completed his

Master’s in data science from Columbia University in 2020 and his Bachelors in Statistics

and Computer Science from University of Illinois at Urbana-Champaign in 2019.

Siddhanth Sabharwal is currently a first-year PhD student in the Statistics department at

University of Illinois at Urbana-Champaign. He completed his Master’s in Statistics from

Columbia University in 2019 and his Bachelors in Statistics and Computer Science from

University of California Davis in 2017.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	1. Introduction
	2. Previous Work
	3.1. Sources of Data
	3.2. Graph Creation
	For analysis, we need to extract relevant data of ransomware, gambling and random addresses from the Bitcoin Core. Bitcoin has three primary connected components: transactions, addresses and bitcoin transferred. From these, transactions-address bipar...
	3.3. Transaction Graphs
	4. Creation of Local Clustering and Actor-to-Actor Graphs
	else
	else (1)
	end if end if

	5.1. Subgraphs
	5.2. Centrality features
	6. Exploratory Data Analysis
	7. Machine Learning on Actor-Actor Graphs

	7.1. Models
	7.2. Cross Validation and Efficacy Metrics
	8. RESULTS
	9. Limitations and Future Work
	10. Conclusions
	11. Acknowledgements
	Authors

