
David C. Wyld: CSITY, NWCOM, SIGPRO, ASOFT, AIFZ, BDIoT, ITCCMA, CLSB, DTMN, MLNLP - 2021 
pp. 41-48, 2021. CS & IT - CSCP 2021                                                    DOI: 10.5121/csit.2021.111404 

 
AN INTELLIGENT DRONE SYSTEM  

TO AUTOMATE THE AVOIDANCE OF 

COLLISON USING AI AND COMPUTER  
VISION TECHNIQUES 

 

Steven Zhang1 and Yu Sun2 
 

1Crean Lutheran High School, Irvine, CA 92618 
2California State Polytechnic University, Pomona, CA, 91768 

 

ABSTRACT 
 
People love to fly drones, but unfortunately many end up crashing or losing them. As the 

technology of flying drones improves, more people are getting involved. With the number of 

users increasing, people find that flying drones with sensors is safer because it can 

automatically avoid problems, but such drones are expensive. This paper describes an 

inexpensive UAV (unmanned aerial vehicle) system that eliminates the need for sensors and 

uses only the camera to avoid collisions. This program helps avoid drone crashes and losses. 

We used the Tello Education drone as our testing drone, which is only outfitted with a camera. 

Using the camera feed and transmitting that data to the program, the program will then give 

commands to the drone to avoid collisions. 

 

KEYWORDS 
 
Machine Learning, Electrical Engineering, Computer Vision, Drone 

 

1. INTRODUCTION 
 

With the continuous development of science and technology, UAV (unmanned aerial vehicle) 
technology is also getting recognized by new users. [1, 2, 3, 4] With the increasing number of 

people participating in UAV, there are many companies specializing in manufacturing this 

technology. [5] But there's a problem. UAVs are small, flexible, and crucially, pilotless, which 
means they're vulnerable to damage or accidents during flight. [6] Using sensors, drones can 

automatically avoid collisions, but this feature comes with problems. First, it is expensive to 

build, and second, it is heavier. We designed a UAV system to effectively avoid these problems. 
Our UAV system uses a camera to scan the surrounding space, then the background processing 

system is used to calculate the most suitable solutions for directional movement for collision 

avoidance. This makes our UAV system affordable to build and reduces unnecessary weight. 

 
Using existing technology, combined with our group design program, the camera scans the 

environment. Data is sent to the terminal to calculate and determine obstacles and the best 

directional path and automatic correction to avoid the obstacles. Our system doesn’t need a new 
camera or censors, only the UAV’s own camera and a program to avoid collisions and compute 

directional movement. Many of today's drones have automatic avoidance technology, but this 

usually requires special sensors. This means their costs are higher and weights are heavier. For 
any UAV, weight is an important consideration for flight range, and lighter models are generally 

more economical as well. 

http://airccse.org/cscp.html
http://airccse.org/csit/V11N14.html
https://doi.org/10.5121/csit.2021.111404


42 Computer Science & Information Technology (CS & IT) 

We searched for a drone platform that would allow us to code and have good flying control and 
visual feedback. After some research, we ended up choosing the Tello model as out project 

drone. Our choice and method of using a positive camera feed to catch and process images was 

inspired by the DJI Phantom 4 Pro drone. [8] Our drone can also make decisions to avoid objects. 

Our ETCollision drone has many useful features. First, there is no need to intervene to have the 
drone avoid obstacles. Second, there are no extra accessories to be installed on the drone itself. 

Therefore, the drone flight time won’t be affected, since there is no extra weight. Third, in the 

future we hope we can add faster processing as a feature. For example, perhaps we can improve 
the drone’s reaction time with a photo process. This will allow for a quicker response when the 

drone needs to avoid objects. Moreover, due to having a quicker response time, we can also 

improve the program to make it to do more complicated stunts and further reduce the possibility 
of crashes. Overall, we believe the ETCollision is a program that will reduce the possibility of 

crashing and has potential for improvements over time as well. 

 

In two application scenarios, we demonstrated how the above combination of features increases 
the UAV’s performance. First, we conducted a comprehensive case study on the evolution of the 

Tello drone, which allowed us to have a precise understanding of this model’s movement and 

performance, especially when navigating the drone around objects quickly and smoothly without 
crashing. All of our data was calculated by the centimeter, and was double-checked by GPS to 

make sure that we had a drone up and running that would get the job done. [9, 10] What's more, 

we coded the drone with automatic flight control, which means if there was wind or other 
conditions that affected the drone, the drone will automatically adjust back into its original flight 

path. Therefore, the drone can operate under harsh conditions. For example, if a wind is blowing 

from north to south, the drone will automatically exert energy to make sure the wind does not 

carry it away from the desired flight path or into obstacles. Second, we analyzed the evolution of 
data from each time we allowed updates from the drone. We always consulted our data to make 

sure there were no bugs or errors at any given time. All in all, our ETCollision Tello drone has 

excellent performance and precise GPS data to ensure that it can securely get the job done at all 
times. 

 

2. CHALLENGES 
 

In order to develop an inexpensive UAV (unmanned aerial vehicle) system that eliminates the 
need for sensors and uses only the camera to avoid collisions, a few challenges were identified as 

follows. 

 

2.1. Challenge 1: Choosing a Platform and Drone to Use 
 

Our first challenge was to decide on a platform to design our Collision project. Out of several 
platforms, we decided on Python, since it is easy to use compared to other program platforms. 

Therefore, after deciding on Python, will needed to find a drone that could let us use it to code it 

while still achieving excellent flight control. We chose Tello, since it offers advantages that other 
drones do not. For example, Tello has a GPS system and an excellent flight time of 15 minutes so 

we don’t have to worry as much about batteries. What’s more, Tello also has an HD camera that 

allows 30 fps feedback from the drone with very little delay. 

 

2.2. Challenge 2: Setting Up Positive Video Feedback from the Drone 
 
Our second challenge was to have a positive drone feed. Initially, our code was allowing the 

drone to detect objects, but the feedback form the drone had a 10-second delay. Therefore, the 

drone had a slow response time and an inefficient flight time. At this time, all the drone was 



Computer Science & Information Technology (CS & IT)                                              43 

doing was hovering and waiting for the video feedback to get processed. We solved this by using 
a positive video feedback form the drone, and allowing a window pop up on our computer to 

speed up the drone feedback and allow us to see the drone’s flight path. 

  

2.3. Challenge 2: Getting The Drone on the Market 
 

The last challenge was buying a domain name, making a website, and entering a competition. It 
was difficult to choose a domain name that no one else had registered. We wanted to come up 

with a name that’s easy to remember and find in web searches. We also had difficulty recording 

the screen, since we could not find software that allowed us to record our screen and our voice at 

the same time. However, we solved this problem by using different software. For the domain, we 
used “etcollision.com” so it would be easy to remember. 

 

3. SOLUTION 
 
Our ETCollision drone is a system that allows the drone to process video intake to avoid objects 

on its own. Using Python, we wrote code to process feedback form the drone. The code was 

scaled in centimeters, which allowed precise feedback from the drone. This special coding 

allowed us to see the drone’s flight movement. The drone provided video feedback like a normal 
drone does, and it ran through a special code that allowed it to detect and process objects within 

its airspace. Therefore, the drone calculated varying flight courses to avoid objects. Moreover, 

while the drone was in the air, the command prop launched and opened a window that allowed us 
to see the drone’s video feedback with very little delay. We could also give commands or press 

the emergency stop button when needed. All the drone’s movements were tested to be done in a 

split second to make sure it would work without delay. In the future, we hope we can set up a 
larger data processor so the drone could remember where it has been, have faster reaction and 

maneuver times and navigate more smoothly and quickly. 

 

 
 

Figure 1a. Code segments 

 



44 Computer Science & Information Technology (CS & IT) 

 
 

Figure 1b. Code segments, continued 

 



Computer Science & Information Technology (CS & IT)                                              45 

 
 

Figure 1c. Code segments and display image 

 

 

 



46 Computer Science & Information Technology (CS & IT) 

1-9 import library (the video feedback from the drone will be imported to the library for later 
review) 

 

25-45 load data (the data will load in a format that the system can process) 

 
49-68 drone movement (After the program processes the movement it will start to control the 

drone to do the movement) 

 
79-83 drone action (After the drone decides to make a move, all movements are ruled by the 

action code) 

 
86 object detection (this is the process when the drone is processing the picture that is coming 

back from the video feedback) 

 

114-242 display 
 

245-end run all code 

 
We decided to use Python for our platform code, since it is was the best coding platform for our 

drone. We did not add any additional system or hardware to do this, only add code to allow the 

program to process video feed from the drone for navigational purposes. See Figures 1a.-1c. 
 

4. EXPERIMENT 
 

At first, we did not have a positive video feed going to our computer to see what the drone was 

seeing. Therefore, we could not be sure if the drone was doing its job. We had to use a different 
command to allow the drone to process the video feed on its own to avoid objects. Moreover, we 

allowed the drone to make more precise movements without overreacting to objects. All in all, 

after lots of testing and coding, we were able to make the project work the way we designed it to. 
 

We ran a percent test with our drone by directing it toward an object multiple times to calculate 

its passing percent and near misses. From this, we could get a percentage accuracy of its object 

detecting system. Moreover, we also changed the settings to make the drone more precise and 
flexible in certain situations, for example, varying weather conditions. 

 

After we had conducted some experiments, we finally got an answer of 90 percent. Since our 
drone was relying on image processing, some of the objects could not be detected from the 

images alone. For example, some of the poles within our test area were not able to be picked up 

and processed by the drone’s video feedback. However, it was able to pick up the pole as a large 

shape. Moreover, it was unable to process clear glass or windows since the video feedback 
system can see through it. This caused the process system to think there was not an object present 

when at times there was glass present. Therefore, due to these situations, we only passed 90 

percent of our experiment. 
 

At first, we did not have a good video feed from our drone, which we had to fix. After doing that, 

we were able to move on to our second test, which was getting a percentage on avoiding objects. 
The problem we had with the drone was that it was not picking up some poles or clear glass. 

Therefore, we changed our settings on the drone to make it more precise. However, that also 

lowered the battery life down from the original 15 minutes of flight time. After the drone changed 

to high process mode, the flight time shrank to 10 minutes. In the future we hope to come up with 
new code to allow us to do the video feed process without using too much battery power. 

  



Computer Science & Information Technology (CS & IT)                                              47 

5. RELATED WORK 
 
One related work is the self-recovery system used in DJI drones, which has a strong connection 

with the drone. The possibility of losing a connection is very small. However, they still 

developed a self-recovery mode to the drone to make the drone fly back to the original point of 

takeoff. Moreover, with this system, one can also set an altitude limit for its recovery flight. The 
drone will climb up to that height first, then fly back, which is a good system to make sure the 

drone doesn’t hit anything on the way back. [11, 12] 

 
Another related work is that DJI’s drones all have average flight times of 30 minutes. Even in 

sport mode while at peak performance, their drones can still stay in the air for about at least 20 

minutes. This is something we need to learn and study, since our drone had 15 minutes of flight 

time generally, and only 10 minutes of flight time while at perk performance. [13, 14] 
 

There is also a low battery warning on DJI drones. However, since our drone doesn’t have a 

controller, this information cannot be displayed. What we came up with to remedy this was to let 
the drone return by itself once its battery power hit a certain minimum. That way, we did not lose 

the drone or cause a crash. We also adjusted this feature further so we could also program the 

flight distance to make sure our drone could make it back every time. [15] 
 

6. CONCLUSION AND FUTURE WORK 
 

We produced a special set of code to allow our drone to avoid objects in its path. To do this, we 

used video feedback from a camera that was already on the drone. We used Python as our 
primary coding platform, because it was the most compatible with our drone. Therefore, we could 

ensure the best performance of our code and drone at all times. 

 
Our drone has few limitations. All a pilot might need would be to make sure to have a good 

battery and know how to start the drone. They must also know how to run the code and have 

quality video feedback showing on their computer screen. They also need to know how to land 

the drone and make an emergency landing in case the code has an error or the drone’s video 
process program fails. Therefore, the limitations of our drone are few, since all these skills could 

be learned in under ten minutes. 

 
One feature we hope to add is a self-recovery mode. This allows the drone to return to the place 

of takeoff in case of emergency. For example, if the drone loses connection with the computer, it 

can fly back by itself while the video feedback process system is still engaged to make sure it 
doesn’t crash on the way back. There are lots of advantages for such a program. It could allow 

drones to fly out of sight and still make it back to the landing zone and can be used even if there 

are different signals jamming the drone’s own signal. With such a self-recovery mode, our drone 

would not fall from a high attitude and be more likely to make it more home safely. 
  

REFERENCES 
 
[1] Lidynia, Chantal, Ralf Philipsen, and Martina Ziefle. "Droning on about drones—acceptance of and 

perceived barriers to drones in civil usage contexts." Advances in human factors in robots and 

unmanned systems. Springer, Cham, 2017. 317-329. 

 

[2] Hendry, David. "“Drones Okay” Playground: Fun with Personal Drones." Designing Tech Policy. 

 

[3] LaFay, Mark. Drones for dummies. John Wiley & Sons, 2015. 

 



48 Computer Science & Information Technology (CS & IT) 

[4] Juniper, Adam. The Complete Guide to Drones: Whatever Your Budget. Wellfleet Press, 2016. 

 

[5] Liu, Zhongli, et al. "Rise of mini-drones: Applications and issues." Proceedings of the 2015 

Workshop on Privacy-Aware Mobile Computing. 2015. 

 
[6] Vacek, Joseph J. "The next frontier in drone law: liability for cybersecurity negligence and data 

breaches for UAS operators." Campbell L. Rev. 39 (2017): 135. 

 

[7] Wu, Wenhao. "React Native vs Flutter, Cross-platforms mobile application frameworks." (2018). 

 

[8] Peppa, M. V., et al. "Photogrammetric assessment and comparison of DJI Phantom 4 pro and 

phantom 4 RTK small unmanned aircraft systems." ISPRS Geospatial Week 2019(2019). 

 

[9] Gowda, Mahanth. "Bringing differential GPS to drones." Proceedings of the 3rd Workshop on Hot 

Topics in Wireless. 2016. 

 

[10] Bo-tao, W. U., et al. "Testing and Analysis on differential GPS   aerial   drones technology." Journal 
of Yangtze River Scientific Research Institute 34.1 (2017): 142. 

 

[11] Putch, A. N. D. Y. "Linear measurement accuracy of DJI drone platforms and photogrammetry." San 

Francisco: DroneDeploy(2017). 

 

[12] Iqbal, Farkhund, et al. "Drone forensics: a case study on DJI phantom 4." 2019 IEEE/ACS 16th 

International Conference on Computer Systems and Applications (AICCSA). IEEE, 2019. 

 

[13] Salamh, Fahad E., Mohammad Meraj Mirza, and Umit Karabiyik. "UAV Forensic Analysis and 

Software Tools Assessment: DJI Phantom 4 and Matrice 210 as Case Studies." Electronics 10.6 

(2021): 733. 
 

[14] Xu, Fangqi, and Hideki Muneyoshi. "A Case Study of DJI, the Top Drone Maker in the World." 

Kindai Manag. Rev 5 (2017): 97-104. 

 

[15] Yousef, Maryam, Farkhund Iqbal, and Mohammed Hussain. "Drone Forensics: A Detailed Analysis 

of Emerging DJI Models." 2020 11th International Conference on Information and Communication 

Systems (ICICS). IEEE, 2020. 

 

 

 
© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC 
BY) license. 

 

http://airccse.org/

