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ABSTRACT 
 

Current machine learning research is addressing the problem that occurs when the data set 

includes numerous features but the number of training data is small.  Microarray data, for 

example, typically has a very large number of features, the genes, as compared to the number of 

training data examples, the patients.  An important research problem is to develop techniques to 
effectively reduce the number of features by selecting the best set of features for use in a 

machine learning process, referred to as the feature selection problem.  Another means of 

addressing high dimensional data is the use of an ensemble of base classifiers.  Ensembles have 

been shown to improve the predictive performance of a single model by training multiple 

models and combining their predictions.   This paper examines combining an enhancement of 

the random subspace model of feature selection using fuzzy set similarity measures with 

different measures of evaluating feature subsets in the construction of an ensemble classifier.  

Experimental results show that in most cases a fuzzy set similarity measure paired with a 

feature subset evaluator outperforms the corresponding fuzzy similarity measure by itself and 

the learning process only needs to occur on typically about half the number of base classifiers 

since the features subset evaluator eliminates those feature subsets of low quality from use in 

the ensemble. In general, the fuzzy consistency index is the better performing feature subset 
evaluator, and inclusion maximum is the better performing fuzzy similarity measure. 
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1. INTRODUCTION 
 

Feature selection (FS) is an important task for classification in machine learning (ML) since it 
reduces dimensionality with respect to the feature dimension.  Its objective is to find a possibly 

optimal feature subset of relevant features that reduces the data size and increases, or maintains, 

the overall performance measures such as accuracy and sensitivity on the results of the 
classification. Reducing the data size decreases data storage requirements and training times for 

learning algorithms and can improve visualization and interpretation of the learning results. There 

are three main approaches to feature selection: filter, wrapper and embedded methods.  In this 

research, a filter method is used due to its advantages of typically being fast and not tuned for a 
given learner [1]. 

 

Feature selection methods have typically been performed by evaluating a candidate feature subset 
and searching through the feature space to find a better subset. Existing algorithms adopt various 
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measures to evaluate the quality of feature subsets [1][2][3].  The random subspace method 
(RSM) [4] for feature subset selection, however, does not use a search process. Instead, it 

randomly selects from an arbitrary sized subset of features that are ranked using an algorithm 

such as ReliefF [5], where ReliefF measures the relevance of a feature to the classification task. 

RSM techniques can be used to create an ensemble of base classifiers, each created from one of 
the randomly selected subsets of features [6]. Although such approaches are simple and fast, they 

do not consider possible correlations and dependencies that may exist between the features in the 

randomly selected subsets. In [7], ReliefF is used to rank the quality of the features and then the 
concordance correlation coefficient (CCC) [8] is used to group related features from the N top-

ranked features into G disjoint subsets. An RSM-like approach is then used to randomly select a 

single feature from each of the G feature subsets instead of randomly selecting from all the top-
ranked features. This process creates the feature subset for a single base classifier. This process is 

then repeated to create E base classifiers that are used in the ensemble.  Extensions to that work 

examine the use of fuzzy set similarity measures (FSSM) along with the CCC to create the 

groups of related features and evaluate the difference in performance of the generated ensembles 
on four different datasets [9]. The FSSMs are modified to distance measure used in a hierarchical 

clustering process that creates the G feature subsets. 

 
Some ML processes search through a space of feature subsets to find an optimal feature subset.  

They use feature subset evaluators to determine the quality of a feature subset.   This paper 

further extends the research in [9] to employ different feature subset evaluators, not in a search 
process, but instead to assess the quality of each of the randomly generated feature subsets for use 

in base classifiers. Each feature subset evaluator is paired with a FSSM to determine its 

performance as compared to the corresponding FSSM alone.  The hypothesis is that feature 

subset evaluators should reduce the number of base classifiers in the ensemble and improve the 
ensemble performance measures.  

 

This research differs from the methods discussed in [10] which compares approaches used to 
create an ensemble of feature selectors and combine the produced feature subsets into one feature 

subset to be used in the machine learning process.  In that research an ensemble of feature 

selectors is categorized as either homogenous or heterogenous.  The homogenous selector uses 

the same feature selection method but on different training data subsets.  The heterogenous 
feature selector ensemble uses a number of different feature selection methods but on the same 

training data.  

 
Regardless of the type of feature selector ensemble, the resulting subsets of features must be 

aggregated into one feature subset.  There are simple ways to approach this such as using the 

intersection or the union of the subsets of features [11]; however, these simple approaches may 
lead to a very restrictive set of features or to less reduction in the size of the set of features.   A 

more sophisticated technique  uses classification accuracy to combine the features produced by 

the various feature selectors [12].  This approach, however, is computationally expensive and 

may result in computational costs higher than that of the feature selection process.  
 

 The research presented here is similar to using homogeneous feature selectors in that the same 

modified RSM feature selector is used on different training datasets. It differs, however, since it 
does not combine the resulting subsets of features produced for each training dataset into one 

feature subset. Instead, each produced feature subset is used in the learning of a base classifier if 

it is of sufficient quality as determined by the feature subset evaluator.  An ensemble is then 
created from those individual base classifiers learned using the feature subsets of sufficient 

quality.  The ensemble is then applied on the test dataset, and the results of each of its base 

classifiers are combined using simple majority voting [13]. 
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The paper is organized is as follows:  Section II discusses the machine learning system which 
uses a combination of FSSMs with feature subset evaluators.  Section III explains the FSSMs for 

grouping of similar features. The evaluators used to assess the quality of a feature subset are 

presented in section IV.  This evaluation is over the feature set as a whole and differs from 

filtering methods applied to individual features.  Section V discusses the experimental design and 
its parameters. Section VI presents the experimental results in terms of several views: 1) 

individual feature subset evaluators over FSSMs and datasets, 2) individual FSSMs over feature 

subset evaluators and datasets, 3) ensemble performance across datasets, 4) datasets across 
ensemble performance measures, and 5) highest ensemble performance values for pairs of feature 

subset evaluator and FSSM within datasets.  Finally, section VII presents conclusions and 

possible future work. 
 

2. MACHINE LEARNING COMPONENTS 
 

A machine learning system can have different structures and use a variety of methods.  Here in 
this research the structure consists of 1) pre-process filtering, 2) a feature subset selection 

algorithm, 3) ensemble building algorithm, and 4) a learning algorithm. Figure 1 illustrates the 

system using four processes, which are described in the following four subsections. 
 

 
 

Figure 1. Machine Learning Process without Evaluators 

 

2.1. Pre-processing Filtering 
 

Filtering methods [14], also referred to as feature ranking methods, examine intrinsic properties 
of datasets to rank the features on their relevance to the classification task. This ranking is 

independent of the choice of learning algorithms. 

 
ReliefF [5] is a well-known and often-used filtering method and is used to rank the features based 

on their numerical value. From this ranking, a specified number of top ranked features are 

selected as input to a feature subset selection algorithm; the others are discarded. Although 

ReliefF does provide a good way to assess the merit of individual features, it does not assess the 
merit of a collection of features. That is, a good feature set will include high-quality features in 

addition to having a diverse set of features; ReliefF is not designed to address this issue. The next 

step is to form subsets of these top-ranked features to use in training individual base classifiers.  
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2.2. Feature Subset Selection 
 

Feature subset selection using feature subset evaluation produces candidate feature subsets based 

on a given strategy and can address feature redundancy in addition to feature relevance.  A search 
strategy typically is used to search through feature subsets. Searching is time consuming due to 

feature subset generation and the evaluation of the feature subset. Methods to evaluate feature 

subsets are a distinguishing factor among feature selection algorithms using searching. 

 
As done in [9], the top-ranked features undergo a hierarchical clustering algorithm to assign each 

feature uniquely into one of the G groups. When clustering, distance is defined using the specific 
FSSM used. During the clustering process, the two clusters that are merged are those that have 

smallest distance between the most distant members of the two individual clusters.  When 

complete, the features that reside in a particular group can be viewed as being like the others in 
that group as defined by the FSSM, while being relatively dissimilar to the members of the other 

groups. The degree in which this is true is highly dependent on the underlying data and the value 

of G used. 

 
This work does not use searching in the feature subset selection process.  The RSM method, in 

combination with the grouping of related features, produces a feature subset by randomly 

selecting one feature from each of the G groups.  In [9], no quality assessment is performed on 
each generated feature subset; each one is simply used in a base classifier to be trained for use in 

an ensemble.  This current research instead uses different evaluators to assess the quality of a 

feature subset.  If the feature subset’s evaluation score is not sufficient, the feature subset is 
eliminated from use in a base classifier. 

 

2.3. Ensemble Building 
 

An ensemble can be built using a data partition, a feature partition, or hybrid approach [15].  

Here, feature partitioning is used.  Each feature subset of sufficient quality is associated with a 
base classifier.  Each base classifier must be trained before used in the ensemble.  An ensemble 

with multiple high-quality-only trained base classifiers is expected to have higher performance 

results and reduce learning times due to the elimination of low-quality feature subsets. The 

ensemble aggregates the predictions from its set of base classifiers using simple majority voting 
[13].  

 

2.4. Machine Learning 
 

Various machine learning algorithm with the training data can be used on a base classifier and its 

feature subset.  Weka’s J48 decision tree (DT) classifier [16][10] with default parameter settings 

is used for training the base classifiers.  J48 is used for consistency with its use in [9]. 
 

3. FUZZY SET SIMILARITY MEASURES 
 
Each feature is represented as a fuzzy set over the instances in the sample data sets. The feature 

values must be normalized to specify a degree of membership in [0, 1].    Similarity between the 

fuzzy sets representing each feature is determined using a FSSM. The fuzzy similarity measures 
are using during the hierarchical clustering process. In [9] the FSSMs used are presented in more 

detail.  For completeness, they are briefly described here.  

 

The concordance correlation coefficient (CCC) measures a bivariate relationship in terms of 
agreement between two values [8]. It differs from the Pearson correlation which measures the 
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degree of linear relationship. CCC measures the degree to which pairs of values are close to the 
45 degrees line of perfect concordance in a scatterplot.  This line runs diagonally to the 

scatterplot.  It is a very specific linear relationship, not just any linear relationship.  A zero value 

indicates no agreement. 

 
Zadeh’s consistency index, also known as the sup-min or partial matching index [17], roughly 

estimates the similarity between two fuzzy sets by finding at what domain values they intersect 

and determines their similarity by taking the highest membership degree among their intersection 
points.    

 

The fuzzy Jaccard similarity measure is a fuzzy extension of the Jaccard index [18] between two 
crisp sets. It replaces set cardinality with fuzzy set cardinality.  It is the ratio between the fuzzy 

set cardinality of the intersection and that of the union.  

 

A fuzzy inclusion measure determines how much one fuzzy set is included in another [17].  
Another way to create a FSSM is to use a symmetric aggregation of the two directions of 

inclusion. The aggregation operators used are average, minimum, and maximum. 

  
The cosine measure [19] views each fuzzy set as a vector in n dimensional space and computes 

the cosine of the angle between the two vectors. Because the feature values are values in the 

range [0, 1], the cosine can never be negative 

 

4. FEATURE SUBSET SELECTION 
 

Many feature selection methods contain two important aspects: evaluation of a candidate feature 

subset and searching through the feature space. The RSM approach does not use a search process 
but instead iteratively produces a randomly generated feature subset for a candidate base 

classifier to use in the ensemble. This current research incorporates the use of evaluation 

functions, referred to as evaluators, on the randomly generated feature subset.  In [20], feature 
subset evaluators are classified into five categories: distance, information (or uncertainty), 

dependence, consistency, and classifier error rate.  Evaluators in the classifier error rate category 

are referred to as wrapper methods [20]. Although wrapper methods produce high accuracy, due 

to their high computational cost, they are not considered here.  The following describes the three 
evaluators used in this work. 

 

Interclass distance (ICD) [2] in the distance category, also known as separability, divergence, or 
discrimination, is based on the assumption that instances of a different class should be distant in 

the instance space.  Most often the distance measure d is in the Euclidean family: 

 

ICD(+, -) =                                                          (1) 

 

where, + and - are the two class labels.  x(+, k1) represents an instance k1 of class +.   x(-, k2) 
respresents an instance k2 of class -.   N+ is the number of positive instances. N- is the number of 

negative instances. This formula is for two classes since the datasets in this study are binary 

classification problems. It takes the distance between each positive instance with each negative 

instance and sums over all possible pairs. Then the average over all the distances is taken.  

 

Maximal information compression index (MiCi)[20] appears in both the information and 

dependence categories. An evaluator in the dependence category computes the dependence of a 
feature on other features. Its value measures the degree of redundancy of the feature. All 

evaluators in the dependence category can also be classified as information measures. MiCi 
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measures the amount of error produced by reducing the pair of features (x, y) to a single feature. 
The greater the error means the less redundant are the two features.  For features x and y, the 

formula is given as 
      

 
                                                                                                                                                     (2)       
 

var(x) is the variance of the values for feature x and similarly for y. ρ(x,y) is the covariance for 

the values of features x and y. This measure is performed for every pair of features in the feature 

subset, and the total is accumulated as a measure of error over the feature subset as a whole. 
 

Fuzzy consistency (FC) is an adaptation of a crisp consistency measure [21] on a feature subset.  

Consistency for a feature subset F determines how many identical instances have the same class 
value for each group of identical instances, i.e., measures how consistent is the classification for 

each set of identical instances using the given F. Since this work only deals with binary 

classification problems, if there is a pattern A of identical instances, then for pattern A the crisp 
consistency is the maximum of either the positive class count or the negative class. The 

consistency formula for an identical pattern A is   

 

CF(A) = max k=+,- [Fk(A)]                                                                                            (3) 
 

where Fk(A) is the number of instances in class k equal to A.  The consistency rate is given as  

 

                                                                                                              (4) 
 

for each pattern A in the set of unique patterns S and |S| is the cardinality of the set S. 

Consistency measures rely on discrete-valued features where continuous features must first be 
discretized.   To simplify measuring the consistency of the fuzzy instances, clustering is used to 

group instances into similar groups, i.e., |S| clusters, based on their feature membership values 

over features. Although the fuzzy instances in a group are not identical, the fuzzy consistency 

value is calculated for each similar group A as in Eq. 3. Fuzzy consistency rate is calculated as 
the average over all similar groups as in Eq. 4.  

 

5. EXPERIMENTAL DESIGN AND DATASETS 
 
The research objective is to compare the effects of 1) the different FSSMs used to group features 

and 2) the evaluators used on the randomly generated features subsets from these groups on the 

performance when poorer feature subsets are eliminated.  The results from the combinations of 

FSSMs and feature subset evaluators are compared to the results of just using FSSMs in creation 
of the base classifiers (i.e., without the evaluators). To perform this analysis, a systematic series 

of machine learning experiments were conducted, with the main control variables being the fuzzy 

similarity measure and the evaluator.  The datasets used in these experiments are: breast, CNS, 
colon, and leukemia.  The details of the data sets can be found in [9].  

 

The objective in the previous research with FSSMs for grouping was to compare how the 
different similarity measures performed in creating ensemble classifiers. The reported results 

were based on finding the greatest performance values for accuracy, sensitivity, specificity, and 

F-measure for each fuzzy set similarity measure and dataset and the parameter values for which 

they occur.  The input parameters for that research are S, N, G, and E. S is the FSSM. N is the 
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number of top ranked features from ReliefF and ranged from 10 to 100 by an increment of 10. G 
is the number of clusters for grouping related features and ranged from 2 to 10 by an increment of 

1.  E is the number of base classifiers used to create the ensemble classifier and was fixed at 101.  

Note that the ensemble performance measures of accuracy, sensitivity, specificity, and F-measure 

may achieve their highest values at different N and G values for a FSSM and dataset.   
 

In this current experiment, the objective is not to find the best achievable performance in the 

various ensemble performance measures. Instead, it is to compare performance results of a fuzzy 
set similarity used by itself in ensemble creation to those produced with the identical FSSM 

paired with each of the feature subset evaluators.  This type of experiment can be used to assess 

the evaluators’ effectiveness. To reduce the number of experiments and with this objective in 
mind, N is fixed at 50.  This number was selected since across the experiments in the previous 

research, the majority of the highest performance measures were achieved at N ≤ 50. G is fixed at 

10 since it was the highest value in the previous experiments and some highest performance 

values were achieved at 10. E is fixed at 101 where an odd E eliminates possible ties in majority 
voting.  

 

The leave-one-out cross validation method is used in the experiments.  An ensemble is to be 
created by independently learning with up to E base classifiers for each fold if the feature subset 

is of sufficient quality.  Each feature subset is formed by randomly selecting one feature from 

each of the G feature subsets. The quality of the feature subset is then measured by using one of 
the three feature subset evaluators selected for the experiment.   The acceptable quality level of a 

feature subset evaluator for it to be used in a base classifier is defined here for these experiments 

as  

 

                             (5) 
 

where eval is the evaluator used.  The maxE(eval) is the maximum value of the subset evaluator 

eval over all the feature subsets for the potential base classifiers in the ensemble, and likewise, 
minE(eval) is the minimum value.  If a feature subset’s quality value is greater than or equal to 
the acceptable quality level, that feature subset is included for training a base classifier in the 

ensemble. The maximum and minimum values for eval are over those values it produces for each 
generated feature subset. Only those feature subsets meeting the quality level are used to learn a 

base classifier. Each base classifier in the ensemble participates in a simple majority vote on the 

test sample.   
 

6. EXPERIMENTAL PERFORMANCE RESULTS 
 

Baseline experiments were conducted to obtain performance results from using only FSSMs for 

grouping the top-ranked ReliefF features. These results are then used for comparison with those 
results from the combination of FSSMs and feature subset evaluators used to eliminate poor 

feature subsets.  Using FSSMs by themselves, E=101 base classifiers are always used. FSSMs 

combined with evaluators, the number of base classifiers may vary since the   evaluation step can 
eliminate feature subsets that are determined to be of poor quality.  

 

Tables I, II, III, and IV for the four datasets show comparisons on accuracy, sensitivity, 
specificity and F-measure, respectively. Each table shows each FSSM measure paired with a 

feature subset evaluator.  The columns labeled “None” correspond to using the FSSM without 

any evaluator. These columns serve as the baseline.  The other columns, ICD, MiCi, and FC, are 

the associated results when using the corresponding evaluator. For these columns, the values 
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shown in bold for a value of FSSM and a feature subset evaluator pair meet or exceed those of 
the corresponding baseline result with no evaluator. Thus, bold entries are considered favorable 

and referred to as a “win.” While matching the performance might be considered a “tie,” it is 

viewed as a win because the same performance is obtained with fewer base classifiers. 

 
The following analysis focuses on performance of the FSSMs and evaluators within a dataset 

based on its number of wins.  The number of base classifiers used is discussed if there is no 

difference in wins analysis between two evaluators or between two FSSMs. Later analysis 
includes the actual number of base classifiers used when examining the highest ensemble 

performance measures.  
 

Table I. Accuracy 

 

 
Table II. Sensitivity 

 

 
Table III. Specificity 

 

 
 

 

FSSM 

Breast CNS Colon Leukemia 

ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None 

CCC 
0.633 0.653 0.714 0.673 0.517 0.483 0.500 0.500 0.806 0.790 0.823 0.839 0.986 0.972 0.972 0.972 

Cos 0.673 0.673 0.673 0.673 0.450 0.433 0.450 0.450 0.677 0.694 0.677 0.694 0.875 0.875 0.875 0.875 

IncAve 
0.592 0.653 0.592 0.551 0.583 0.583 0.600 0.583 0.823 0.823 0.823 0.839 0.903 0.903 0.917 0.917 

IncMax 0.612 0.571 0.592 0.510 0.617 0.567 0.583 0.600 0.855 0.871 0.871 0.855 0.972 0.972 0.986 0.972 

IncMin 
0.633 0.612 0.633 0.612 0.617 0.633 0.650 0.633 0.839 0.823 0.856 0.839 0.903 0.903 0.903 0.903 

Jaccard 
0.571 0.673 0.633 0.551 0.600 0.600 0.600 0.600 0.839 0.839 0.823 0.839 0.917 0.944 0.931 0.944 

Zadeh 
0.633 0.673 0.694 0.714 0.600 0.583 0.583 0.600 0.871 0.855 0.855 0.855 0.903 0.903 0.917 0.917 

Wins 
5 5 6 n/a 6 3 5 n/a 4 4 3 n/a 4 5 6 n/a 

 

FSSM 

Breast CNS Colon Leukemia 

ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None 

CCC 
0.600 0.680 0.680 0.640 0.095 0.048 0.048 0.048 0.900 0.900 0.900 0.900 1.000 0.979 0.979 0.979 

Cos 
0.680 0.680 0.680 0.680 0.238 0.143 0.190 0.190 0.775 0.775 0.775 0.775 0.897 0.894 0.894 0.894 

IncAve 
0.520 0.680 0.520 0.520 0.286 0.238 0.286 0.286 0.925 0.925 0.925 0.925 0.915 0.915 0.936 0.936 

IncMax 
0.640 0.560 0.560 0.480 0.238 0.238 0.095 0.143 0.900 0.925 0.925 0.925 0.979 0.979 1.000 0.979 

IncMin 
0.640 0.520 0.600 0.600 0.238 0.190 0.286 0.238 0.925 0.925 0.925 0.925 0.912 0.936 0.915 0.936 

Jaccard 
0.560 0.680 0.640 0.520 0.143 0.143 0.143 0.190 0.925 0.925 0.900 0.925 0.936 0.957 0.957 0.979 

Zadeh 
0.640 0.720 0.760 0.800 0.238 0.190 0.286 0.238 0.925 0.900 0.925 0.925 0.936 0.936 0.918 0.957 

Wins 5 5 6 n/a 6 2 5 n/a 6 6 6 n/a 3 4 4 n/a 

 

FSSM 

Breast CNS Colon Leukemia 

ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None 

CCC 
0.667 0.625 0.750 0.708 0.744 0.718 0.744 0.744 0.636 0.591 0.682 0.727 0.960 0.960 0.960 0.960 

Cos 
0.667 0.667 0.667 0.667 0.564 0.590 0.590 0.590 0.500 0.545 0.500 0.545 0.840 0.840 0.840 0.840 

IncAve 
0.667 0.625 0.667 0.583 0.744 0.769 0.769 0.744 0.636 0.636 0.636 0.682 0.880 0.880 0.880 0.880 

IncMax 
0.583 0.583 0.625 0.542 0.821 0.744 0.846 0.846 0.773 0.773 0.773 0.727 0.960 0.960 0.960 0.960 

IncMin 
0.625 0.708 0.667 0.625 0.821 0.872 0.846 0.846 0.682 0.636 0.727 0.682 0.880 0.840 0.880 0.840 

Jaccard 
0.583 0.667 0.625 0.583 0.846 0.846 0.846 0.821 0.682 0.682 0.682 0.682 0.880 0.920 0.880 0.880 

Zadeh 0.625 0.625 0.625 0.625 0.795 0.795 0.744 0.795 0.773 0.773 0.727 0.727 0.840 0.840 0.840 0.840 

Wins 6 6 7 n/a 4 5 6 n/a 4 4 4 n/a 7 7 7 n/a 
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Table IV. F-Measure 

 

6.1. Subset Evaluator Performance 
 

First, the performance of evaluators is analyzed using the overall number of wins (per column) 

over all seven FSSMs and is discussed in terms of ensemble performance measures for each 
dataset.  The following analysis includes numerous comparisons that, overall, show the 

evaluators can improve performance and reduce the size of the ensemble.  

 
For the breast dataset, the fuzzy consistency evaluator is consistently the best or tied for the best 

in terms of the number wins against the baseline.  For example, in accuracy FC has 6 wins. This 

is seen in the last row in Table 1 for the breast dataset.  ICD and MiCi each have 5 wins.  FC also 
performs better for the other performance measures with respect to the breast dataset.   

 

For CNS, the ICD evaluator is best, or tied for the best, for accuracy, sensitivity, and F-measure 

as seen in the last row for the CNS column for Tables I, II, IV. FC is a close second for accuracy. 
ICD and FC are best for the F-measure as seen in last row for the CNS column of Table IV.  ICD, 

however, is the worst for specificity as seen in Table III where FC is the best. 

 
For the colon dataset, less variety exists between the evaluators.   For example, in accuracy, both 

ICD and MiCi have 4 wins and FC only has 3 as seen in the last row in the colon column in Table 

I.   For sensitivity, all evaluators have 6 wins, but MiCi might be judged the best if the least 

number of base classifiers required is considered. For specificity all three evaluators have 4 wins. 
For F-measure, all three evaluators have 3 wins.  

 

For the leukemia data set, the FC evaluator is consistently the best, or tied for the best, with 
respect to all of the ensemble performance measures.  FC has: 6 wins for accuracy in the 

leukemia column in Table I, 4 wins for sensitivity in Table II, 7 wins for specificity in Table III, 

and 5 wins for F-measure in Table IV. MiCi is nearly equal to FC but has only 5 wins for 
accuracy. 

 

To summarize, FC is the best performer with respect to all datasets and ensemble performance 

measures. Its exceptions are for sensitivity in CNS and for accuracy in the colon dataset.  
 

6.2. Fuzzy Set Similarity Performance 
 

Next, the performance of FSSMs is analyzed using the overall number of wins (per row) for each 

FSSM across all the three evaluators and the four ensemble performance measures; therefore, 
there are a maximum of 12 wins for each data set.  This analysis is done across all ensemble 

performance measures for a dataset since doing it per dataset for each ensemble performance 

measures provides only 3 cases to examine.  

 

FSSM 

Breast CNS Colon Leukemia 

ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None ICD MiCi FC None 

CCC 
0.625 0.667 0.708 0.667 0.121 0.061 0.063 0.063 0.857 0.847 0.867 0.878 0.989 0.979 0.979 0.979 

Cos 
0.680 0.680 0.680 0.680 0.233 0.150 0.195 0.195 0.756 0.765 0.756 0.765 0.903 0.903 0.903 0.903 

IncAve 
0.565 0.667 0.565 0.542 0.324 0.286 0.333 0.324 0.871 0.871 0.871 0.881 0.925 0.925 0.936 0.936 

IncMax 
0.627 0.571 0.583 0.500 0.303 0.278 0.138 0.200 0.889 0.902 0.902 0.892 0.979 0.979 0.989 0.979 

IncMin 
0.640 0.578 0.625 0.612 0.303 0.267 0.367 0.313 0.881 0.871 0.892 0.881 0.925 0.926 0.925 0.926 

Jaccard 
0.571 0.680 0.640 0.542 0.200 0.200 0.200 0.250 0.881 0.881 0.867 0.881 0.936 0.957 0.947 0.958 

Zadeh 
0.640 0.692 0.717 0.741 0.294 0.242 0.324 0.294 0.902 0.889 0.892 0.892 0.926 0.926 0.938 0.938 

Wins 5 5 6 n/a 5 1 5 n/a 3 3 3 n/a 3 5 5 n/a 
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For the breast dataset, Cos, IncAve, IncMax, and Jaccard perform the best across all evaluators 
and all ensemble performance measures with 12 wins.  For example, each row for cos is bold 

across all evaluators in each of the four tables for the breast dataset. 
 

For the CNS, IncAve performs the best across all evaluators with 10 wins followed by CCC with 

9 wins.  For the colon dataset, IncMax and Zadeh perform the best across all evaluators with 10 
wins.      
 

For the leukemia dataset, CCC, Cos, and IncMax are the best performing FSSMs over all of the 

ensemble performance measures and evaluators with 12 wins.   

 

6.3. Ensemble Performance Measures Across Datasets 
 

Analysis across the ensemble performance measures can be examined across the 7 different 

FSSMs, each with 3 evaluators for a total of 21 cases. These 21 cases exist for each ensemble 
performance measures for each dataset. The range for the percentage of wins for each ensemble 

performance measure with respect to each dataset is presented.  
 

For example, for accuracy, using pairs of FSSMs and evaluators, there are 16 wins for the breast, 

15 wins for leukemia datasets, 14 wins for CNS, and 11 wins for colon.   16 wins corresponds to 
a 76% win rate (16/21). However, for accuracy in the colon dataset, there are only 11 wins or 

52% of the 21 pairings.   Thus, the range is from 52% (colon) to 76% ((breast).  This result 

indicates that for most pairings of an evaluator with a FSSM the accuracy increases for all the 
datasets.  
 

For sensitivity, the percentage of wins ranges from 52% (Leukemia) to 86% (colon). For 

specificity, the percentage of wins ranges from 57% (colon) to 100% (leukemia).  For F-measure, 

the percentage of wins ranges from 43% (colon) to 76% (breast). Only for the colon dataset, is 
the percentage less than 50%.  To summarize, pairing an evaluator with a FSSM has the most 

effect on specificity with the highest bottom and top values for the range.  F-measure and 

accuracy have the lowest top range value at 76% and sensitivity has the lowest bottom range 
values at 43%. 
 

6.4. Dataset Performance Across Ensemble Performance Measures 
 

The range for the percentage of wins for each dataset with respect to each ensemble performance 

measure is presented. For the breast dataset, the percentage of wins ranges from 76% (accuracy, 
sensitivity, F-measure) to 90% (specificity).  For CNS, the range is 52% (F-measure) to 71% 

(specificity).  For the colon dataset, the range is 43% (F-measure) to 86% (sensitivity).  For 

leukemia, the range is 52% (sensitivity) to 100% (specificity).  To summarize, the pairing of an 
evaluator with a FSSM has the most effect on leukemia for the highest top range; however, it 

does not have the highest bottom range. Breast has the highest bottom range and the second 

highest top range. Breast also has the smallest range where leukemia has the largest range.  The 
smallest effect is on CNS since it has the lowest top range and almost the lowest bottom range but 

is second to the colon dataset. 
 

6.5. Fuzzy Similarity and Evaluator Pairs with Highest Performance Measures 
 

Finally, the performance of pairs of FSSMs and evaluators with respect to the highest values for 
each dataset and each ensemble performance measure is presented in Tables V, VI, VII, and VIII 

showing results for accuracy, sensitivity, specificity, and F-measure, respectively. The average 

number of base classifiers was not reported in previous tables. The number of base classifiers has 
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been recorded for the experiments, but due to space limitations is only presented in Table V in 

the column labeled #BCs for the highest performing combinations. 
 

Table V. Configurations With Best Accuracy 
 

 
          
 
 
 
 

    

 
 

 

Table VI. Configurations With Best Sensitivity 
 

Data Sens FSSM Eval #BCs 
Breast 0.800 Zadeh None 101 
 

 

CNS 

 

 

0.286 

IncAve FC 48.8 
ICD 50.5 

IncMin FC 52.8 
Zadeh FC 52.1 

 

 

 

 

 

 

Colon 

 

 

 

 

 

 

0.925 

 

IncAve 
MiCi 43.1 
ICD 54.3 
FC 75.3 

IncMax MiCi 43.5 

FC 71.8 

 

IncMin 

MiCi 38.7 

ICD 53.2 

FC 75.8 

Jaccard MiCi 42.4 

ICD 53.8 

Zadeh ICD 49.6 

FC 66.5 

Leukemia 1.00 CCC ICD 46.2 

IncMax FC 78.6 
     

  Table VII. Configurations With Best Specificity 
 

Data Spec FSSM Eval #BCs 
Breast 0.750 CCC FC 59.6 

CNS 0.872 IncMin MiCi 30.1 

 

Colon 

 

0.773 

 

IncMax 

FC 71.8 

MiCi 43.5 

ICD  57.5 

Zadeh MiCi 38.9 

 

 

 

 

Leukemia 

 

 

 

 

0.960 

 

IncMax 

FC 78.6 

MiCi 34.0 

ICD 46.6 

None 101 

 

CCC 

FC 77.4 

MiCi 32.8 

ICD 46.2 

None 101 

   
 
 
 
 
 

 
 
 
  

Data Acc. FSSM Eval #BCs 
Breast 0.714 CCC FC 59.6 

Zadeh None 101 
CNS 0.650 Jaccard FC 52.8 
Colon  

0.871 
IncMax FC 71.8 

MiCi 43.5 
Zadeh ICD 49.6 

Leukemia 0.986 CCC ICD 46.2 

IncMax FC 78.6 
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Table VIII Configurations With Best F-Measures 
 

Data F-Meas FSSM Eval #BCs 
Breast 0.741 Zadeh none 101 

CNS 0.367 IncMin FC 52.8 

 

Colon 

 

0.902 

IncMax FC 71.8 

MiCi 43.5 

Zadeh ICD 49.6 

Leukemia 0.989 IncMax FC 78.6 

CCC ICD 46.2 

 

With respect to evaluators, over all the datasets, FC has the highest number of instances for 
accuracy where it had the highest at 4. This can be seen by counting the number of rows in Table 

V that list FC as a top-ranked evaluator. For sensitivity (Table VI), FC has 8 followed by ICD 

with 6. For the F-measure (Table VIII), FC has at 3. 

 
For specificity (Table VII), MiCi has the highest number of instances at 5 followed by FC at 4.   

When MiCi does produce one of the highest performance values, it always uses the least number 

of base classifiers.  
 

Overall FC occurs at a highest performance value 19 times across all datasets: 4 times for 

accuracy and specificity, 8 times for sensitivity, and 3 times for F-measure.  FC occurs with at 
least one FSSM for all ensemble performance measures over all datasets except for F-measure 

for breast and specificity for CNS.  

 

With respect to FSSMs producing highest ensemble performance values, IncMax has its highest 
values occurring 8 times, 2 times for each ensemble performance measures and these were only 

for the colon and leukemia datasets   Zadeh also has the highest values over all the ensemble 

performance measures with 8 occurrences, but only the colon dataset has all of the four ensemble 
performance measures at their highest values.  All the other FSSMs occur 6 or fewer times with a 

highest performance value. Only Cos never produces a high for any ensemble performance 

measure.  

 
Without evaluators (None), the FSSMs CCC, IncMax and Zadeh produce the highest, or tied for 

the highest, performance values. Zadeh produces the highest performance values for sensitivity 

and F-measure for the breast dataset and matches CCC for accuracy for the breast data set. CCC 
and IncMax without evaluators produce a highest specificity value for the leukemia dataset.  

When no evaluator is used with a FSSM, all 101 base classifiers are used, as shown in the 

columns labeled #BCS. 
 

To summarize, for feature subset evaluators, overall FC produces the highest ensemble 

performance values. For FSSMs, IncMax and Zadeh produce the highest ensemble performance 

values.   In terms of the number of wins as analyzed in Section 6.1 for ensemble performance 
measures, generally FC, regardless of the FSSM it is paired with, is the better performing feature 

subset evaluator. As analyzed in Section 6.2 for ensemble performance measures, IncMax, 

regardless of the feature subset evaluator it is paired with, is the better performing FSSM.   
 

7. CONCLUSIONS 
 

The research presented in this paper extends that in [9] where fuzzy set similarity measures 

(FSSMs) are used for grouping related features for an ML process. This current research employs 
the use of three feature subset evaluators in combination with seven FSSMs to examine their 

effects on the ensemble performance measures accuracy, sensitivity, specificity and F-measure.   
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First FSSMs are used to create groups of related features from the best ReliefF-ranked features. 
Next features are randomly selected from each group to produce a feature subset as in [9]. This 

random selection process occurs a fixed number of times to generate feature subsets to be 

associated with a fixed number of base classifiers for the ensemble. Typically, all base classifiers 

would be used in the ensemble. Instead, the quality of a feature subset associated with a base 
classifier is assessed using an evaluator.    Those that have low quality are eliminated because 

they are likely to reduce the ensemble’s performance.  

 
Much research exists that discusses the use of feature subset evaluators in the search process of 

finding an optimal set of features for machine learning.  Here three feature subset evaluators: 

interclass distance (ICD), maximal information compression index (MiCi), and fuzzy consistency 
(FC) are used, not in a search process, but to determine the quality of the feature subsets 

produced by the random subspace method of feature selection as applied to the feature groups 

formed using FSSMs.  FC is an adaption of the crisp consistency measure which requires the 

discretization of feature values.  
 

The experimental results showed that in most cases the FSSM paired with a feature subset 

evaluator outperforms the corresponding FSSM by itself, although it is acknowledged that it is 
difficult to know which combination will yield the most improvement.  An added benefit is that 

the learning process only needs to occur on typically about half the number of base classifiers 

since the evaluator produces a quality assessment and those of low quality are eliminated from 
the ensemble.   

 

From this study, in general the FC measure is the best performing feature subset evaluator paired 

with the FSSMs.  As for FSSMs, in general IncMax paired with feature subset evaluators is the 
best performing for the colon and leukemia datasets.   CCC and Zadeh with FC perform the best 

the breast and CNS datasets.   

 
Future work will investigate other feature subset evaluators and the application of this pairing 

with FSSMs on other datasets.  Initial experimental results also suggest that an aggregation of 

evaluators on a feature subset might present even higher quality feature subsets for an ensemble’s 

base classifiers. The idea is that these higher quality feature subsets could further improve 
ensemble performance measures and reduce the number of needed base classifiers.   In addition, a 

study to investigate possible relationships both between evaluators and ensemble performance 

measures and between evaluators and datasets might provide better insight to their use. 

 

REFERENCES 
 
[1] Molina, L. C.,  Belanche, L., Nebot, A. (2002) “Feature Selection Algorithms: A Survey and 

Experimental Evaluation,” IEEE International Conference on Data Mining, Maebashi City, Japan, 

Dec. 9 – 12. 

[2] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A. (2015) Feature Selection for High-

Dimensional Data, Springer International Publishing AG,  Switzerland.    

[3] Wan, Cen (2019)  Hierarchical Feature Selection for Knowledge Discovery Application of Data 

Mining to the Biology of Ageing, Springer Nature Switzerland AG. 

[4] Ho, T. K. (1998) “The random subspace method for constructing decision forests,”  IEEE 

Transaction on Pattern Analysis and Machine Intelligence,  vol. 20  no. 8, pp. 832–844. 

[5] Robnik-Sikonja, M. & Kononenko, I. (1997)  “An adaptation of relief for attribute estimation in 

regression,” in: D. H. Fisher 635 (Ed.), Fourteenth International Conference on Machine Learning, 
Morgan Kaufmann, pp. 296–304. 

[6] Kuncheva, L. I., Rodríguez, J. J., Plumpton, C. O., Linden, D. E. J., & Johnston, S. J. (2010) 

“Random Subspace Ensembles for fMRI Classification,” IEEE Transactions on Medical Imaging, 

Vol. 29, No. 2, pp. 531- 542. 



86 Computer Science & Information Technology (CS & IT) 

[7] Chaudhury, B., Goldgof, D. B., Hall, L. O., Gatenby, R. A., Gillies, R. J., & Drukteinis, J. S. (2015) 

“Correlation based random subspace ensembles for predicting number of axillary lymph node 

metastases in breast dce-mri tumors,”  IEEE International Conference on Systems, Man, and 

Cybernetics (SMC), pp. 2164–2169.  

[8] Bland, J. M. & Altman, D. (1986) “Statistical methods for assessing agreement between two methods 
of clinical measurement,” The Lancet, vol. 327 no. 8476,  pp. 307–310.  

[9] Cross, V., Zmuda, M., Paul, R., & Hall, L. O. (2020) “Fuzzy Set Similarity for Feature Selection in 

Classification”,  2020 International Conference on Fuzzy Systems (FUZZ-IEEE), July 19 – 24,  

Glasglow, United Kingdom. 

[10] Bolón-Canedo, Verónica & Alonso-Betanzos, Amparo (2019) “Ensemble for feature selection: 

Review and Trends,” Information Fusion, Vol 52, pp. 1-12. 

[11] Álvarez-Estévez, Diego,  Sánchez-Maroño, Noelia, Alonso-Betanzos, Amparo, & Moret-Bonillo, 

Vicente (2011) “Reducing dimesionality in a database EEG sleep arousals,” Expert Systems with 

Applications,  38(6), pp. 7746-7754. 

[12]  Morán-Fernández, L., Bolón-Canedo,  V., & Alonso-Betanzos, A.  (2017) “Centralized vs. 

distributed feature selection methods based on data complexity measures,” Knowl. Based Syst. 117 

pp.  27–45. 
[13] Liu, H., Liu, L., & Zhang, H.  (2010) “Ensemble gene selection by grouping for microarray data 

classification,” Journal of Biomedical informatics,  43 (1) pp, 81–87. 
[14] Duch, W. (2006)  “Filter Methods,” in Feature Extraction Foundations and Applications, Eds.  I. 

Guyon, M. Nikravesh, S. Gunn, L. Zadeh, Berlin: Springer Berlin Heidelberg. 

[15] L. Rokach (2010), “Ensemble-based classifiers,” Artif Intell Rev, vol. 33, pp. 1–39. 

[16] Holmes, G., Donkin, A., & Witten, I. H. (1994) “Weka: A machine learning 

workbench,” Proceedings of the Second Australia and New Zealand Conference on Intelligent 

Information Systems, Brisbane, Australia, 1994 Web link: https://www.cs.waikato.ac.nz/ml/weka/ 

[17] Dubois, D. & Prade, H. (1982) “A unifying view of comparison indices in a fuzzy set-theoretic 

framework,” in R Yager Ed.  Fuzzy Set and Possibility Theory: Recent Developments, Pergamon 

Press, New York, NY pp. 3-13.  
[18] P. Jaccard (1912) "The distribution of the flora in the alpine zone", New Phytologist, vol. 11, pp. 37–

50. 

[19] Han, Jiawei, Kamber, M., & Pei, Jian (2012) Data Mining: Concepts and Techniques, 3rd Ed. Morgan 

Kaufmann, Burlington, MA.  

[20] Mitra, P., Murthy, C.A., & Pal, S.K. (2002) “Unsupervised Feature Selection Using Feature 

Similairty,”  IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3. 

[21] Dash, M. & Liu, Huan (2003) “Consistency-based search in feature selection,” Artificial Intelligence, 

Vol. 151,    pp. 155-176. 
 

AUTHORS 
 

Dr. Valerie Cross is an Associate Professor in the Computer Science and Software 

Engineering department at Miami University in Oxford, OH.  She earned a B.S in 

Computer Science and a B.S. in Statistics from West Virginia University, a Masters in 

Computer Science at the University of Colorado, Boulder and a PhD in Computer 

Science from Wright State University. Her research interests include fuzzy set theory and 

approximate reasoning, ontology alignment, ontologies in biomedical and bioinformatics 

applications and the use of fuzzy set theory in machine learning. 

 

 

Dr. Zmuda is an Associate Professor in the Computer Science and Software Engineering 

department at Miami University in Oxford, OH.  He earned a B.S in Computer Science 

and a B.S. in Mathematics from Eastern Michigan University and a M.S. and Ph.D. in 

Computer Science and Engineering at Wright State University. His research interests 

include the application of AI techniques such as fuzzy set theory and optimization to 

problems in medicine and virtual reality.    
 
© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC 
BY) license. 

https://www.sciencedirect.com/science/article/abs/pii/S0957417410014971#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417410014971#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417410014971#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417410014971#!
https://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf
https://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf
https://www.cs.waikato.ac.nz/ml/weka/
https://www.sciencedirect.com/science/article/pii/S0004370203000791#!
https://www.sciencedirect.com/science/journal/00043702
https://www.sciencedirect.com/science/journal/00043702/151/1
http://airccse.org/

	Abstract
	Keywords
	Feature subset selection using feature subset evaluation produces candidate feature subsets based on a given strategy and can address feature redundancy in addition to feature relevance.  A search strategy typically is used to search through feature s...


