
David C. Wyld: CSITY, NWCOM, SIGPRO, ASOFT, AIFZ, BDIoT, ITCCMA, CLSB, DTMN, MLNLP - 2021 
pp. 87-93, 2021. CS & IT - CSCP 2021                                                    DOI: 10.5121/csit.2021.111408 

 
A DEEP LEARNING BASED APPROACH TO 

ARGUMENT RECOMMENDATION 
 

Guangjie Li, Yi Tang, Biyi Yi, Xiang Zhang and Yan He 
 

National Innovation Institute of Defense Technology, Beijing, China 
 

ABSTRACT 
 
Code completion is one of the most useful features provided by advanced IDEs and is 

widely used by software developers. However, as a kind of code completion, 

recommending arguments for method calls is less used. Most of existing argument 
recommendation approaches provide a long list of syntactically correct candidate 

arguments, which is difficult for software engineers to select the correct arguments 

from the long list. To this end, we propose a deep learning based approach to 
recommending arguments instantly when programmers type in method names they 

intend to invoke. First, we extract context information from a large corpus of open-

source applications. Second, we preprocess the extracted dataset, which involves 

natural language processing and data embedding. Third, we feed the preprocessed 
dataset to a specially designed convolutional neural network to rank and recommend 

actual arguments. With the resulting CNN model trained with sample applications, we 

can sort the candidate arguments in a reasonable order and recommend the first one as 
the correct argument. We evaluate the proposed approach on 100 open-source Java 

applications. Results suggest that the proposed approach outperforms the state-of-the-

art approaches in recommending arguments. 
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1. INTRODUCTION 
 

Code completion is one of the most widely used Eclipse features by developers. It may 
automatically completes the rest part of an expression or statement when developers type in the 

first several characters, which helps speed up coding and as a result the whole process of software 

development. 
 

Argument recommendation is a special kind of code completion. Most of the mainstream IDEs 

recommend actual arguments for method calls when developers type in method names. However, 
such IDEs only provide a long list of candidate arguments according to the corresponding types 

of formal parameters, which may take a long time for developers to select the correct one from 

the list of type compatible candidate arguments. 

 
To facilitate the process of development, a few approaches have been proposed to recommend 

arguments. Zhang et al. [4] recommend arguments for method invocations based on the nearest k 

usages of them. Raychev et al. [6] recommend arguments for method invocations based on 
statistical language model. Such approaches can only work well for methods with richful 
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invocation histories, however, a large number of methods in practice have less or no invocation 
history before the current method call, consequently the state-of-art approaches cannot be used to 

recommend arguments for such method call. For example, according to Li et al. [1], nearly one 

half of method invocations are non-API method invocations, i.e., methods defined within the 

projects. 
 

To this end, in this paper we propose a deep learning based approach to recommend arguments 

for both API method invocations and non-API method invocations based on features extracted 
from the context of method invocations. First, we extract context information for each method 

invocation from a large number of open-source applications, which involves method names, 

formal parameters, actual arguments, type compatible variable names, type compatible and 
visible method names. Second, we perform natural logarithm transformation and normalization to 

the dataset. Third, we feed the preprocessed dataset to a specially designed Convoluntional 

Neural Network (CNN) so as to learn the general rules of mapping candidate arguments into 

parameters. Fourth, we rank the candidate arguments according to the predicted probabilities of 
being actual arguments in descending order, and recommend the first one as the actual argument. 

Evaluations on 100 open-source applications suggest that the proposed approach outperforms the 

state-of-art approaches in recommending arguments for method invocations. 
 

This paper makes the following contributions: 

 

 To the best of our knowledge, it is the first one in recommending and ranking arguments 
for methods. 

 

 Evaluations on real-world open-source applications suggest that the proposed approach 

outperforms the state-of-the-art approach in recommending arguments for method 

invocations. 
 

 We exploit natural language processing techniques to mine lexical similarities embedded in 

software identifiers, and exploit word embedding and deep learning techniques to mine 

semantic similarities between related program entities. 
 

The rest of the paper is organized as follows. Section 2 describes the proposed approach. Section 

3 presents an evaluation of the proposed approach on open-source applications. Section 4 

presents related works. Section 5 provides conclusions. 
 

2. APPROACH 
 

2.1. Overview 

 

The rationale of the approach is that we can select correct argument from a list of syntactically 

candidate arguments based on method invocation contexts. Consequently, we train an CNN 
(convoluntional neural network) model with training data, i.e., actual arguments and their context 

from open source applications, and then rank and recommend correct arguments for new call sites 

based on the resulting neural network. An overview of the proposed approach is presented in 
Figure 1. 

 



Computer Science & Information Technology (CS & IT)                                              89 

 
 

Fig. 1. Overview of the proposed approach. 

 

For a given argument in a method invocation, we exploit the JDT (Eclipse plug-in tool) to parse 

the ASTs of Java files statistically and extract the following context information: 

  

 Ar: the actual argument name. 

 Fn: the method name. 

 Par: the formal parameter name. 

 Lvs: all variables visible and type compatible. 

 Mvs: all methods visible and type compatible. 

 
where Lvs and Mvs are a list of candidate arguments, respectively. It should be noted that, for a 

given recommendation position, we only consider those expressions as candidate arguments 

when choosing them as the actual argument will not induce syntactical errors. 
 

2.2. Data Preprocessing 
 
To rank and recommend candidate arguments, we need to preprocess data extracted from 

program and feed them into the CNN, which involves the following steps. First, we split each 

identifier into a sequence of tokens by exploiting underscore and capital letter as separators. 
Second, we exploit Word2Vec [3] to embed the token sequences of each identifier into numerical 

vectors. Third, if the candidate arguments are more than five, we only remain the top five 

candidates who are lexical similar to the parameters based on computing Jaccard similarity [13]. 

 

2.3. CNN-Based Architecture 
 
The architecture of the neural network for argument recommendation is presented in Figure 4. 

The model consists of five input layers, five convolutional layers, two fully connected layers, and 

one output layer. Preprocessed data are divided into groups and each group is input to the 

corresponding convolutional neural network respectively. We set the input dimensions, output 
dimensions, kernel initializer and activation function for each layer as follows: 

 

 Convolutional layers: kernel_initializer =glorot_uniform, activation function = Softmax, 

pooling =MaxPooling1D, and dropout = 0.25. 
 

 First fully connected layer: output_dim = 32, activation function =Softmax, dropout = 0.5. 

 

 Second fully connected layer: out_dim =5. 

 
The output of the CNN-based network is the possibilities of candidates as the actual argument for 

a given recommendation requirement, and the proposed approach selects the one with highest 
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possibility as the recommended one. Each CNN layer is forwarded to a flatten layer, the merge 
layer merges the outputs of the flatten layers as a vector, and feed them into the fully connected 

dense layer. Finally, the dense layer outputs the prediction for each instance. 

 

 
 

 Figure 2. Overview of the CNN-based classifier  

 

3. EVALUATION 
  
This section specifies the setup of the evaluation, research questions, and metrics employed to 

evaluate the performance of the proposed approach. To evaluate the state-of-art argument 

recommendation approach, we select the similarity-based approach for comparison because of 
the following reasons. First, the similarity-based approach is the most recently proposed 

argument recommendation approach for method invocations. Second, the similarity-based 

approach does not rely on richful invocation history of the invoked method, which is similar to 

our approach. Third, the source code of the similarity-based approach is publicly available, which 
makes it easy to repeat their experiment. 

 

We evaluate the proposed approach on real-world applications. We search for most popular 
(stars) 100 open-source Java applications from GitHub as the subject applications, select 90 of 

the resulting applications as training dataset, and the left 10 applications as testing dataset. 

 

3.1. Research Questions 
 

The evaluation investigates the following research questions: 
 

 RQ1: Does the proposed approach outperform the state-of-art approach in recommending 

arguments for method invocations? 

 

 RQ2: How long does it take to train the neural network model, and how long does it take to 

generate recommendation for a given method invocation? 



Computer Science & Information Technology (CS & IT)                                              91 

 

 Research question RQ1 validates the performance of the proposed approach. Answering 
this question may reveal whether deep learning techniques outperform fine-grained 

heuristic rules in mining semantic relationships. 

 

 Research question RQ2 reveals the efficiency of the proposed approach. Answering this 

question may help to validate whether the proposed approach can be applied in practice. 
  

3.2. Metrics 
 

To measure the performance of the approaches, we define precision and recall as follows: 

 

 
 

 
 

 
 

where Numaccepted is the number of correct recommendations, Numrecommended is the number of 

generated recommendations, and the Numtested is the number of arguments extracted from the 

object applications. 
 

3.3. Results 
 
Evaluation results are presented in Fig 3. From this figure, we observe that the proposed approach 

significantly outperforms existing approaches in recommending arguments. 

 

 
 

Figure 3. Evaluation Results 

 

We also evaluate time efficiency of the proposed approach in training and testing phrase, 
respectively. Training task is conducted on a special workstation with the following 

configuration: 2.0GHz Intel Xeon E5-2683 processor, 64GB RAM, TITAN Xp GPU, with Linux 

installed. Testing is conducted on a personal computer with the following configuration: Intel 
Core i7-6700 CPU 3.4 GHz, 16 GB RAM, with Windows 7 installed. Evaluation results suggest 

that it takes around 89 minutes to train the CNN model and around 11 milliseconds on average to 

make recommendation for each argument requirement. 
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4. RELATED WORKS 
 
N-gram language model, rooted in statistical natural language processing, has been proved to be 

successful in capturing the repetitive and predictable regularities of source code [2]. 

Consequently, a series of n-gram based approaches have been proposed to predict the naturalness 

of code. Hindle et al. [2] recommend the next code token based on the preceding n tokens by 
training n-gram learning model. Allamanis et al. [6] exploit n-gram models to recommend 

variable names, method names and class names. Tu et al. [4] exploit the localness of source code 

in recommending the next token by adding a cache component to the n-gram 
  

model, i.e, assigning a higher probability to tokens occurred in the source file where the n-gram 

model based prediction is applied. Hellendoorn et al. [11] model and complete source code based 

on a nested and cached n-gram based approach. Based on the naturalness and localness of source 
code, they assign a higher probability to tokens most recently used by adding a cache mechanism 

to the n-gram model. Raychev et al. [7] exploit statistical language models and conditional 

random fields in predicting local variable names for JavaScript applications. Nguyen et al. [5][8] 
exploit graphic probability models to recommend the next API method call. 

 

Neural network based approaches are also proposed to improve code completion. White et al. [9] 
exploit deep learning to model software and illustrate that deep learning based approach is more 

effective than n-gram based one. Murali et al. [10] train a deep learning based model to generate 

code fragment for program sketches that heavily dependent on APIs. Most recently, Liu et al.[12] 

propose a similarity-based approach to recommend arguments. They just select the candidate who 
has the greatest lexical similarity with the corresponding parameter as the recommended 

argument. 

 

5. CONCLUSIONS 
 

In this paper, we propose a deep learning based approach to rank candidate arguments and 

recommend actual argument for method invocations. By statistically parsing Java source files 

from open-source applications, we extract each actual argument and the corresponding context 
information from each method invocation, represent them in vectors, and feed them into a 

specially designed CNN classifier to learn the rules of selecting correct arguments. Evaluations 

on 100 open-source applications suggest that the proposed approach outperforms the state-of-art 
approaching in recommending arguments. The insight of the approach is that deep learning 

techniques can effectively learn the semantic similarity between related software entities, and 

they can be used to facilitate software engineering task. 
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