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ABSTRACT 
 

Due to the pseudo-anonymity of the Bitcoin network, users can hide behind their bitcoin 

addresses that can be generated in unlimited quantity, on the fly, without any formal links 

between them. Thus, it is being used for payment transfer by the actors involved in ransomware 

and other illegal activities. The other activity we consider is related to gambling since gambling 

is often used for transferring illegal funds. The question addressed here is that given temporally 

limited graphs of Bitcoin transactions, to what extent can one identify common patterns 

associated with these fraudulent activities and apply them to find other ransomware actors. The 

problem is rather complex, given that thousands of addresses can belong to the same actor 
without any obvious links between them and any common pattern of behavior. The main 

contribution of this paper is to introduce and apply new algorithms for local clustering and 

supervised graph machine learning for identifying malicious actors. We show that very local 

subgraphs of the known such actors are sufficient to differentiate between ransomware, random 

and gambling actors with 85% prediction accuracy on the test data set. 
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1. INTRODUCTION 
 

Ransomware is a class of malicious software that, when installed on a computer, prevents a user 

from accessing the computer usually through unbreakable encryption until a ransom is paid to the 

attacker. In this type of attack, cybercriminals profit from the value victims assign to their 
locked data and their willingness to pay a fee to regain access to them. Bitcoin is a popular 

cryptocurrency used by ransomware actors to get ransom as it shields a person’s personal identity 

by allowing them to transact using a Bitcoin address. Further, a bitcoin account holder (i.e., an 
actor) can create and hide behind multiple bitcoin addresses onthefly. Many fraudulent actors 

exploit this Bitcoin’s pseudo-anonymity for their nefarious purposes. Prominent recent 

ransomware examples are Locky, SamSam, or WannaCry. As reported by Paquet-Clouston, et al 

[1], the latter infected up to 300,000 victims in 150 countries and that their lower bound estimate 
of the amount of bitcoin involved in ransomware transactions between 2013 to 2017 is morethan 

22,967.94 bitcoins amounting to over a billion dollarsatthe current exchange rate of 1 BTC = $46, 
491.11 [02/2021]. 

 
The goal of this investigation is to develop systematic ways to identify fraudulent actors in the 

Bitcoin network through graph classification. This is done by collecting data from multiple public 

sources on known ransomware addresses reported by their victims. These are used to generate 

connected transaction graphs in a limited time window. Since an actor (i.e., an account holder) can 
have many addresses, we identify the bitcoin addresses belonging to the same actor by a new 
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method of local clustering, create features from subgraphs of Actor-to-Transaction bipartite 
graphs and identify other suspect ransomware actors using supervised machine learning. Figure 1 

depicts the overall pipeline. Within the limitations discussed in this paper, we show that we can 

identify ransomware and gambling actors compared to a random account with accuracy of around 

85% on the test dataset. 

 

 

Figure 1. Pipeline of the Approach: Acquisition, creation, wrangling and classification of data. 

Transformations are indicated in blue boxes. 

 

Specifically, Section 2 summarizes some of the previous work. Section 3 discusses the generation 
of data by web scraping Bitcoin addresses that have been tagged as being a part of a scam by 

other users in a number of public forums. Section 4 discusses and develops the corresponding 

temporally limited transaction graphs and the corresponding local clustering strategies. Section 5 
proposes ego-graphs generated for ransomware, gambling and random actors for analysis along 

with several graph centrality metrics as features for supervised learning. Some data analysis is 

described in Section 6. Strategy for the supervised learning is described in Section 7 with the 

results of our analysis given in Section 8. Section 9 described limitations of our study and 
suggests future directions, The final section, Section 10, gives conclusion along with a brief 

discussion. 

 

2. PREVIOUS WORK 
 

Previous work on this topic can be divided in two parts. The first deals with how to cluster or link 

various addresses owned by a single actor, and the second discusses ransomware payments. 

 
Many of the so-called behavioral address clustering algorithms are heuristics based. Specifically, 

Meiklejohn et al. [2] proposed two address-linking heuristics, namely (1) inputs spent to the same 

transaction are controlled by the same actor and (2) change addresses are not reused. Change 
addresses are commonly used by an account holder to preserve anonymity by creating multiple 

addresses and transferring bitcoins between those addresses. Indeed, it is considered as a good 

practice (Nakomoto [3]) to create a new address for transferring the remainder of bitcoins to this 
newly created address after transferring money to another actor. Harrigan et al [4] highlight that 

the clustering methods critically depend on the address reuse behavior. Goldfeder et al [5] 

extends the heuristics to cover CoinJoin transactions. However, Kalodner et al [6]) found that 

using these set of heuristics resulted in one super cluster of with 139 million addresses and many 
clusters with over 20,000 addresses. This happens mainly because when taking transitive closure 

of clusters, the errors are propagated across the entire bitcoin blockchain. 

 
Another heuristic approach focuses on tracking IP-addresses, see Biryukov et al [7]. We do not 

pursue this line of inquiry since the Bitcoin Blockchain doesn’t store the IP addresses; it has to be 
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obtained by getting the log information from e-wallets or mempool. Further, these approaches 
have a low success rate, from 11% to 60%, as described by Biryukov et al. 

 

While we follow behavioral clustering ideas, we modify them in a number of ways including 

local clustering. Specifics of algorithms are described in Section 4. 
 

There have also been a number of attempts at using supervised learning to try to classify different 

categories of actors. For example, Harlev et al [8] uses clustering provided by Chainalysis to 
classify 434 clusters in different categories that include ransomware, Exchanges, mining pools, 

gambling, etc. They use also various machine learning algorithms including decision trees, 

boosting, random forests, etc. They report classification accuracy of 75% and higher. However, 
since they used clustering provided by Chainalysis, it would not be possible to identify new 

ransomware addresses without clustering. Further, since their reported results seem to be based on 

training data with no cross-validation or test data, their results are likely to be highly optimistic and 

overfitting (Hastie et al [9]). 
 

Jordan et al [10] also consider a similar problem using graph motifs for classifying Exchanges, 

Services, Gambling, etc. They mention accuracy of around 90%. The novelty of their approach is 
the use of graph motifs to derive features for supervised machine learning. However, their 

analysis doesn’t include ransomware actors. Further, their clustering algorithm uses only 

transitive closure of input addresses. They do not take into account CoinJoin, Coinbase or burn 
transactions. As mentioned in the clustering part earlier, this is likely to create many false 

positives. Further, again the accuracy reported seems to be based only on training data. Zola et al 

[11] also pursue motifs to do supervised learning. They improve results compared to a base model 

by using cascading classifiers, which uses cascades across 1, 2 and 3 motifs. Their reported 
results are impressive with accuracy score of up to 98%. However, again they do not consider 

ransomware actors, nor does their clustering takes into account CoinJoin, change of address or 

burn transactions. 
 

An alternate approach based on deep learning has been proposed by Jung et al [12]. He 

proposes the use of Graphical Convolutional Neural Net Models (GCN). Besides being a black 

box, one of the major problems in using GCN is that each graph for GCN approach has to have 
the same number of nodes, which is not the case here. Further, the work did not cluster the 

addresses, and the reported accuracy of 72% is based on binary classification and only on training 

data. Our results are better. 
 

Encouraged by Jordan et al [10] and Zola et al [11], we pursue a more detailed approach. Our 

contribution differ from them in a) our clustering algorithms are local and do take into account 
CoinJoin, change of address and burn transactions; b) we use ego-graphs instead of motifs - ego-

graphs consider relationships between all the actors in the motif graphs, which include triangles, 

c) our data set includes the ransomware category; d) our features set is based on various explainable 

graph centrality metrics; finally e) our analysis is validated by using cross-validation as well as a 
separate test dataset. 

 

3. CREATION AND WRANGLING OF DATA 
 

 3.1. Sources of Data 
 

There were two key sources of data. First, sources that had addresses tagged as being associated 
with ransomware, i.e., for our "ransomware" class. Second, a source that had a comparison set of 

addresses that were not associated with ransomware, i.e. for our "random" and "gambling" 
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classes. The random and gambling addresses are used as a comparison group for supervised 
machine learning. 

 

Before analyzing the transaction pattern of these addresses, we needed to compile all the Bitcoin 

transaction data. It was downloaded from the Bitcoin Blockchain using Bitcoin Core [19] and we 
then accessed the raw data files which contain the validated transactions. Our study included data till 

July 2019 with 400,000,000 transactions and close to 40,000,000 addresses. The binary raw data 

was converted to a more human accessible format for analysis using BlockSci [6], which is an in-
memory analytical database that allows for fast exploration over blocks and transactions due to 

their sequential, append-only generation process. With this data we had access to the entire 

transaction history for all addresses. 
 

The first source consisted of creating a database of addresses of known ransomware actors. 

People who have been victims or approached for ransom, often publish the bitcoin address where 

bitcoins were asked to be sent as ransomware. Bitcoin WhosWho [21] and Bitcoin Abuse [22] were 
the two main sites which have such user-submitted addresses. Besides these two sources, we 

gathered information from the previously published literature [14] and law enforcement published 

actions (e.g., SEC). Much of the work involved going to these websites and scrapping the relevant 
information. All the addresses were collected in 2019. 

 

The second source was Wallet Explorer [20]. It is a website that allows you to view the blocks and 
the individual transactions inside that block. From there one can also view the addresses and 

amounts involved in the transaction. The creator of the site Ales Janda wanted to associate 

addresses with actors. To do this he registered with a variety of businesses that accepted Bitcoin and 

transacted with those businesses. He then followed the Bitcoins he sent and catalogued which 
"wallet bitcoins were merged with, or from which wallet it was withdrawn." [20]. He then 

categorized each one of the businesses he catalogued addresses for into one of five categories: 

Exchanges, Pools, Services/other, Gambling, and Old/historic. The addresses were collected from 
Wallet Explorer in May 2019. 

 

The Old/historic category contains many defunct businesses that early Bitcoin users used. The 

addresses that are associated with these businesses have been catalogued and the transactions that 
legitimate users had with these businesses have been web-scraped. Transactions associated with 

this category are what we call our "Random" class. The reason we call it as such is simply because 

the other businesses Janda compiled were all tagged with a specific category and these ones were 
across many other miscellaneous categories. 

 

The gambling addresses we have collected are all of the Bitcoin addresses that have sent or 
received money from any of the associated gambling websites like CoinGaming, PocketDice, and 

BitcoinPokerTables but are not directly tagged to those websites. These websites are primarily 

designed so users can gamble using Bitcoin, however they sometimes have the added consequence 

of allowing money laundering to occur as users can "clean" their stolen Bitcoin into cash [13]. 
Transactions associated with these gambling addresses are what we call our "Gambling" class. 

In total we collected 143, 498 and 216 ransomware, random and gambling addresses. 

 

 3.2. Graph Creation 
  

 For analysis, we need to extract relevant data of ransomware, gambling and random addresses 
from the Bitcoin Core. Bitcoin has three primary connected components: transactions, addresses and 

bitcoin transferred. From these, transactions-address bipartite graph can be created. Transactions 

are arranged in a set of sequentially linked blocks generated randomly approximately every 10 
minutes (around 144 blocks per day). Each transaction has a set of input addresses, a set of output 
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addresses and the amount of bitcoins transferred between them. There is also a transaction fee paid 
to the miner- an address that created the block. 

 

However, there is no input for the Coinbase transactions, which are algorithmic transfers of 

bitcoins, one in each block to the corresponding miner. 
 

 3.3. Transaction Graphs 
 

In the simplest terms, the transaction graph consists of a directed acyclic graph (dag), T, A,W, 

with transactions in the set T as nodes, input to output addresses in the set A as directed edges 

between transactions, and the bitcoin transferred in the set W as edge weights. Except for the 
transactions in the first block (the so-called genesis block) and Coinbase transactions, each 

transaction node is connected to multiple previous transactions as input nodes. A transaction node 

may not have an output node at a given time since there may be no transactions utilizing the output 
addresses of that transaction as input address so far. Specifically, a directed edge from node X to 

node Y means that an output address in X was an input address in Y and spent all of the Bitcoin 

they received in X in Y. 
 

 
 

Figure 2. Anatomy of Transaction Graph: the transaction on left is connected by two different addresses 

(orange and blue) to two different transactions on right 

 
Obviously, the transaction graph of the bitcoin transaction starts from the genesis block to the last 

block being considered. However, our interest lies in the behavior of the entity represented by a 

given address with the hope of identifying common patterns. Thus, we look at only the 
transactions involving an address under consideration (a random, gambling or ransomware 

address) and extend it iteratively to the transactions feeding the actor’s transaction and the 

transactions being fed by the actor’s transactions. Towards that end, given an actor A, we identify the 

first transaction TA involving that actor, and iteratively identify the transactions Tp feeding to TA and 

transactions Tf being fed by it. 

 

This defines children-parents relationship. This process is followed iteratively taking transitive 

closure of all the children and parent transactions of Tp and Tf in the set of all transactions T. 

Though this limits the cardinality of the newly formed transaction set TA corresponding to an 

address A, the beginning of the chain can still reach the genesis block or Coinbase transactions. 

 

TA can be further reduced for our problem. Based on looking at the behavior of a number of 



6   Computer Science & Information Technology (CS & IT) 

ransomware actors in their corresponding transaction graph TA, it was felt that just like many 

other criminals, the ransomware artist, after receiving the payment would rapidly make a 

succession of transactions to other addresses to make tracing difficult. Thus, it was decided to 
concentrate only on temporally local behavior of the address in ±n blocks. Specifically, for 

defining this local behavior, we restrict TA further from our recursion by using the following 3 

rules. 

 

1. Given a first transaction TA in TA by the address A under consideration, let the set TA,n in TA 

represent all the transactions in blocks ±n height away from the block containing the 

transaction TA. For example, if transaction TA was in block 10, 000 then the set TA,n represents 
all the transactions between blocks 10, 000 ±n. 

2. We further restrict TA,n when the output side is an address belonging to an exchange or 

gambling business as identified by Wallet Explorer. We do this because the children 

transactions links of the exchange node have many actors that have nothing to do with each 

other. The analogy is with a bank or a casino; if an actor was to deposit money in the bank or 
buy chips at the casino, we do not want to follow all the other actors who dealt with the bank 

or redeemed chips at the casino as they aren’t necessarily linked to the actor of interest. 

3. As an exception to the stopping criterion 1, we do not follow a Coinbase transaction 

backward, wherea miner is awarded new bitcoins since there are no parent transactions. 
 

Besides these criteria, we restricted TA,n further as stated below: 

 

 Non-standard Scripts. There were several cases that Blocksci or various other explorers could 

not parse the address and would return a NaN, which can result in a situation that the output of 

source transaction or the input of the destination transaction or both are NaN. In this situation, 
in order to prevent the loss of information, we created dummy addresses to replace the NaN, 

unless we found an explorer which could parse the script. In that case we manually inserted the 

correct address. 

 Proof of Burn. OpReturn transactions where an address may burn bitcoin to save a data item on 

the blockchain were assigned a string ’burn’ to replace the NaN. 

 CoinJoin Transactions. For the Actor-to-Actor graph creation, we need to identify mixing 
CoinJoin transactions. For more details on CoinJoin and other mixing transactions we refer to 

[15]. Given the new services like Wasabi [23] and Samorai [24], the older proposed 

identification rules do not work. We empirically modified rules used by BlockSci to tag 
CoinJoin transactions with the following rules. 

 

o If the transaction has less than 2 input or 3 output addresses, it is not a CoinJoin. 

o if the number of input addresses is smaller than the half of the number of the output 

addresses, the transaction is not a CoinJoin. 

o if the number of the output addresses is less than 6 and all output amounts are equal, the 
transaction is considered a CoinJoin. 

o if the number  of the output addresses is more than 6, the transaction is considered 

CoinJoin if at least 5 output amounts are equal. 

 
In summary, TA,n is the connected subgraph of the first transaction involving the actor A within n 
blocks either side with the exceptions described in the previous paragraphs. 

 

For building the weighted transaction graphs, each of the edge of transaction graph had weight 
corresponding to transacted bitcoins. This required the information on the amount of input and 

output bitcoins and transaction fees in each transaction, maintaining the equilibrium - namely: 
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Input_amount = output_amount + transaction fees 
 

As an example of TA,n Figure 3 depicts a sample of the directed transaction graph emanating from the 

Actor ”12HaVrpXkLr2UnkM f 6X 9b on both sides. For ease of viewing all the self-loops have 

been removed, multiple edges have been collapsed and with no weights. 
 

 
 

Figure 3. Actor 12HaVrpXkLr2UnkMf6X9bY11cuNrZUdUnV Transactions 

 

4. CREATION OF LOCAL CLUSTERING AND ACTOR-TO-ACTOR GRAPHS 
 

Since we are interested in the behavior of an actor, we need the corresponding actor-to-actor 
graph (not address-to-address graph). There are several difficulties with this. The main one lies with 

identification of the set of all addresses used by an actor. This is mainly, as mentioned earlier, due 

to bitcoin network allowing an account holder to create multiple bitcoin addresses on the fly. For 
simplicity we call the set of all addresses owned by an actor as an entity set and the corresponding 

graph is called an entity graph or an Actor-to-Actor graph. 

 
As it is widely accepted, any address clustering scheme is imperfect, and ground truth is difficult to 

obtain on a large scale, since it requires interacting with service providers. Many other heuristics 

are possible, including those that account for the behavior of specific wallets. In our experiment 

with the data going to July 2019, when applying such heuristics to the entire blockchain, we got 
one super cluster containing more than 90% of addresses. This is primarily due to tumblers (the 

services which mix bitcoins) and CoinJoin kinds of transactions where multiple parties combine 

their transactions to preserve their anonymity. This is compounded by misattribution of the 
change of address. 

 

We considered several modifications to the basic logic of behavioral clustering. But, when 
applied globally, all of them have exceptions which make a large number of false unions resulting 
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in large clusters due to transitive closures. To limit potential for wrong clusters which gets 
propagated across the entire bitcoin blockchain, we adopt a different strategy of creating local 

clusters since our objective is mainly to identify scam artists who try to move bitcoin in a short 

period of time soon after starting their ransomware related scam. As discussed by Kharraz et al 

[16], just like any other crimes, ransomware artists move ransomware payments as quickly as 
possible. Thus, we decided to apply the clustering algorithm discussed earlier only locally within 

the temporal limit of n=±144 blocks; basically within ±1 day. 

 
We also apply somewhat different logic to CoinJoin and other transactions as described in the 

previous section. We may still have some false positives, but we will never have super clusters 

due to transitive closure. Any large clusters effects will be felt only within a particular local graph 
and not globally. 

 

Specifically, we use the following rules: 
 

1. Inputs spent to the same transaction are controlled by the same actor, thus, the entity set is the 

union of all those addresses. 
2. If there is only one change address, identified by it never being used prior to the current 

transaction, consider it as a part of the input address set. 

3. Exceptions to the rules 1 and 2 is when a transaction is identified as CoinJoin. In that case do 
not take a union. 

 
The pseudo-code for the clustering process is given below. 
 

Algorithm 1 Generate Local Cluster 
 

for all transactions in the graph do 

if this is a CoinJoin transaction then 

assign each input and output addresses as separate clusters. 

else 
if there is only one new address in output addresses of this transaction assign all input addresses 

and output addresses as one cluster. 

else 
assign all input addresses as one cluster; 

assign each input and output addresses as separate clusters. 

end if end if 

end for 
After collected all address-cluster mapping, merge the mapping till there is only one cluster for 

each address 

 

For the weighted graph analysis, we need to find the bitcoin transfer between addresses. Since the 
bitcoin transfer is defined between the sets of input addresses and output addresses, there is no 

exact way to allocate the amount between a given input address and an output address unless one of 

the sets has cardinality 1. We approximate the transfer by a proportional allocation rule. Namely, 

given a transaction with input addresses: I1, …, Ix; input amounts: IA1, …, Iax; output addresses: 

O1, …, Oy; and output amounts: OA1, …, Oay, the edge weight from Ii to Oj is computed by the 

following formula: (Iai/ΣIAk)*Oaj, which is further adjusted by the transaction fee. This is an 

approximation. For Actor-to-Actor graph, the weights are the sum of all individual weights of the 
corresponding addresses. 

 

The development described so far allow us to form Actor-to-Actor weighted graphs. Some of 

these graphs after clustering had only a small number of nodes and were deleted. These were 
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further sub-divided in training and test sets of 328 and 82 graphs (80−20%), respectively, for 
supervised learning. 
 

5. GRAPHS AND CENTRALITY FEATURES 
 

 5.1. Subgraphs 
 
Recall that the following the logic of the last sections, we consider the locally clustered Actor-to- 

Actor graph from the connected transaction graph TA,1 for an actor A within ±144 blocks (±1 day). 

The subgraph of all addresses within TA,1 is referred to simply as whole graph. For additional 

analysis, we take several different kinds of subgraphs. Specifically, since our primary interest lies 

in the actor under consideration, we created Ego subgraphs for the actor. Ego graph of order n of 
a node is the subgraph formed by the nodes that are within the neighborhood of order n of the 

node without considering the direction of the edges. Ego graphs are richer than standard motifs 

since they also consider relationships between neighbors. Further, another set of subgraphs, called 

simple graphs were obtained by removing loops of the nodes to itself, and collapsing multiple 
edges to one edge. These subgraphs are considered since it is expected that the actor’s footprints 

would be most visible in its direct transaction with other nearby actors. For example, the 

ransomware actor’s footprints would be most visible in its interactions with the victims and other 
nearby actors and co-conspirators. For further analysis we only considered ego1, ego2, ego3 and 

the corresponding versions of simple graphs. 

 

 5.2. Centrality features 
 

For each of the subgraphs discussed above, we extracted a number of graph-based features: 
 

i. Basic Statistics: # of Vertexes, # of Edges, Total bitcoins, Loops, Degree, Neighborhood size 

ii. Centralities: Normalized Closeness, Betweenness, Page Rank, Cluster Coefficient, Coreness, 
Hub and Authority 

 

Definitions of each can be found in igraph [26] with more details in article [17]. Some are overall 

graph parameters; the rest are restricted to the node of the actor under consideration. A number of 
variants of these were considered where it made sense including weighted, unweighted and 

directed. The creation of graph and extraction were all carried out by using Python igraph library 

[26]. 
 

The task of computing graphs and its features was computationally intensive. For efficiency 

reasons, we did not consider the graphs larger than one million unique addresses or more than 1/2 

million transactions. As mentioned earlier, whole graph with only a small number of nodes and the 
corresponding ego graphs were also removed, Finally, to balance the classes better a random 

sample of size 155 was taken from random graphs. An 80-20 split between training and test data 

with stratification resulted in the training set of 328 whole graphs (124 random, 80 ransom,124 
gambling), and the test set of 82 whole graphs (31 random, 20 ransom, 31 gambling). 

 

6. EXPLORATORY DATA ANALYSIS 
 
In this section, we describe an exploratory analysis on some of the features generated in section 5. 

Here, we used the ’boxen plot’ which centers a distribution at its median line; each successive level 

outward contains half of the remaining data until it reaches to the outlier level. For details, see 

seaborn [27]. 
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(a) # of vertices                                                  (b) # of edges 

 
Figure 4. whole-simple graph 

 

Figure 4 shows the number of vertices and edges in the whole-simple Actor-to-Actor graphs. 
Recall that the whole graph is based on recursion of all connected transactions associated within 2 

days of the actor. Thus, these graphs could be skinnier than the graphs over two days depending upon 

the level of connections of the actor. We can see that for ‘random’ and ’gambling’ graphs, the 
distribution does not differ a lot. However, there are many extreme values in ’ransom’ graphs and 

it is flatter compared to other two. It reflects the nature of the ‘ransomware’ class where actors 

will try to obfuscate their transaction patterns through complicated laundering, which also reflects 
that the local clustering algorithm performs well. 

 

For brevity, the rest of the analysis highlights only Ego-1-simple graphs for a few important 

features found in the Results section since they are the simplest graphs of other actors who are in 
close touch with the Actor. The analysis looks at the marginal distribution of the selected features 

across all the actors separated by ransomware, random and gambling categories. 

 
PageRank, also known as Google Rank, is a way of measuring the importance of website pages. The 

assumption is that more important websites are likely to receive more links from other websites. 

For more definition, see PageRank [28]. As seen in Figure 5, the ’ransom’ clusters tend to have 
a higher PageRank, which means it is likely to receive more transactions from other clusters. This 

makes senses when the ransomware attack is one wave after another and usually sent to lots of 

users within a short period of time. Also, PageRank of random actor on average seems to be 

lower than ransomware actors indicating that the ransomware actors are more often recipients of 
funds. 

 

 
 

Figure 5. Page-Rank  
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Figure 6. Closeness 
 

The closeness centrality of a vertex measures how easily other vertices can be reached from it (or 

the other way: how easily it can be reached from the other vertices). For definition, see closeness 
[26], [31]. The weighted-IN closeness of ego-1 simple graphs is shown in Figure 6. The 

’gambling’ tends to have less centrality, which shows similar pattern as shown in Figure 5. This 

suggests that gambling actors are not closely connected to other accounts. They have many more 

outliers indicating that there are few very large gamblers and possibly the distribution is scale-
free. 

 

 
 

Figure 7. Coreness normalized by # of vertices 

 

In Figure 7, we show the coreness(All). The k-core of graph is a maximal subgraph in which each 

vertex has at least degree k. The coreness of an Actor is k if it belongs to the k-core but not to the 
(k+1)-core. For the definition, see coreness [29]. The coreness across graph is normalized by the 

number of vertices since all the graphs have different number of vertices. From the figure, as 

before, it can be noticed that the gambling graphs have a relatively low coreness. 
 

Finally, Figure 8 shows, as one would have expected that cluster coefficients for gambling class is 

much smaller and followed by ransomware class since both of those classes are directly involved 

in possibly criminal activities and they would minimize their interactions with actors which are 
more connected with each other. 
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Figure 8. Unweighted Cluster Coefficient, Normal Scale 
 

The comparative analysis of the marginal distributions of features reported so far suggests that 

different classes behave somewhat differently from each other. For example, gambling actors 

behavior is rather different than other actors in closeness, PageRank, cluster-coefficient and 
coreness. Further, the PageRank of the ransomware actors is higher. This analysis indicates that 

these features could be good candidates for any machine learning model. 
 

7. MACHINE LEARNING ON ACTOR-ACTOR GRAPHS 
 

For the purposes of supervised learning, the extracted whole graphs were divided in testing (20%) 
and training (80%) graphs stratified by their categories. Further, for each whole graph only the 

subgraphs of ego-graph 1, ego-graph 2, ego-graph 3 and their simple counterparts were extracted 

for analysis because of their proximity to the actor under consideration. Only subsets of features 

given in Table 1 were extracted from each of these graphs. The subset was obtained by keeping 
only one of each set of highly correlated features. The graphs and the corresponding number of 

features are shown in Table 1 below. 

 
Table 1: Centrality Features Considered 

 
 ego3 ego3-simple ego2 ego2-simple ego1 ego1-simple 

# of features 11 16 13 16 12 11 

 

7.1. Models 
 

We consider supervised learning in three stages shown in Table 2. 

 
Table 2: Modeling Strategy/Stages 

 
Learning Initial Intermediate Final 

Type Multiple Classifiers Stacking Bagging 

 

In the Initial stage multiple classifiers were fitted to each of the 6 sub-graphs. Since each 
classifier has different strengths and weaknesses in different regions of the feature space, as an 

intermediate model, we used ensemble learning technique of Stacking [18] to improve. 

Specifically, the stacked model uses the predicted probabilities of each class by each classifier as 
features and predicts the probability of each class by using a simple model (logistic in our case). 

Even though we have 3 classes, since the probabilities add up to 1 for each of the six classifiers, 
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there are 12 such linearly independent features. This process is depicted in Figure 9 with the six 
different base classifiers we used for creating the ensemble. 

 

 
 

Figure 9. Stacking Model 

 

In the final Stacking-Bagging stage, we combine the results across different subgraphs by 
creating a meta classifier (or called Final Classifier). It is a simple classifier (in our case logistic) that 

uses the probabilities of each class in the subgraph stacked models as the feature set and fuses 

them. This is analogous to bagging since we have 6 different data sets (subgraphs) each 
containing estimated probabilities of each class. Just like in stacking we will have 12 features for 

the six types of sub-graphs. The final attribution of the class is given to the class with highest 

probability by the meta-classifier. This process is depicted in Figure 10. We used the predicted 
probabilities from 6 graphs as new features and trained a final meta-classifier. We called this as 

’stacking-bagging’ model. 

 

To motivate efficacy of the stacking-bagging model, consider the simple fusing by averaging the 
probabilities across 6 estimated probabilities for each data set. In that case, Mean Squared Error 

(MSE) = Bias^2 +Variance. Each component on the bias term is roughly the same constant since 

they are using the same type of estimators. The second 
term=average_variance/6+∑Covariances/6. In our case, since each estimated probability use 

different graphs, it is expected that the covariances would be relatively negligible. Thus, the 

MSE will be substantially less compared to non-fusing. 
 

 
Figure 10. Stacking-Bagging Model 

 



14   Computer Science & Information Technology (CS & IT) 

We used the cross-validation score on balanced-accuracy as our objective and finally ran our 
model on our test set. 

 

7.2. Cross Validation and Efficacy Metrics 
 

To implement the strategy outlined in 6.1, and to measure its efficacy we used the training data 

with cross validation for model selection. Specifically, when training the classifiers with grid- 
search and cross-validation, we used 5-folds with stratification on labels and 80% of the data for 

train-validation and 20% for testing. For the meta-classifier in the stacking model and for the 

stacking-bagging model, we used Logistic Regression. 

 
Since we have a multi-label classification problem, we used balanced accuracy or simply 

Accuracy in tables), weighted precision (as Precision in tables), and weighted recall (as Recall in 

tables) as our evaluating metrics. We refer to them simply as accuracy, precision and recall. For 
definitions see scikit-learn [25]. 

 

8. RESULTS 

 

Table 3 gives cross-validated accuracy on training data of the 6 base classifiers using the cross- 
validation on the training data. Gradient boosting and Random Forest models seem to outperform 

others with around 75% to 80% balanced accuracy. Taking a deep dive on feature importance, 

Figure on the left side of Table 3 shows the 11 features included in Random Forest model for the 
ego-1 simple graph. Besides the commonly used graph centrality features, it includes less used 

features like coreness and cluster coefficient. 

 
Table 3: Feature Importance of Ego-1-simple graph 

 

 
 

 
Table 4: Balanced Accuracy of Classifiers for each graph 

 
 ego-1-s ego-1 ego-2-s ego-2 ego-3-s ego-3 

Naive Bayesian 0.4148 0.4324 0.5514 0.4034 0.5189 0.4047 

Random Forest 0.7346 0.7924 0.7596 0.7966 0.7973 0.8171 

Gradient Boosting 0.7255 0.7709 0.7456 0.7651 0.7829 0.8107 

Adaptive Boosting 0.6911 0.6937 0.7111 0.7160 0.7444 0.7386 

Logistic Regression 0.6162 0.6272 0.5862 0.6000 0.6101 0.5962 

SVM 0.6126 0.6271 0.5997 0.6031 0.6298 0.5908 

 
Stacking these models produces cross-validated balanced accuracy between 96% and 99%, a 

Rank Feature Value 

1 Closeness(wtd/out) 0.158 

2 sum of weights 0.150 

3 Closeness(uwtd/out) 0.126 

4 # of vertices 0.119 

5 Closeness(wtd/in) 0.101 

6 cluster coefficient 0.092 

7 Closeness(wtd/all) 0.081 

8 Closeness(uwtd/in) 0.072 

9 Coreness(all) 0.047 

10 Authority 0.038 

11 Coreness(IN) 0.016 
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substantial improvement. It is interesting to note that ego-simple graphs tend to outperform their 
corresponding ego graphs. 

 
Table 5: Stacking Model: Performance by Cross-Validation 

 
 Accuracy Precision Recall 

Ego-1-simple 0.9932 0.9942 0.9939 

Ego-1 0.9890 0.9910 0.9909 

Ego-2-simple 0.9602 0.9661 0.9634 

Ego-2 0.9662 0.9690 0.9664 

Ego-3-simple 0.9917 0.9941 0.9939 

Ego-3 0.9743 0.9735 0.9724 
 

 

In the final stage, we build a bagging-stacking model on all six types of ego subgraphs leading to 

the cross-validated accuracy of 1 and 85% on the test set as shown in Table 6. The corresponding 
confusion matrix is given in Figure 11. 

 
Table 6: Final Model Accuracy, Precision and Recall 

 
 Cross-Validation Test 

Accuracy 1 0.8537 

Precision 1 0.8566 

Recall 1 0.8537 

 
 

As seen from the above table, the final model outperformed the stacking model as measured by 

cross-validated accuracy of 1. Figure 11 gives the corresponding confusion matrix for the final 
model on the test set. There is no systematic confusion evident in the confusion matrix. 

 

 
 

Figure 11. Confusion Matrix of the test data 

 

9. LIMITATIONS AND FUTURE WORK 
 

Though our results indicate high accuracy, further improvement should be possible by improving 
clustering algorithms, better ways to associate actors involved with non-standard scripts and 
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Coinjoin transactions. Further, our data set is limited consisting of around 400 graphs, each with 
thousands of nodes. Further, our ground truth is based on what is user- reported. Getting more 

data which is more reliable would improve accuracy. Also, given that we are using stacking, it is 

hard to interpret the final model. More interpretative models using a different machine learning 

approach may be feasible. Finally, though we have not undertaken it here, it would be worthwhile 
trying to identify actors from TOR since they are also likely to be involved in illegal activities 

[30]. Another direction to explore would be to see how these techniques can be generalized to 

other alternative crypto-currencies. 
 

10. CONCLUSIONS 
 

This paper addresses the key question of how to identify miscreants who are involved in 

ransomware and in gambling compared to random actors. The problem is difficult due to the 
pseudo-anonymity of the Bitcoin network. Specifically, the question addressed here is that given 

temporally limited graphs of Bitcoin transactions, to what extent can one identify common 

patterns associated with these fraudulent activities and apply them to find other similar actors. The 
singular contributions of this paper include a) extraction and creation of transaction graphs 

associated with the miscreant actors, b) clustering all the nodes of such graphs in common entities 

controlling those accounts while taking into account different kinds of transactions, c) using 
supervised learning novel algorithms to create models based on actor to actor ego graphs that 

identify similar miscreants, d) validating the models on cross validated data with accuracy of 1 

and on the test data set of around 85%. 
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